Термоядерный синтез на солнце


Определение термоядерной реакции и её примеры

Термоядерными реакциями (или просто термоядом) называют реакции слияния легких ядер в одно целое новое ядро, в результате которого выделяется большое количество энергии. Оказывается, большая энергия выделяется не только в результате деления тяжелых ядер, еще больше энергии выделяется, когда легкие ядра сливаются вместе, соединяются. Этот процесс называют синтезом. А сами реакции – термоядерным синтезом, термоядерными реакциями.

Какие же элементы участвуют в этих реакциях? Это в первую очередь изотопы водорода и изотопы гелия. Для примера можно привести следующую реакцию:

Термоядерный синтез на солнце

Два изотопа водорода (дейтерий и тритий), соединяясь вместе, дают ядро гелия, еще образуется нейтрон. Когда протекает такая реакция, выделяется огромная энергия Е = 17,6 МэВ.

Не забывайте, что это всего лишь на одну реакцию. И еще одна реакция. Два ядра дейтерия, сливаясь вместе, образуют ядро гелия:

Термоядерный синтез на солнце

В этом случае выделяется тоже большое количество.


Условия протекания термоядерной реакции

Обращаю ваше внимание: чтобы такие реакции протекали, нужны определенные условия. В первую очередь нужно сблизить ядра указанных изотопов. Ядра имеют положительный заряд, в данном случае действуют кулоновские силы, которые расталкивают эти заряды. Значит, нужно преодолеть эти кулоновские силы, чтобы приблизить одно ядро к другому. Это возможно только в том случае, если сами ядра обладают большой кинетической энергией, когда скорость у этих ядер довольно велика. Чтобы добиться этого, нужно создать такие условия, когда ядра изотопов будут обладать этой скоростью, а это возможно только при очень высоких температурах. Только так мы сможем разогнать изотопы до скоростей, которые позволят им сблизиться на расстояние приблизительно 10-14 м.

Расстояние, на которое нужно сблизить ядра для термоядерной реакции


Рис. 1. Расстояние, на которое нужно сблизить ядра для наступления термоядерной реакции

Это расстояние как раз то, с которого начинают действовать ядерные силы. Значение необходимой температуры составляет порядка t° = 107 – 108°C. Достигнуть такой температуры можно, когда произведен ядерный взрыв. Таким образом, чтобы произвести термоядерную реакцию, мы сначала должны произвести реакцию деления тяжелых ядер. Именно в этом случае мы добьемся высокой температуры, а уже потом данная температура даст возможность сблизить ядра изотопов до расстояния, когда они могут соединиться. Как вы понимаете, именно в этом заложен принцип так называемой водородной бомбы.

Взрыв водородной бомбы

Рис. 2. Взрыв водородной бомбы

Применение термоядерного синтеза

Нас, как мирных людей, интересует в первую очередь использование термоядерной реакции в мирных целях для создания тех же самых электростанций, но уже новейшего типа.

Управляемый термоядерный синтез

В настоящее время ведутся разработки по тому, как создать управляемый термоядерный синтез. Для этого используются различные методы, один из них: использование лазеров для получения высоких энергий и температур. С помощью лазеров их разгоняют до высоких скоростей, и в этом случае может протекать термоядерная реакция.


В результате термоядерной реакции выделяется огромное количество тепла, то место в реакторе, в котором будут находиться взаимодействующие друг с другом изотопы, нужно хорошо изолировать, чтобы вещество, которое будет находиться при высокой температуре, не взаимодействовало с окружающей средой, со стенками того объекта, где оно находится. Для такой изоляции используется магнитное поле. При высокой температуре ядра, электроны, которые находятся вместе, представляют собой новый вид материи – плазму. Плазма – это частично или полностью ионизированный газ, а раз газ ионизирован, то он чувствителен к магнитному полю. Плазма – электропроводящая, при помощи магнитных полей можно придавать ей определенную форму и удерживать в определенном объеме. Тем не менее, техническое решение управления термоядерной реакцией остается пока неразрешенным.

