Для чего используется телескоп


Небо манит нас, когда мы смотрим на его просторы. Что же скрывается за облаками, и что находится в его непроглядной темноте? На эти вопросы, разумеется, отчасти мы смогли получить представления с помощью телескопа. Бесспорно, это уникальное устройство, которое подарило нам великолепную картину космоса. И несомненно, приблизило наше понимание небесного пространства.

Большой телескоп азимутный БТА
Большой телескоп азимутный БТА

Первый телескоп

Известно, что первый телескоп создал Галилео Галилей. Хотя немногие знают, что он использовал ранние открытия других учёных. Например, изобретение зрительной трубы для мореплавания.
Кроме того, мастера по стеклу уже создали очки. Вдобавок, использовались линзы. И эффект преломления и увеличения стекла был более или менее изучен.


Первый телескоп
Первый телескоп Галилея

Безусловно, Галилео добился значительного результата в исследовании данной области. К тому же, он собрал и усовершенствовал все наработки. И в итоге, разработал и представил первый в мире телескоп. По правде, он имел лишь трёхкратное увеличение. Но отличался высоким на тот момент качеством изображения.

Кстати, именно Галилей назвал свой разработанный объект телескопом.
В дальнейшем, учёный не остановился на достигнутом. Он усовершенствовал прибор до двадцати кратного увеличения картинки.
Важно, что Галилео не только разработал телескоп. Более того, он первым использовал его для исследования космоса. Кроме того, он сделал массу астрономических открытий.

Галилео Галлилей
Галилео Галлилей

Характеристика телескопов

Телескоп состоит из трубы, которая стоит на специальной монтировке. Её оснащают осями для нацеливания на наблюдаемый объект.
Кроме того, у оптического устройства имеется окуляр и объектив. Причём задняя плоскость объектива перпендикулярна оптической оси, и соединена с передней поверхностью окуляра. Которая, между прочим, аналогична объективной по отношению к оптической оси.


Телескоп
Телескоп

Стоит отметить, что для фокусировки используется особое устройство.
Основными характеристиками телескопов являются увеличение и разрешение.
Увеличение изображения зависит от фокусного расстояния окуляра и объекта.
С разрешением связано свойство преломления света. Таким образом, размер наблюдаемого объекта ограничен разрешением телескопа.

Виды телескопов в астрономии

Разновидности телескопов в астрономии связаны с различными способами построения. Если точнее, то применением различных инструментов в качестве объектива. Кроме того, имеет значение для какой цели нужно устройство.
На сегодняшний день существует несколько основных типов телескопов в астрономии. В зависимости от светособирающего компонента они бывают линзовые, зеркальные и комбинированные.

Линзовые телескопы (диоптрические)

По другому, их называют рефракторами. Это самые первые телескопы. В них свет собирается линзой, которая с двух сторон ограничена сферой. Поэтому она считается двояковыпуклой. К тому же, линза является объективом.
Что интересно, можно использовать не просто линзу, а целую систему из них.


Линзовый телескоп
Линзовый телескоп

Стоит заметить, что выпуклые линзы преломляют лучи света и собирают их в фокус. А в нём, в свою очередь, строится изображение. Для того, чтобы его рассмотреть применяют окуляр.
Что важно, линза устанавливается так, чтобы фокус и окуляр совпадали.
Кстати, Галилео изобрёл именно рефрактор. Но современные приборы состоят из двух линз. Одна из них собирает свет, а другая рассеивает. Что позволяет уменьшить отклонения и погрешности.

Зеркальные телескопы (катаптрические)

Также их называют рефлекторы. В отличие от линзового типа, объектив у них это вогнутое зеркало. Оно собирает свет звезды в одной точке и отражает его на окуляр. При этом погрешности минимальны, а разложение света на лучи отсутствует полностью. Но использование рефлектора ограничивает поле зрения наблюдателя.
Что интересно, зеркальные телескопы самые распространённые в мире. Потому как разработка их намного легче, чем, например, линзовых приборов.

Зеркальный телескоп Ньютона
Зеркальный телескоп Ньютона

Катадиоптрические телескопы (комбинированные)

Это зеркально-линзовые приборы. В них для получения изображения применяют и линзы, и зеркала.


