Строение солнца рисунок


Строение солнца рисунок

  • Звезды

Солнце (астр. ☉) – единственная звезда Солнечной системы. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.

Внутреннее строение Солнца

Строение солнца рисунок

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объем Солнца можно разделить на несколько областей; вещество в них отличается по своим свойствам, и энергия распространяется посредством разных физических механизмов. Познакомимся с ними, начиная с самого центра.


В центральной части Солнца находится источник его энергии, или, говоря образным языком, та «печка», которая нагревает его и не дает ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причем, чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. кельвинов, происходит выделение энергии.

Эта энергия выделяется в результате слияния атомов легких химических элементов в атомы более тяжелых. В недрах Солнца из четырех атомов водорода образуется один атом гелия. Именно эту страшную энергию люди научились освобождать при взрыве водородной бомбы. Есть надежда, что в недалеком будущем человек сможет научиться использовать ее и в мирных целях (в 2005 году новостные ленты передавали о начале строительства первого международного термоядерного реактора во Франции).

Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звездах, тогда как лучистый и конвективный переносы очень важны.


Строение солнца рисунок

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порции света – квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед.

В центре Солнца рождаются гамма-кванты. Их энергия в миллионы раз больше, чем энергия квантов видимого света, а длина волны очень мала. По дороге кванты претерпевают удивительные превращения. Отдельный квант сначала поглощается каким-нибудь атомом, но тут же снова переизлучается; чаще всего при этом возникает не один прежний квант, а два или несколько. По закону сохранения энергии их общая энергия сохраняется, а потому энергия каждого из них уменьшается. Так возникают кванты все меньших и меньших энергий. Мощные гамма-кванты как бы дробятся на менее энергичные кванты – сначала рентгеновских, потом ультрафиолетовых и

наконец видимых и инфракрасных лучей. В итоге наибольшее количество энергии Солнце излучает в видимом свете, и не случайно наши глаза чувствительны к нему.

Как мы уже говорили, кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя. На своем пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передается уже не излучением, а конвекцией.

Что такое конвекция?


Строение солнца рисунок

Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. Огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ спускается вниз. Похоже, что солнечное вещество кипит и перемешивается. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда все же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют – феномен конвекции.
о напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру – грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Фотосфера Солнца

Строение солнца рисунок

Тонкий слой (400 км) – фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Строение солнца рисунок


Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона

Строение солнца рисунок

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Излучение Солнца


Строение солнца рисунок

Солнце излучает свою энергию во всех длинах волн, но по-разному. Приблизительно 44% энергии излучения приходится на видимую часть спектра, а максимум соответствует желто-зеленому цвету. Около 48% энергии, теряемой Солнцем, уносят инфракрасные лучи ближнего и дальнего диапазона. На гамма-лучи, рентгеновское, ультрафиолетовое и радио излучение приходится лишь около 8%.

Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные Й.Фраунгофером в 1814 году. Эти линии возникают при поглощении фотонов определенных длин волн атомами различных химических элементах в верхних, относительно холодных, слоях атмосферы Солнца. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, например, с помощью наблюдений спектра Солнца было предсказано открытие гелия, который на Земле был выделен позже.

Виды излучения


Строение солнца рисунок

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков.
орее всего, они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли.

Интенсивность солнечного излучения

Строение солнца рисунок

Имея крайне высокие температуры, Солнце является очень сильным источником излучения. Видимый диапазон солнечного излучения обладает наивысшей интенсивность излучения. При этом до Земли так же доходит большое количество невидимого спектра. Внутри Солнца протекают процессы, при которых из атомов водорода синтезируются атомы гелия. Это процессы называются процессами ядерного синтеза, они сопровождаются выделением огромного количества энергии. Эта энергия приводит к тому, что Солнце разогревается до температуры 15 миллионов градусов Цельсия (во внутренней его части).


На поверхности Солнца (фотосфере) температура достигает 5500 °С. На этой поверхности Солнце излучает энергию со значение 63 МВт/ м². До поверхности Земли доходит лишь немногая часть этого излучения, что позволяет комфортно существовать человечеству на нашей планете. Средняя интенсивность излучения на атмосферу Земли приблизительно равна 1367 Вт/м². Данное значение может колебаться в диапазоне 5% из-за того что, двигаясь по эллиптической орбите Земля отдаляется от Солнца на разное расстояние в течение года. Значение 1367 Вт/ м² называют солнечной постоянной.