тороидальная установка для магнитного удержания плазмы

Рис. 3. ТОКАМАК – тороидальная установка для магнитного удержания плазмы

Термоядерные реакции во вселенной

В заключение хотелось бы еще отметить: термоядерные реакции играют важную роль в эволюции нашей вселенной. В первую очередь отметим, что термоядерные реакции протекают на Солнце. Можно сказать, что именно энергия термоядерных реакций – это та энергия, которая сформировала нынешний облик нашей вселенной.

Заключение


Список дополнительной литературы

1. Бронштейн М.П. Атомы и электроны. «Библиотечка “Квант”». Вып. 1. М.: Наука, 1980

2. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. М.: Просвещение

3. Китайгородский А.И. Физика для всех. Книга 4. Фотоны и ядра. М.: Наука

4. Мякишев Г.Я., Синяков А.З. Физика. Оптика. Квантовая физика. 11 класс: учебник для углублённого изучения физики. М.: Дрофа

Задание к уроку.

1. В результате термоядерной реакции соединения двух протонов образуется дейтрон и нейтрино. Какая ещё появляется частица?

 2. Найти частоту γ-излучения, образующегося при термоядерной реакции: 

Термоядерный синтез на солнце 

   если α-частица приобретает энергию 19.7 МэВ

Источник: interneturok.ru


МИФ О ТЕРМОЯДЕ НА СОЛНЦЕ

1. Основная задача данного сообщения состоит в том, чтобы показать влияние на наше мировоззрение сегодня бездоказательных утверждений о роли термоядерных процессов яко бы идущих в природе вообще, и на Солнце, в частности. Как в научной общественности сложилось твердое убеждение в их реальности, и что за всем этим стоит.
2. Судя по всему, вера в реальность термояда возникла примерно 50 лет назад под влиянием успехов в создании водородной, или термоядерной, бомбы. 30 октября 1961 года на Новой Земле была взорвана 50 мегатонная бомба (см. http://ru.wikipedia.org/wiki/Ядерное_оружие). А планировалось взорвать бомбу мощностью в два раза большей. И никого не интересовало, есть в действительности термояд, или его в действительности нет. Факт состоял в том, что взрыв в действительности был, и не важно, что бомба эта на вооружение не поступила. Не было в этом необходимости. А вера в термояд осталась, и осталась прочно.
3. Определенную роль в укреплении этой веры сыграл Олег Лаврентьев, солдат, служивший на острове Сахалин. Ему принадлежит идея создания управляемого термоядерного синтеза (УТС), как источника энергии. Он и стал пленником своей идей на всю оставшуюся жизнь, пытаясь безуспешно осуществить ее в Харькове. Записка Лаврентьева попала на отзыв Сахарову, который идею УТС одобрил. После чего последовало Постановление ЦК КПСС с грифом «Совершенно Секретно Особая Папка.» Для тех, кто не знает что это такое, поясняю, что знакомится с этим документом могли только перечисленные в нем лица.


этом документе поручалось выяснить возможность практического осуществления УТС. Что, очевидно и было сделано в установленный срок, и, судя по всему, весьма квалифицировано. Это решение до сих пор нигде не опубликовано. Очевидно, есть причины. Но зато хорошо известно, что Курчатов вскоре едет в Лондон, и там рассказывает о ведущихся в его стране работах по УТС, приглашая всех к сотрудничеству. Ну, и как прикажете это понимать, если все это имеет явные признаки направленной дезинформации.
4. За 50 лет, во всех странах, было построено около 400 различных устройств, для осуществления УТС. Все безрезультатно. Основная причина этих неудач стоит в не правильном представлении о том, что собой в действительности является плазмой, и особенно плазмой при большом давлении и плотности, когда она приобретает свойства кристаллического тела (см. http://thermonuclear.narod.ru/grinev/grinev.htm). А. А. Ансельм, в лекции на 33-ей Зимней Школы ПИЯФ, пишет: «Обидно сознавать, что мучительные попытки последних 50 лет создать управляемую термоядерную реакцию – это лишь попытки скопировать то, что происходит в природе, причем не где- ни будь, а просто на Солнце, которое к тому же является (или, по крайней мере, являлось до появления ядерной энергетики) нашим единственным источником энергии!» Обратим внимание на то обстоятельство, что автор не приводит никаких доказательств того, что так «мучительно» пытаются создать, в действительности «происходит в природе» и даже «просто на Солнце».