В свою очередь, их разделили на два подвида:
1) телескопы Шмидт-Кассегрена-в них в самом центре кривизны зеркала установлена диафрагма. Тем самым происходит исключение сферических нарушений и отклонений. Но увеличивается поле зрения и качество изображения.
2) телескопы Максутова-Кассегрена-в районе фокальной плоскости установлена плоско-выпуклая линза. В результате предотвращается кривизна поля и сферическое отклонение.

Катадиоптрический телескоп
Катадиоптрический телескоп

Стоит отметить, что в современной астрономии чаще применяются именно комбинированный вид приборов. В результате смешения двух разных элементов для собирания света они позволяют получать более качественные данные.

Радиотелескопы

Такие устройства способны принимать исключительно одну волну сигналов. С помощью антенн происходит передача сигналов и обработка их в изображения.
Радиотелескопы используются астрономами для научных исследований.

Радиотелескопы
Радиотелескопы

Инфракрасные модели телескопов

Они по своей конструкции очень схожи с оптическими зеркальными телескопами. Принцип получения изображения практически аналогичен. Лучи отражаются объективом и собираются в одной точке. Далее специальный прибор измеряет тепло и фотографирует полученный результат.


Инфракрасный телескоп
Инфракрасный телескоп

Современные телескопы

Телескоп это оптический прибор для наблюдений. Изобрели его почти полвека назад. На протяжении этого времени, учёные меняли и усовершенствовали устройство. Действительно, создано много новых моделей. В отличие от первых они имеют повышенное качество и увеличение изображения.

В нашем веке технологий используются компьютерные телескопы. Соответственно, они оснащены специальными программами. Что важно, современный прототип учитывает, что у каждого человека восприятие глаз разное. Для высокой точности картинку передают на монитор. Таким образом изображение воспринимается таким, какое оно на самом деле есть. Вдобавок, данный способ наблюдения исключает любые искажения.

Современный телескоп
Современный телескоп

Кроме того, учёные нашего поколения применяют одновременно не одно устройство, а несколько. Более того, к телескопу подключают уникальные камеры, которые передают информацию на компьютер. Это позволяет получать чёткие и точные сведения. Которые, разумеется, используют для изучения и исследования космических просторов.


Что интересно, сейчас телескопы не просто приборы для наблюдения. Но также устройства для измерения расстояний между космическими объектами. Для этой функции к ним подключают спектрографы. И взаимодействие этих приборов предоставляет конкретные данные.

Другая классификация

Есть еще и другие виды телескопов. Но используются они по своему отдельному назначению. Например, рентгеновские и гамма-телескопы. Или ультрафиолетовые устройства, которые фильтруют картинку без обработки и засвечивания.
Кроме того, можно разделить приборы на профессиональные и любительские. Первые используются учёными и астрономами. Очевидно, что вторые подходят для домашнего применения.

Гамма телескоп Hess
Гамма телескоп Hess

Как выбрать телескоп для любителей астрономии

Выбор телескопа для любителей астрономии основывается на том, что же вы хотите наблюдать. В принципе, выше описаны виды и характеристики приборов. Вам просто нужно выбрать какой больше нравится. Лучше, на мой взгляд остановиться на линзовом, либо комбинированном виде. Но выбирать, разумеется, вам.


Астрономы
Астрономы

По данным интернета, лучшие любительские телескопы представлены фирмами: Celestron, Bresser и Veber.

Телескопом сотни лет изучают жизнь планет

Создание и разработка телескопа, на самом деле, позволили сделать огромный шаг в исследовании космоса. Вероятно, всё, что мы знаем сформировалось с помощью этого прибора. Хотя, конечно, не стоит приуменьшать саму деятельность учёных.
Сегодня мы рассмотрели некоторые типы телескопов и их характеристики. Однозначно, виден прогресс технологий. И как результат, мы узнали множество интересного о космических объектах и самом космосе. Кроме того, мы можем любоваться прекрасным небом и знакомиться с ним благодаря этому чудесному изобретению.