Солнечная энергия на поверхности Земли

Строение солнца рисунок

Атмосфера Земли не пропускает всю солнечную энергию. Поверхности Земли достигает не более 1000 Вт/м2. Часть энергии поглощается, часть отражается в слоях атмосферы и в облаках. Большое количество излучения рассеивается в слоях атмосферы, вследствие чего образуется рассеянное излучение (диффузное). На поверхности Земли тоже часть излучения отражается и превращается в рассеянное. Сумма рассеянного и прямого излучения называется суммарным солнечным излучением. Рассеянное излучение может составлять от 20 до 60%.

На количество энергии, поступающее к поверхности Земли, так же влияет географическая широта и время года. Ось нашей планеты, проходящая через полюса, наклонена на 23,5° относительно орбиты вращения вокруг Солнца. В период с марта

до сентября солнечный свет больше попадает на Северное полушарие, в остальное время – Южное. Поэтому продолжительность дня в летнее и зимнее время разная. Широта местности та влияет на продолжительность светового дня. Чем Севернее, тем длиннее в летнее время и наоборот.

Эволюция Солнца


Строение солнца рисунок

Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.

Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).

В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (~5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.

После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.

Смерть Солнца по времени

Строение солнца рисунок

  • Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.
  • Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.
  • По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.
  • Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.
  • В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.

Интересные факты о звездах

Строение солнца рисунок

  1. Наиболее распространенными звездами во вселенной являются красные карлики. По большей части это происходит из-за их низкой массы, что позволяет им жить в течение очень долгого времени, прежде чем превратиться в белых карликов.
  2. Почти все звезды во вселенной имеют одинаковый химический состав и реакция ядерного синтеза происходит в каждой звезде и является практически идентичной, определяясь лишь запасом топлива.
  3. Как мы знаем как и белый карлик, нейтронные звезды являются одним из конечных процессов эволюции звёзд, во многом возникая после взрыва сверхновой. Ранее зачастую тяжело было отличить белого карлика от нейтронной звезды, сейчас же ученые с помощью телескопов нашли различия в них. Нейтронная звезда собирает вокруг себя больше света и это легко увидеть с помощью инфракрасных телескопов. Восьмое место среди интересных фактов о звездах.
  4. Благодаря своей невероятной массе, согласно общей теории относительности Эйнштейна, черная дыра на самом деле, это изгиб пространства, таким образом, что все в пределах их гравитационного поля выталкивается к нему. Гравитационное поле черной дыры настолько сильно, что даже свет не может избежать ее.
  5. На сколько мы знаем когда у звезды заканчивается топливо, звезда может вырастать в размерах более чем в 1000 раз, далее она превращается в белого карлика, а из-за скорости реакции взрываются. Эта реакция более известна как сверхновая. Ученые предполагают, что в связи с этим долгим процессом и образуются, столь загадочные черные дыры.
  6. Многие звезды которые мы наблюдаем в ночном небе, могут казаться одним проблеском света. Однако это не всегда так. Большинство звезд, которые мы видим в небе на самом деле две звездные системы, или бинарные звездные системы. Они просто невообразимо далеко и нам кажется, что мы видим лишь одно пятнышко света.
  7. Звезды которые имеют самую короткую продолжительность жизни, являются наиболее массивными. Они представляют собой высокую массу химических веществ и как правило сжигают свое топливо гораздо быстрее.
  8. Не смотря на то что нам иногда кажется что Солнце и звезды мерцают, на самом деле это не так. Эффект мерцания является лишь светом от звезды, который в это время проходит через атмосферу Земли но еще не достиг наших глаз. Третье место среди самых интересных фактов о звездах.
  9. Расстояния, участвующие в оценке того, насколько далеко до звезды невообразимо огромны огромны. Рассмотрим пример: До ближайшая до земли звезда находится на расстоянии примерно 4.2 световых года, и что бы добраться до нее, даже на самом быстром нашем корабле, потребуется около 70 000 лет.
  10. Самая холодная известная звезда, это коричневый карлик «CFBDSIR 1458+10B» имеющий температуру всего около 100 °C. Самая горячая известная звезда, это голубой сверх гигант, находящийся в млечном пути под названием «Дзета Кормы» ее температура более 42 000 °C.