евидно, считая это истиной само собой разумеющейся. Раз Солнце излучает энергию, то обязательно, что- то горит.
5. Более подробно тема «Миф о термоядерном синтезе» рассмотрена на форуме http://www.termoyadu.net/index.php?topic=682.0 при обсуждении книги Ялышева Фарид Хусановича с таким же названием. Среди выступавших на этом форуме нашлось очень мало энтузиастов, все еще верящих в эту идею. Да вот и А. И. Егоров пишет на эту же тему в http://www.termoyadu.net/index.php?acti … opic=684.0 Он отмечает, что Б. П. Константинов предупреждал Л. Арцимовича о бесплодности попыток создания УТС. Егоров пишет: «Исследования управляемой термоядерной реакции проходили на фоне разворачивающегося мирового движения за запрещение ядерного оружия и служили лучшим прикрытием для гонки ядерных вооружений.» О чем и говорилось выше, в пункте 3.
6. УТС интенсивно использует для своей поддержки идею, что на Солнце яко бы термоядерные реакции идут. Считается естественным ответ на вопрос о том, почему светит Солнце – раз энергия излучается, то есть источник этой энергии, что- то горит. И в 1939 году, Бете предположил, что на Солнце идут термоядерные реакции, там горит водород, получается гелий. Но это основано на представлении о том, что на Солнце, как и на Земле, будет справедлив закон сохранения энергии. А на Земле этот закон является следствием инвариантности сдвига во времени. У нас время однородно. Поэтому сдвиг во времени не приводит к изменению энергии.

общей же теории относительности время локально, здесь нет инвариантности сдвига во времени, и нет закона сохранения энергии. Тогда отпадает и необходимости, каких либо источников энергии на Солнце для того, чтобы оно светило. Солнце вырабатывает энергию из времени, как сказал А. Н. Козырев еще 60 лет назад. Он знал о предположении Бете, но универсальная зависимость светимости звезд от их масс, по мнению Козырева, оказывается не совместимой с любыми источниками энергии, не зависящими от ее испускания (см. http://hepd.pnpi.spb.ru/ofve/nni/nakoz.doc). Возможно, термоядерные реакции на Солнце и в звездах, идут, но они оказываются не существенными в обеспечении их светимости.
7. Рассмотрим доказательства существования термоядерных реакции на Солнце. Собственно, никаких прямых и бесспорных экспериментальных доказательств за 70 лет существованию этой идей не получено. Нет ни одной экспериментальной работы, в которой пытались хотя бы получить доказательства существования термоядерных реакций, как источника излучения Солнца. Зато бездоказательных утверждений, вроде сделанных А. А. Ансельмом, можно найти сколько угодно. Вот Б. И. Лучков, http://alexandr4784.narod.ru/astros/0105_L.pdf
в Соросовском Образовательном Журнале т. 7, № 5 за 2001 год, в отдельном разделе, который называется «Доказательство термоядерного источника» пишет: « В настоящее время получены веские свидетельства в пользу термоядерного источника. Он нашел применение ( и, следовательно, подтверждение) в многочисленных расчетах звездных моделей.» Но, «веские свидетельства в пользу», и экспериментальные доказательства, это ведь большая разница.