Источник: kosmosgid.ru

На протяжении тысячелетий астрономы изучали положения небесных объектов на звёздном небе и их взаимное перемещение с течением времени. Конечно же древним астрономам приходилось очень нелегко, так как они имели возможность наблюдать за звёздным небом лишь невооружённым глазом. И в основном благодаря лишь своей железной логике, силе мысли и математическому расчёту Николай Коперник сделал свои гениальные открытия.


Настоящий переворот в астрономии произошёл в 1608 году, после того как голландский мастер по изготовлению очков Иоанн Липперсгей обнаружил, что две линзы, расположенные на одной прямой, могут увеличивать предметы. Так была изобретена зрительная труба.

Этой идеей сразу же воспользовался Галилей. В 1609 году он сконструировал свою первую зрительную трубу с трёхкратным увеличением и направил её в небо. Так зрительная труба превратилась в телескоп.

Для чего используется телескоп

Кстати, название «телескоп» происходит от двух греческих слов: «теле» — далеко, и «скопео» — смотреть. Оно было предложено в 1611 году греческим математиком Иоаннисом Димисианосом для одной из зрительных труб Галилея.

Телескопы применяют для того, чтобы собрать как можно больше света, идущего от изучаемого объекта, и чтобы получить возможность изучать его мелкие детали, которые недоступны невооружённому глазу. Чем более слабые объекты даёт возможность увидеть телескоп, тем больше его проницающая сила. А возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.


Разрешающая способность телескопа — это наименьший угол между такими двумя близкими звёздами, когда они уже видны как две, а не сливаются зрительно в одну.

Проще говоря, чем меньше размер изображения светящейся точки (в нашем случае, звезды), которое даёт телескоп, тем больше его разрешающая способность.

Разрешающая способность телескопа для видимого света определяется по формуле:

Для чего используется телескоп

где «D» — это диаметр объектива в миллиметрах, а «α» — угловое разрешение в угловых секундах.

Конечно же, таким образом мы находим разрешающую способность идеального телескопа для идеальных условий наблюдения. В реальности разрешающая способность будет гораздо меньше, так как на качество изображения будут существенно влиять состояние атмосферы и движение воздуха.

Вам конечно же известно, что любой оптический телескоп состоит из объектива и окуляра. Так вот, если в качестве объектива телескопа использовать линзу, то телескоп будет называть рефра́ктором (от латинского слова «преломляю»). Если же в качестве объектива используется вогнутое зеркало, то это телескоп называется рефле́ктором (от латинского «отражаю»).

Помимо рефлекторов и рефракторов в настоящее время широкое применение нашли различные типы зеркально-линзовых телескопов.


Для чего используется телескоп

У небольших и самых простых телескопов объективом, как правило, выступает двояковыпуклая собирающая линза. Из курса физики вам известно, что если предмет находится за двойным фокусом линзы, то она даёт его уменьшенное, действительное и перевёрнутое изображение. Так как расстояния до небесных тел очень велики, то лучи света, идущие от них, можно считать параллельными. В этом случае изображение небесного объекта будет располагаться в фокальной плоскости объектива.

Для чего используется телескоп

Из построения видно, что угловых размеров наблюдаемого объекта объектив телескопа не изменяет. Поэтому, чтобы получить увеличенное изображение, мы должны воспользоваться окуляром — ещё одно линзой (собирающей или рассеивающей). При этом фокусное расстояние окуляра должно быть меньше, чем фокусное расстояние объектива. Если расположить окуляр так, чтобы изображение предмета, даваемое объективом телескопа, находилось в его главном фокусе и провести необходимые построения, то мы убедимся, что он увеличивает угловые размеры наблюдаемого объекта. Это увеличение мы можем легко рассчитать, как отношение фокусного расстояния объектива к фокусному расстоянию окуляра.

Для чего используется телескоп

Конечно же первые телескопы были размером с небольшую подзорную трубу, увеличивали в несколько десятков раз и не отличались высоким качеством изображения. Однако вскоре было обнаружено, что количество света, собираемого объективом телескопа, возрастает пропорционально его площади. Поэтому со временем размеры и мощности этих приборов увеличивались. Так в 1845 году британский астроном Уильям Парсонс построил в своём графском замке телескоп «Левиафан». Масса этого аппарата составляла более 150 тонн, длина трубы — 17 метров, а зеркало имело диаметр 183 сантиметра.