Видео

Источник: asteropa.ru

Состав Солнца

Солнце содержит приблизительно 75 % водорода и 25 % гелия по массе (92,1 % водорода и 7,8 % гелия по количеству атомов). Другие элементы (кремний, кислород, азот, сера, магний, кальций, хром, железо, никель, углерод и неон) составляют лишь 0,1 % от общей массы.

Ученые долго пытались составить представление о составе и внутреннем строении Солнца, используя такие методы астрономии, как наблюдение, спектроскопия, теоретический анализ и т.д. В результате они пришли к заключению, что благодаря взрыву родилась звезда, состоящая преимущественно из гелия и водорода. Их соотношение изменчиво, потому что в глубине Солнца водород преобразуется в гелий из-за постоянного процесса ядерного синтеза. Запуск этого процесса невозможен без крайне высокой температуры и большой массы небесного тела.

Внутреннее строение Солнца

Солнце является сферическим телом, находящимся в равновесии. На равных расстояниях от центра физические показатели везде одинаковы, но они неуклонно меняются, если двигаться от центра к условной поверхности. Солнце имеет несколько слоев, и их температура тем выше, чем они ближе к середине. Нельзя не упомянуть, что гелий и водород в разных слоях имеет разные характеристики.

Солнечное ядро

Ядро — центральная часть Солнца. Экспериментальным путем установлено, что солнечное ядро по размеру составляет примерно 25 % от всего радиуса Солнца и состоит из сильно сжатого вещества. Масса ядра — почти половина от общей массы Солнца. Условия в сердцевине нашего светила экстремальные. Температура и давление достигают там максимальных показателей: температура ядра составляет примерно 14 млн К, а давление в нем достигает 250 млрд атм. Газ в солнечном ядре более чем в 150 раз плотнее воды. Это именно то место, где протекает термоядерная реакция, сопровождаемая выделением энергии. Водород превращается в гелий, а вместе с ним появляются свет и тепло, которые затем доходят до нашей планеты и дают ей жизнь.

На расстоянии от ядра более 30 % радиуса температура становится менее 5 млн градусов, поэтому ядерные реакции там уже почти не происходят.

Зона лучистого переноса

Зона лучистого переноса расположена у границы ядра. Предположительно она занимает около 70 % всего радиуса звезды и состоит из горячего вещества, через которое тепловая энергия передается от ядра к внешнему слою.

В результате термоядерной реакции, протекающей в солнечном ядре, образуются различные радиационные фотоны. Пройдя сквозь зону лучистого переноса и все последующие слои, они выбрасываются в космос и блуждают по там вместе с солнечным ветром, доходящим от Солнца до Земли всего за 8 минут. Ученым удалось установить, что на преодоление этой зоны фотонам требуется приблизительно 200 000 лет.

Зона лучистого переноса есть не только у Солнца, но и у других звезд. Ее величина и сила зависят от размера звезды.

Конвективная зона

Зона конвекции — последняя во внутреннем строении Солнца и других подобных ему звезд. Она расположена снаружи зоны лучистого переноса и занимает последние 20 % от радиуса Солнца (около трети от объема звезды). Энергия в ней передается конвекцией. Конвекция — это передача тепла струями и потоками, посредством активного перемешивания. Этот процесс напоминает кипение воды. Потоки горячего газа перемещаются к поверхности и отдают тепло наружу, а остывший газ устремляется обратно, вглубь Солнца, благодаря чему реакция ядерного синтеза продолжается. По мере приближения к поверхности температура вещества в конвективной зоне падает до 5800 К. Конвективная зона, как и зона лучистого переноса, есть почти у всех звезд.

Все вышеперечисленные слои Солнца не наблюдаемы.

Атмосфера Солнца

Над конвективной зоной расположено несколько наблюдаемых слоев Солнца — атмосфера. Ее химический состав определяется методом спектрального анализа. Внутреннее строение атмосферы Солнца включает три слоя: фотосферы (в переводе с греческого — «световой сферы»), хромосферы («окрашенной сферы») и короны. Именно в последних двух слоях возникают магнитные вспышки.