гда их нет, то и пишут вот так, выдавая одно, за совсем другое. И «применение» в «многочисленных расчетах» тоже нельзя принять за доказательство существования термояда на Солнце.
8. С. С. Гернштейн, из МФТИ, http://nuclphys.sinp.msu.ru/mirrors/neutrino.htm
в том же журнале (№ 8, 1997 г.), пишет, что в эксперименте KAMIOKANDE-2 яко бы обнаружено, что основная доля электронов после столкновения с нейтрино «летит в направлении от Солнца». Но это не правда. Из рисунка, приведенного в работе,
http://arxiv.org/pdf/0803.4312v1.pdf
видно, что за 1117 дней, в детекторе с массой 22.5 килотонны, около 5000 событий имеет равномерное распределение по косинусу угла между направлением от Солнца, и осью конуса черенковского излучения электрона после его столкновением с нейтрино. И только 600 событий имеют косинус этого угла больше чем 0.7 над равномерным фоном. Это значит, что только 12% всех зарегистрированных событий могут считаться идущими от Солнца. Правда, можно согласиться с автором, что «Таким образом, налицо противоречие между экспериментальными данными и стандартной моделью Солнца». Все это было известно еще со времен опыта Дэвиса, который нашел, что регистрируется событий в 2-3 раза меньше, чем ожидалось по расчетам стандартной солнечной модели. В последующих экспериментах эти результаты были подтверждены.
9. Последние данные Обсерватории Солнечной Динамики NASA, полученные летом 2012 года, свидетельствуют о том, что поток плазмы под поверхностью Солнца, в 20-100 раз меньше ожидаемого по стандартной солнечной модели.

сюда делается вывод, что вся эта модель ошибочна. Нет теплопередачи от центра Солнца, где яко бы идут термоядерные реакции, и выделяется тепло, к периферии, где эта энергия излучается.
10. Заключение. Идея о том, что возможен УТС, и что на Солнце действительно идут термоядерные реакции зародились как политический заказ, под видом которого можно было продолжить гонку вооружений. Массированная атака на науку со стороны политиков сыграла свою роль. Интересно, что никто даже не вспомнил о работах Бора, Ландау и Козырева предложивших альтернативную теорию источника излучения Солнца (см. http://hepd.pnpi.spb.ru/ofve/nni/isvsuf7.pdf). Как будто бы этих работ и не было.

23 февраля 2013 г Ф. Г. Лепехин файл http://hepd.pnpi.spb.ru/ofve/nni/mif20.doc

Источник: www.socintegrum.ru

Что такое термоядерная реакция?

Термоядерная реакция — это слияние атомных ядер, в результате чего высвобождается энергия, которая и может помочь решить энергетический кризис.

Это тот же самый процесс, который происходит внутри Солнца, он чистый и относительно безопасный. Нет никаких выбросов.

Но сталкивание этих ядер дейтерия и трития (два изотопа водорода) под огромным давлением требует огромных объемов энергии — больше, чем мы пока можем извлечь из реакции.

До сих пор считалось, что невозможно достичь момента «приращения энергии», когда мы сможем получать из синтеза больше энергии, чем нужно на него потратить.

Но это больше не так, уверяют стартапы из сферы термоядерного синтеза.

«Это «момент SpaceX» для термоядерного синтеза», — говорит Кристофер Моури, директор канадской компании General Fusion, которая хочет сделать термоядерный синтез коммерчески выгодным в течение следующих пяти лет.

«Это момент, когда зрелость науки сочетается с технологиями XXI века, — продолжает он. — [Термоядерный] синтез уже не «в 30 годах от нас».

Правообладатель иллюстрации TOKAMAK ENERGY
Image caption Новейший термоядерный реактор Tokamak Energy

Наука уже сделала свое дело, говорит Уэйд Эллисон, почетный профессор физики в оксфордском колледже Кэбл. Препятствия скорее в практике.

«Мы не можем быть уверены в сроках, но базовые научные вопросы решены, а проблемы — технические, они касаются материалов», — говорит профессор.

В чем проблема?

Основная проблема — как построить для реактора достаточно прочную оболочку, чтобы она смогла сдержать плазму — очень горячий ядерный «бульон», в котором происходит синтез под огромным давлением.

Системы отвода тепловой энергии должны будут выдерживать уровни температуры и перегрузки, похожие на то, что испытывает космический корабль при возвращении на орбиту, говорит профессор Ян Чэпмен, гендиректор Управления по атомной энергии Великобритании (UKAEA).

Потребуются также автоматические системы обслуживания и системы производства, восстановления и хранения топлива.

«UKAEA изучает все эти вопросы и строит новые исследовательские учреждения в научном центре Кулхэм около Оксфорда, чтобы выработать решения вместе с отраслевыми институтами», — говорит профессор Чэпмен.

Что изменилось?