Для чего используется телескоп

В наше время изготавливаются ещё более крупные оптические телескопы. Так, например, крупнейшим телескопом в Евразии является «Большой телескоп азимутальный» (сокращённо БТА).  Располагается он в научно-исследовательском институте Российской академии наук, расположенном на Северном Кавказе у подножия горы Пастухова в Зеленчукском районе Карачаево-Черкесской Республики. Его главное монолитное зеркало имеет диаметр 605 сантиметров. Этот телескоп считался крупнейшим в мире почти 18 лет.

Для чего используется телескоп

В настоящее время самым крупным оптическим телескопом считает Большой южноафриканский телескоп, открытый в 2005 году. Находится он в Южноафриканской астрономической обсерватории, расположенной вблизи города Сатерленд в полупустынном регионе Кару Южно-Африканской Республики. Главное зеркало этого телескопа имеет размеры 11 м х 9,8 м и состоит из 91 одинакового шестиугольника со стороной 1 метр.

Примечательно, что изготовлением сегментов главного зеркала и их первичной обработкой занималось приборостроительное предприятие, расположенное в городе Лыткарино Московской области. А калибровка зеркала происходила при участии специалистов Всероссийского научно-исследовательского института метрологии имени Дмитрия Ивановича Менделеева.

Для чего используется телескоп

Но и это не предел. В 2015 году произошла церемония закладки первого камня будущего Европейского чрезвычайно большого телескопа. Его главным инструментом станет сегментное зеркало диаметром в 39,3 метра.

Конечно же астрономы уже давно не ведут визуальных наблюдений. В середине XIX века им на смену пришла фотография. В настоящее же время фотографию заменили электронные приёмники света. Наибольшее распространение получили полупроводниковые приборы с зарядовой связью, сокращённо ПЗС. Матрицы ПЗС, которые применяются в современных цифровых фотоаппаратах, по своему устройству аналогичны тем, которые используются в астрономии. Важнейшим их качеством является высокая чувствительность: они способны реагировать практически на каждый попавший на них фотон. Особенно ПЗС незаменимы для тех телескопов, которые работают в автоматическом режиме. В частности, это касается знаменитого телескопа «Хаббл», который обращается вокруг земли на расстоянии примерно в 560 километров от её поверхности. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа составляет всего 0,1’’, что почти в 7—10 раз больше, чем у аналогичного телескопа, расположенного на Земле. За 15 лет работы телескопа на Землю было передано свыше 1 миллиона 22 тысяч высококачественных изображений различных космических объектов. В их числе изображения самых далёких галактик, расположенных более чем в 13 миллиардах световых лет.

Для чего используется телескоп

Сейчас мы называем астрономию всеволновой, так как наблюдения за космическими объектами ведутся во всех диапазонах электромагнитных волн, а не только в его видимой части спектра. Однако лишь радиоволны могут достичь поверхности Земли без значительного поглощения. Поэтому телескопы, предназначенные для изучения остального спектра волн, устанавливаются на орбитальных станциях и космических кораблях.

Для приёма же радиоизлучения от различных космических объектов используются земные радиотелескопы. Антенны радиотелескопов, чаще всего, представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. Но собирают они не свет, а радиоволны. Радиотелескопы принято разделять на телескопы с заполненной и незаполненной апертурой.

Антенны с заполненной апертурой похожи на зеркала оптических телескопов и являются наиболее простыми и привычными в использовании. Самым крупным наземным радиотелескопом с заполненной апертурой является телескоп «Фаст» — «Сферический радиотелескоп с пятисотметровой апертурой», расположенный на юге Китая в провинции Гуйчжоу. Его строительство было завершено 25 сентября 2016 года.

Для чего используется телескоп

Но возможности радиотелескопов существенно возрастают, если их антенны объединить в одну систему и использовать для изучения одного и того же объекта. Такие антенны получили название антенн с незаполненной апертурой. Например, система, которая состоит из 27) антенн диаметром 25 метров каждая, расположенных в определённом порядке, позволяет достичь углового разрешения в 0,04". А это соответствует возможностям радиотелескопа с антенной, диаметром 35 километров.

Крупнейший наземный радиотелескоп с открытой апертурой — РАТАН-600 — располагается в Специальной астрофизической обсерватории Российской академии наук.