Фотосфера

Фотосфера — единственный видимый с нашей планеты слой Солнца. Температура фотосферы — 6000 К. Она светится бело-желтым светом. Именно середина этого слоя и считается условной поверхностью Солнца и используется для расчета расстояний, то есть отсчета высоты и глубины.

Толщина фотосферы — около 700 км, она состоит из газа и испускает доходящее до Земли солнечное излучение. Верхние слои фотосферы более холодные и разряженные, чем нижние. Волны, возникающие в конвективной зоне и фотосфере, передают механическую энергию вышележащим областям и нагревают их. Вследствие этого верхняя часть фотосферы является самой холодной — около 4500 К. С обеих сторон от них температура быстро повышается.

Хромосфера

Хромосфера — следующая за фотосферой, сильно разреженная воздушная оболочка Солнца, состоящая преимущественно из водорода. В связи с ее необычайной яркостью ее можно увидеть лишь при полном солнечном затмении. Слово «хромосфера» в переводе с греческого означает «окрашенная сфера». Когда Луна заслоняет Солнце, хромосфера благодаря присутствию водорода становится розоватой. Этот слой холоднее предыдущего, поскольку его плотность ниже. Температура газов в верхних слоях хромосферы составляет 50 000 К.

На высоте 12 000 км над фотосферой линия спектра водорода становится неразличимой. Немного выше зафиксированы следы кальция. Его линия спектра кончается еще через 2 000 км. Чем дальше от поверхности Солнца, тем газ горячее и более разряжен.

Корона

Над высотой в 14 000 км над фотосферой начинается корона — третья внешняя оболочка Солнца. Корона состоит из энергетических извержений и протуберанцев — особых плазменных образований. Ее температура варьируется от 1 до 20 млн К, имеются также корональные дыры с температурой 600 тыс. К, откуда исходит солнечный ветер. Начиная от нижней части, температура растет, а на высоте 70 000 км от поверхности Солнца начинает снижаться.

Верхняя граница короны пока не установлена, как и точная причина необычно высокой температуры. Как и хромосфера, солнечная корона тоже видна только во время затмений или при использовании специального оборудования. Солнечная корона является мощным источником постоянного рентгеновского и ультрафиолетового излучения.

На сегодняшний день человечеству довольно много известно о внутреннем строении Солнца и о процессах, происходящих в нем. Прояснению их природы во многом способствовал технический прогресс. Благодаря получению знаний о Солнце можно составить представление и о других звездах. Но поскольку наблюдать за Солнцем можно только издалека, у него осталось еще немало неразгаданных тайн.

Источник: www.syl.ru

  • Астрономия
  • »

  • Солнце

рисунок СолнцаСолнце — единственное светило в своей системе. Вокруг Солнца совершают вращение меньшие по размеру объекты солнечной системы. Из них: планеты, спутники, кометы, астероиды, метеориты и космическая пыль. Массовая доля Солнца равна 99,8% от общей массы всех объектов ее системы. Излучения, исходящие от Солнца, играют огромнейшую роль в поддержании нашей жизни.

Основной состав звезды «Солнца» характеризуется содержанием водорода (73%) и гелия (25%). Также в состав солнечного материала входит: железо, кислород, хром, кремний, магний, азот, углерод и др. вещества.

Примерная плотность нашей звезды Солнца — 1,4 г/см2. Она классифицируется как звезда G2V. Тела, относящиеся к данному виду, еще принято называть «желтыми карликами». Средний температурный показатель у Солнца — 6000 К. Именно поэтому свет, который исходит от него, имеет преимущественно белый цвет. Только вблизи поверхности Земли солнечный свет становится с желтоватым окрасом.

В Солнечном спектре содержатся линии нейтральных и ионизированных металлов. В меньшем количестве здесь имеется и линии гелия, и водорода. Всего в системе Млечного пути содержится около 100 млрд светил. Большая часть из них обладает меньшей яркостью, чем Солнце. У главной звезды, равно как и у других звезд, которые являются составляющими главной последовательности, энергия образуется с участием термоядерного синтеза. Конкретно у Солнца «топливом» для преобразования энергии является гелий и водород.

Наша планета удалена от главной звезды на 149 млн 600 тыс. км. Само светило находится от нас на дистанции, измеряемой в 26 тыс. св. годах от «сердца» нашей галактики. На данный момент система нашей звезды располагается во внутреннем рукаве Ориона.