Некоторые частные энергетические компании считают, что они могут справиться с этими проблемами быстрее, используя новые материалы и технологии.

Расположенная в Оксфордшире фирма Tokamak Energy работает над сферическими токомаками (реакторами), которые используют высокотемпературные сверхпроводники (ВТСП) чтобы удерживать плазму в очень сильном магнитном поле.

Правообладатель иллюстрации TOKAMAK ENERGY
Image caption Tokamak Energy пытается построить более дешевые и компактные термоядерные реакторы

«Высокая температура» в этой области физики — от минус 70 градусов и ниже.

«Сферический токамак — намного более эффективная геометрическая форма, и мы можем радикально повысить компактность и производительность. А поскольку он еще и меньше, то более мобилен, затраты на сборку ниже», — говорит исполнительный директор Tokamak Energy Джонатан Карлинг.

Компания построила три токамака. Последний из них — ST40 из 30-милиметровой нержавеющей стали с использованием ВТСП-магнитов. В июне он достиг температуры плазмы более 15 млн градусов, что выше температуры центра солнца.

Анализ: «Искусственное солнце Китая»

Корреспондент по вопросам науки и технологий Николай Воронин:

«Китайские ученые на прошлой неделе разогрели плазму до еще более высокой температуры в специальном устройстве EAST, расположенном в городе Хэфэй.

Эксперимент получил название «искусственное солнце Китая», и его основная цель — создание условий, необходимых для управляемого термоядерного синтеза, так что температурные рекорды в некотором смысле побочный эффект.

Электронная температура плазмы, удерживаемой магнитной ловушкой токамака, достигла нового максимума, на некоторое время превысив 100 млн градусов.

Для сравнения: максимальная температура в центре нашей звезды составляет примерно 15 млн градусов».

Британская фирма надеется достичь китайского результата в 100 млн градусов к следующему лету.

«Мы ожидаем, что сможем достичь момента приращения энергии к 2022 году и начать поставки энергии в сеть к 2030-му», — говорит Карлинг.

Тем временем в США Массачусетский технологический институт (МТИ) совместно с недавно созданной компанией Commonwealth Fusion Systems (CFS) работает надо созданием токамака в форме тороида под названием Sparc. В нем также будут установлены магнитные ловушки для плазмы.

Проект частично финансируется фондом Breakthrough Energy Ventures, которым руководят Билл Гейтс, Джефф Безос, Майкл Блумберг и другие миллиардеры. Группа разработчиков надеется сделать термоядерные реакторы достаточно компактными, чтобы их можно было устанавливать на фабриках и транспортировать для установки на производственной площадке.

Эти частные инициативы бросают вызов проекту ITER (Международный термоядерный экспериментальный реактор), флагманскому международному проекту в этой сфере с участием 35 стран.

Правообладатель иллюстрации Getty Images
Image caption Реактор ITER не будет достроен до 2025 года

ITER, что на латыни также значит «путь», строит крупнейшую экспериментальную термоядерную установку в мире. Однако завершение строительства не ожидается до 2025 года, а после этого проект ждет еще долгий путь до коммерциализации.

«Участники ITERпо-разному оценивают, насколько срочно нужно перейти к термоядерной энергии как части будущего чистой энергетики, — сказал Би-би-си пресс-секретарь проекта. — Кто-то ждет электричества с термоядерных реакторов до 2050 года, кто-то — только во второй половине века».

Но новички в этой сфере считают, что могут справиться лучше.

«С технологией ВТСП-магнитов термоядерный реактор может быть намного, намного меньше — Sparc может быть в 64 раза меньше ITER по объему и массе», — говорит Мартин Гринвальд, замдиректора центра исследований плазмы и термоядерного синтеза МТИ.

Меньший размер означает меньшие издержки, что открывает путь для небольших и гибких организаций, добавляет Гринвальд.

Но все участники, кажется, согласны, что работа в ITER, в Кулхэме и частном секторе дополняют друг друга.

«В конце концов, у нас общая мечта — выработанное термоядерным путем электричество как неотъемлемая часть будущего чистой энергетики», — добавил пресс-секретарь ITER.

Источник: www.bbc.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.