18 июля 2011 года был реализован масштабный международный проект с ведущим российским участием «Радиоастрон». На основе выведенного на околоземную орбиту радиотелескопа «Спектр-Р» (диаметр антенны — 10 метров) и радиотелескопов, расположенных на всех континентах земного шара, создаётся единая наземно-космическая система для изучения различных объектов Вселенной в радиодиапазоне. Двигаясь по вытянутой эллиптической орбите, «Спектр-Р» может удаляться от Земли на расстояние до 350 тысяч километров. Таким образом, создаваемая система по своим возможностям соответствует радиотелескопу с антенной такого колоссального размера.

Для чего используется телескоп

Реализация проекта «Радиоастрон» позволило начать изучение таких явлений и процессов, как нейтронные звезды и сверхмассивные черные дыры, строение и динамику областей звёздообразования в нашей Галактике, а также проблемы, связанные с эволюцией Вселенной.

Источник: videouroki.net

Уникальность инструмента для наблюдения небесных объектов

В течение многих лет телескопы использовались для наблюдения небесных объектов. Эти приборы за наблюдением удаленных объектов изменили наше понимание и знания про объекты во Вселенной. Учеными и инженерами проводятся новые разработки, основанные на измерении параметров длины волны, пришедшей с небесных объектов, с улучшенной технологией создания многих видов телескопов.

Существуют различные виды этого инструмента от бытовых оптических изготавливаемых компанией Veber до сложнейших рентгеновских изготавливаемых в интересах управления по аэронавтике и исследованию космического пространства NASA, Европейского космического агентства ESA  или Российского Роскосмоса. Изучение различных стадий звезд в деталях может быть сделано с помощью этих приборов, которые используются для конкретных целей.

Эта статья будет касаться вопроса какие бывают телескопы, а также функции и их предназначения для анализа  сигналов нашей Вселенной.

История

С семнадцатого века устройства за наблюдениями за небом стали одним из важных инструментов для выявления неожиданных явлений  во Вселенной.

Противоречие между традиционной геоцентрической астрономией и теми, кто предпочитал гелиоцентрическую систему Коперника, оказало большое влияние на открытие телескопа.

Первоначально изобретение телескопа было прототипом современных научных приборов, а не изобретением ученых. Прибор дал людям возможность наблюдать вещи, которые человечество никогда не видело прежде, увеличивая человеческие чувства и знание объектов в космическом пространстве. Мастера создали инструмент, который мы называем телескопом. Использование выпуклых и вогнутых объектов для увеличения и уменьшения было известно с древности.

На Западе в конце тринадцатого века линзы стали популярными. Галилей был первым, кто использовал рефракционный прибор в качестве инструмента для наблюдения планет, лун и звезд в 1609 году. Галилей употребил греческий термин “теле” как далеко и “скопейн” как смотреть, для названия инструментов для наблюдения за небом. Галилей доказал, что предсказанная гелиоцентрическая модель Солнечной системы была правильной. Он продемонстрировал, что Венера показала полный набор фаз, подобных Луне. Открытие Галилея также доказало, что модель Птолемея была невозможна из его наблюдений.

Открытия Галилея изменили наше понимание Вселенной благодаря его наблюдениям, сделанным с помощью телескопа. Кроме того новые объекты в небе были обнаружены, когда Галилей использовал оптический инструмент, чтобы доказать гелиоцентрический вид.

Типы телескопов

Длины волн или электромагнитного излучения от объектов Вселенной отличаются. Поэтому  приборы за наблюдением удаленных объектов классифицируются по конструкции. Они бывают оптического, рентгеновского, инфракрасного диапазонов, а также радиотелескопы.

Оптические

Оптические телескопы являются наиболее распространенными, поскольку они в основном используются для наблюдения удаленных объектов с видимой частью электромагнитного спектра видимого света. Поскольку видимый свет можно наблюдать с Земли, большинство оптических телескопов могут быть установлены на земле.

Некоторые атмосферные искажения могут привести к тому, что наблюдения не будут точными для профессионалов.