Общие сведения о Солнце

Строение солнца рисунокНаша звезда Солнце относится к первому типу звездного населения. Самая популярная гипотеза о появлении Солнца заключается в следующем: светило «родилось» вследствие взрывов 1-й или даже группы сверхновых. Эта теория опирается на то, что в солнечной материи в избытке содержатся такие соединения, как золото и уран. По мнению ученых, эти вещества в таком количестве могли образоваться лишь вследствие эндотермических реакций. А они, как правило, возникают под влиянием сильных взрывов или в процессе поглощения нейтронов материалом крупных светил второго поколения.

 Солнечное излучение, как было сказано выше, главный источник энергии, поддерживающий жизнь землян. Солнечной постоянной оценивается мощность светила, т. е. количеством выделяемой энергетической активности, которая проходит через определенную область в единицу площади, перпендикулярную солнечным лучам.

 Попадая в нашу атмосферу, лучи Солнца теряют около 370 Вт/мІ своей мощности. Соответственно, на поверхность Земли даже при идеальных погодных условиях, попадает лишь 1000 Вт/мІ. Дошедшая до поверхностного слоя планеты энергия составляет естественные и искусственные процессы. Например, растения за счет солнечного света, задействованного в фотосинтезе, участвуют в производстве такого жизненно важного элемента, как кислород. Что касается искусственного применения, то солнечную энергию используют для получения электроэнергии.

Ультрафиолетовые лучи, исходящие от Солнца также обладают полезным, антисептическим свойством. Ультрафиолет нередко применяют в целях быстрой дезинфекции воды и других предметов. Данное излучение частично развивается в озоновом слое атмосферы Земли. Именно поэтому его мощность ощутимо изменяется с широтой.

Жизненный цикл Солнца

цикл СолнцаНаша звезда Солнце еще значительно молода. Она характеризуется как светило третьего поколения. Особенность таких объектов заключается в большом процентном содержании металлов. Такие звезды «рождаются» из останков светил предыдущих поколений.

 Приблизительный возраст Солнца — 4,5 млрд. лет. Известно, что оно расходует водород в качестве топлива. По мере его уменьшения, Солнце начинает разогреваться все сильнее. Соответственно, и светимость Солнца начинает увеличиваться. Когда возраст звезды достигнет 5,6 млрд лет, его яркость будет на 11% выше, чем сегодня.

 К тому моменту, когда Солнце достигнет возраста 8 млрд лет, его яркость станет на 40% выше. Ученые полагают, что земные условия на тот момент будут подобны настоящим условиям на планете Венера. Вся жидкость с поверхности будет унесена в космос. После этого на Земле перестанут существовать почти какие-либо жизненные формы. Чем быстрее запасы водорода в ядре будут истощаться, тем быстрее будет увеличиваться оболочка звезды, а ядро, наоборот, начнет уменьшаться.

Когда Солнце достигнет возраста 10,9 млрд. лет, запасы водорода ядра полностью истощатся. Оставшийся же гелий начнет сжиматься. Слабое горение водорода все еще будет поддерживаться в структуре «сердцевины». Еще 0,7 млрд лет она будет стремительно расширяться, пока еще сохраняя свою светимость. По достижении 11,6 млрд лет Солнце достигнет размеров субгиганта. В возрасте 12,2 млрд лет звездное ядро может быть раскалено до такой степени, что запустится новый процесс сжигания водорода. Тогда звезда начнет быстро увеличиваться. Затем оно отклонится от главной последовательности, и размер его будет с «красный гигант».Строение солнца рисунок

В этом состоянии радиус Солнца становится больше в 256 раз. В этом виде жизнеспособность Солнца будет равняться несколько десятков миллионов лет. К тому времени, когда температурные показатели ядерного вещества достигнут отметки 100 млн К, неминуемо возникновение глобальной гелиевой вспышки и тогда начнется термоядерная реакция синтеза гелия. Звезда, которая получит иной временный источник энергии, снова начнет уменьшаться. Через 100-110 млн лет данный синтез приостановится. Внешние оболочки звезды вновь начнут «расти», вследствие чего она вновь станет размером с «красный гигант». В данный период на Солнце постоянно будут происходить вспышки. Светимость звезды достигнет максимального уровня.