Рентгеновские

Излучение от удаленных объектов и более коротких длин волн обнаруживаются с помощью рентгеновских телескопов которые расположены на космических аппаратах. Их расположение на  космических аппаратах связано с те, что атмосфера непрозрачна и поэтому блокирует любые гамма-лучи, рентгеновские лучи, а ультрафиолетовый свет можно использовать только в космосе, поэтому нет рентгеновских телескопов расположенных на земле.

Радиотелескопы

Другими распространенными типами телескопов, которые могут быть установлены на Земле, являются радиотелескопы, которые используются для радиоастрономии. Поскольку они могут принимать радиоволны от Вселенной антенны открыты и относительно большие. Поскольку атмосфера не блокирует радиоволны, радиотелескоп не нужно устанавливать над атмосферой Земли. Радиотелескоп может использоваться для наблюдения таких объектов, как квазары. Чтобы определить  космологическое красное смещение можно изучать  квазары и галактики с помощью спектроскопии. Это помогает отображать структуру Вселенной, потому что красное смещение пропорционально расстоянию.

какие бывают телескопы

Телескопы на спутниках

Ученые использовали наземные телескопы, чтобы увидеть видимый свет и радиоволны от звезды.
Для изучения Вселенной на всех длинах волн и без размытия и затемнения атмосферы Земли ученые используют спутники с телескопами.

Многие объекты, находящиеся на разных стадиях развития во Вселенной излучают электромагнитные волны, поэтому телескопы различных типов могут предоставлять снимки этих объектов. Ученые могут изучать радиоволны от молодых звезд, чтобы увидеть рождение звезд или смерть звезд, когда используются рентгеновские аппараты, потому что эти звезды часто излучают рентгеновские лучи. Наземные комплексы в этом диапазоне  вносят искажения изображений, и при этом невозможно изучать крупномасштабные изображения галактик.

Космическая обсерватория  Хаббл с 1991 года является еще одним типичным примером, который может глубоко изучать  область неба, чтобы выявить галактики на ранних стадиях их эволюции. Он может собирать более точные и детальные изображения без отсутствия атмосферных искажений.

Другим примером является космическая обсерватория Чандра NASA с 1999 года. С помощью спутниковой обсерватории Чандра составлена карта горячего газа в скоплениях галактик и  проводятся исследования черных дыр по всей Вселенной.

Обсерватория Чандра предоставила детальное исследование рентгеновского неба. С помощью этих данных проводится изучение темной энергии и темной материи. Поскольку темные энергия и материя  не испускают никакого излучения, устройства наблюдения могут только частично помочь в изучении, потому что они не могут непосредственно наблюдать темные составляющие Вселенной. Для изучения этих объектов ученые построили ряд новых детекторов. Изучение темной энергии и темной материи может быть возможно путем объединения этих новых детекторов в сочетании с телескопами.

Выводы

В выводах какие бывают телескопы можно отметить различные типы этого инструмента, обеспечивающие многочисленные способы изучения звезд, планет и объектов во Вселенной.

Различные виды телескопов были разработаны для наблюдения звезд в различных длинах волн по всей Вселенной. Телескопы бывают  различны по функциональному применению в астрономии, хотя некоторые объекты, как темная энергия и темная материя не могут быть непосредственно наблюдаемы. Новые технологии в будущем создадут лучшие устройства и инструменты для ученых, чтобы обнаружить неизвестные объекты в нашей Вселенной.

Таким образом, представлено резюме какие бывают телескопы для исследований и открытий во Вселенной для настоящих и будущих поколений.

Источник: v-nayke.ru

Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем. Ученый, основываясь на слухах об изобретении голландцами зрительной трубы, разгадал ее устройство и изготовил образец, который впервые использовал для космических наблюдений. Первый телескоп Галилея имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение.Но позволил сделать целую серию замечательных открытий: обнаружить четыре спутника планеты Юпитер, фазы Венеры, пятна на Солнце, горы на поверхности Луны, наличие у диска Сатурна придатков в двух противоположных точках.

Прошло более четырехсот лет — на земле и даже в космосе современные телескопы помогают землянам заглянуть в далекие космические миры. Чем больше диаметр зеркала телескопа, тем мощнее оптическая установка.

Многозеркальный телескоп

Расположен на горе Маунт-Хопкинс, на высоте 2606 метров над уровнем море, в штате Аризона в США. Диаметр зеркала этого телескопа – 6,5 метров. Этот телескоп был построен еще в 1979 году. В 2000 году он был усовершенствован. Многозеркальным он называется, потому что состоит из 6 точно подогнанных сегментов, составляющих одно большое зеркало.

Телескопы Магеллана

Два телескопа, “Магеллан-1″ и “Магеллан-2″, находятся в обсерватории “Лас-Кампанас” в Чили, в горах, на высоте 2400 м, диаметр их зеркал 6,5 м у каждого. Телескопы начали работать в 2002 году.

А 23 марта 2012 года начато строительство еще одного более мощного телескопа «Магеллан» — «Гигантского Магелланова Телескопа», он должен вступить в строй в 2016-м. А пока взрывом была снесена вершина одной из гор, чтобы расчистить место для строительства. Гигантский телескоп будет состоять из семи зеркал по 8,4 метра каждое, что эквивалентно одному зеркалу диаметром 24 метра, за это его уже прозвали “Семиглаз”.

Разлученные близнецы телескопы «Джемини»

Два телескопа-брата, каждый из которых расположен в другой части света. Один – «Джемини север» стоит на вершине потухшего вулкана Мауна-Кеа на Гавайях, на высоте 4200 м. Другой – «Джемини юг», находится на горе Серра-Пачон (Чили) на высота 2700 м.

Оба телескопа идентичны, диаметры их зеркал составляют 8,1 метра, построены они в 2000 г. и принадлежат обсерватории «Джемини». Телескопы расположены на разных полушариях Земли, чтобы было доступно для наблюдения все звездное небо. Системы управления телескопами приспособлены для работы через интернет, поэтому астрономам не приходится совершать путешествия к разным полушариям Земли. Каждое из зеркал этих телескопов составлено из 42 шестиугольных фрагментов, которые были спаяны и отполированы. Эти телескопы созданы по самым совершенным технологиям, что делает обсерваторию «Джемини» одной из передовых астрономических лабораторий на сегодняшний день.

Телескоп «Субару»

Этот телескоп принадлежит Японской Национальной Астрономической Обсерватории. А расположен на Гавайях, на высоте 4139 м, по соседству с одним из телескопов «Джемини». Диаметр его зеркала – 8,2 метра. «Субару» оснащенкрупнейшим в мире «тонким» зеркалом.: его толщина – 20 см., его вес — 22,8 т. Это позволяет использовать систему приводов, каждый из которых передает свое усилие на зеркало, придавая ему идеальную поверхность в любом положении, что позволяет добиться самого лучшего качества изображения.

С помощью этого зоркого телескопа была открыта самая далекая из известных на сегодняшний день галактик, расположенная на расстояние 12,9 млрд. св. лет, 8 новых спутников Сатурна, сфотографированы протопланетные облака.

Кстати, «субару» по-японски значит «Плеяды» — название этого красивейшего звездного скопления.

Телескоп Хобби-Эберли (НЕТ)

Расположен в США на горе Фолкс, на высоте 2072 м, и принадлежит обсерватории Мак-Дональд. Диаметр его зеркала около 10 м. Несмотря на внушительные размеры, Хобби-Эберли обошелся своим создателям всего в 13,5 млн. долларов. Сэкономить бюджет удалось благодаря некоторым конструктивным особенностям: зеркало у этого телескопа не параболическое, а сферическое, не цельное – состоит из 91 сегмента. К тому же зеркало находится под фиксированным углом к горизонту (55°) и может вращаться только на 360° вокруг своей оси. Все это значительно удешевляет конструкцию. Специализируется этот телескоп на спектрографии и успешно используется для поиска экзопланет и измерения скорости вращения космических объектов.

Большой южноафриканский телескоп (SALT)

Принадлежит Южно-африканской Астрономической Обсерватории и находится в ЮАР, на плато Кару, на высоте 1783 м. Размеры его зеркала 11х9,8 м. Оно крупнейшее в Южном полушарии нашей планеты. А изготовлено в России, на «Лыткаринском заводе оптического стекла». Этот телескоп стал аналогом телескопа Хобби-Эберли в США. Но был модернизирован – откорректирована сферическая аберрация зеркала и увеличено поле зрения, благодаря чему кроме работы в режиме спектрографа, этот телескоп способен получать прекрасные фотографии небесных объектов с большим разрешением.

Самый большой телескоп в мире (Большой Канарский телескоп, GTC)

Стоит на вершине потухшего вулкана Мучачос на одном из Канарских островов, на высоте 2396 м. Диаметр главного зеркала – 10,4 м. В создании этого телескопа принимали участие Испания, Мексика и США. Между прочим, этот интернациональный проект обошелся в 176 млн. долларов США, из которых 51% заплатила Испания.

Зеркало Большого Канарского Телескопа, составленное из 36 шестиугольных частей – крупнейшее из существующих на сегодняшний день в мире. Хотя это и самый большой телескоп в мире по размеру зеркала, нельзя назвать его самым мощным по оптическим показателям, так как в мире существуют системы, превосходящие его по своей зоркости.

Большой Бинокулярный Телескоп (LBT)

Расположен на горе Грэхем, на высоте 3,3 км, в штате Аризона (США). Этот телескоп ринадлежит Международной Обсерватории Маунт-Грэм и строился на деньги США, Италии и Германии. Сооружение представляет собой систему из двух зеркал диаметром по 8,4 метра, что по светочувствительности эквивалентно одному зеркалу диаметром 11,8 м. Центры двух зеркал находятся на расстоянии 14,4 метра, что делает разрешающую способность телескопа эквивалентной 22-метровому, а это почти в 10 раз больше, чем у знаменитого космического телескопа «Хаббла». Оба зеркала Большого Бинокулярного Телескопа являются частью одного оптического прибора и вместе представляют собой один огромный бинокль – самый мощный оптический прибор в мире на данный момент.

Телескопы Вильяма Кека

Keck I и Keck II – еще одна пара телескопов-близнецов. Располагаются по соседству с телескопом «Субару» на вершине гавайского вулкана Мауна-Кеа (высота 4139 м). Диаметр главного зеркала каждого из Кеков составляет 10 метров — каждый из них в отдельности является вторым по величине в мире телескопом после Большого Канарского. Но эта система телескопов превосходит Канарский по «зоркости». Параболические зеркала этих телескопов составлены из 36 сегментов, каждый из которых снабжен специальной опорной системой, с компьютерным управлением.

Очень Большой Телескоп (VLT)

Очень Большой Телескоп расположен в пустыне Атакама в горном массиве чилийских Анд, на горе Параналь, 2635 м над уровнем моря. И принадлежит Европейской Южной Обсерватории (ESO), включающей в себя 9 европейских стран.

Система из четырех телескопов по 8,2 метра, и еще четырех вспомогательных по 1,8 метра по светосиле эквивалентна одному прибору с диаметром зеркала 16,4 метра.

Каждый из четырех телескопов может работать и отдельно, получая фотографии, на которых видны звезды до 30-й звездной величины. Все телескопы сразу работают редко, это слишком затратно. Чаще каждый из больших телескопов работает в паре со своим 1,8 метровым помощником. Каждый из вспомогательных телескопов может двигаться по рельсам относительно своего «большого брата», занимая наиболее выгодное для наблюдения данного объекта положение. Очень Большой Телескоп – самая продвинутая астрономическая система в мире. На нем была сделана масса астрономических открытий, например, было получено первое в мире прямое изображение экзопланеты.

КСТАТИ

Космический телескоп «Хаббл»

Космический телескоп «Хаббл» — совместный проект NASA и Европейского космического агентства, автоматическая обсерватория на земной орбите, названная в честь американского астронома Эдвина Хаббла. Диаметр его зеркала только 2,4 м, что меньше самых больших телескопов на Земле. Но из-за отсутствия влияния атмосферы, разрешающая способность телескопа в 7 — 10 раз больше аналогичного телескопа, расположенного на Земле. «Хаббл» принадлежит множество научных открытий: столкновение Юпитера с кометой, изображение рельефа Плутона, полярные сияния на Юпитере и Сатурне…

Но цена, которую приходится платить за достижения «Хаббла» весьма высока: стоимость содержания космического телескопа выше в 100 раз, чем наземного рефлектора с 4-метровым зеркалом.

Источник: www.samara.kp.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.