Ученые прогнозируют, что массы нашей звезды чересчур малы для завершения своего существования образованием сверхновой. В конце концов, ее оболочка отделится от ядра. Из звездного вещества, так или иначе, будет образована планетарная туманность с центром под названием белый карлик, который будет образован из ядра Солнца. Такие образования представляют собой горячие и плотные тела по размеру с нашу планету.

Составляющие Солнца

Строение солнца рисунокСолнечное ядро — место, где протекают все известные термоядерные реакции. Плотность его вещества — 150 тыс. кг/мі. Центральный радиус Солнца равен 150-175 тыс. км. В ходе миссии аппарата SOHO ученым удалось выяснить, что средняя температура ядра Солнца — 14 млн. К. Также стали известны показатели скорости вращения ядра. Они превзошли показатели скорости вращения поверхности.

Звездное солнечное ядро является особым местом. Энергия и тепло создаются здесь за счет термоядерных реакций. Она пронизывает все звездные слои, включая фотосферу. Из данного слоя звезды энергетическое вещество выделяется в виде солнечного света и кинетической энергии. 

Область лучистого переноса

Данная область находится сразу после солнечного ядра. Из нее энергия распространяется излучением и поглощением фотонов. Директория отдельного элемента не зависит от того, были ли данные фотоны ранее поглощены плазмой или нет. Именно они сохраняют способность проникать практически во все слои плазмы лучистой области. Они также могут и перемещаться назад на более низкие уровни. Температурные показатели области лучистого переноса равны от 207 млн. К. и выше. Температура в зоне лучистого переноса от 207 млн. К. и выше. Необходимо заметить, что здесь полностью отсутствует макроскопическая конвекция. Это является явным свидетельством того, что адиабатический температурный градиент здесь выше в сравнении с градиентом лучевого равновесия.

Конвективная зона Солнца

Вблизи поверхностных слоев температура и плотность материи Солнца приобретает меньший показатель, которого недостаточно для того, чтобы полноценно перенести энергию путем переизлучения. В данной области начинается процесс, который носит название — вихревое перемешивание плазмы. А в верхние слои звезды энергетический поток переносится посредством движения самого вещества.

 Роль конвективной солнечной зоны Солнца чересчур огромна. Ведь непосредственно здесь начинает свои важные процессы и движение звездное вещество. Термики в данной области способствуют проявлению на поверхности Солнца гранул и провоцируют процесс супергрануляции. Эти гранулы существуют 10-15 минут, что приблизительно равно тому промежутку, в течение которого газ способен единожды обогнуть такую гранулу.

Атмосфера Солнца. Определение фотосферы

Видимый слой поверхности Солнца называется фотосферой. Ее толщина определяется в пределе от 100 до 400 км. Именно от нее исходит большая часть солнечного света. Температура фотосферы равна от 4400 до 6600 Е. По ней также измеряются габариты Солнца. Ввиду того что газ здесь достаточно разрежен, скорость его вращения в данной области значительно меньше этого же показателя вращения плотных тел. Что касается полярных зон и зоны экватора, то газ здесь движется неравномерно.

Определение хромосферы Солнца

Хромосфера Солнца — это практически последняя оболочка звезды. Ее средняя толщина равна 2 тыс. км. Свое название данная область получила от древнегреческого слова «цвет». Действительно, она имеет красноватый оттенок. Это связано с тем, что, скорее всего, в ее спектрометре наблюдается преобладание красной Н-альфа линии водорода. Наружный слой данной области не определяется четкой гранью из-за того, что происходят регулярные выбросы солнечной массы, которые здесь происходят. Они называются спикулы. В одно и то же время на Солнце может синхронно проявляться 60-70 тыс. спикул.

 Плотность хромосферы характеризуется как средняя. Она не обладает достаточной яркостью для того, чтобы ее можно было увидеть в без специальных средств. Это возможно лишь в случае полного солнечного затмения, при котором хромосферу становится видно из-за перекрытия чересчур яркой фотосферы.

 Хромосферные структуры состоят из:
• хромосферной сетки. Она целиком покрывает всю поверхность Звезды. Данная сетка состоит из линий, которые окружают ячейки супергрануляции;
• флоккулов — световые образования, напоминающие по своему виду облака. Они преобладают в зонах мощных магнитных полей — активных областей, окружающих солнечные пятна;
• волокон и волоконцев (фибриллов), которые представляют собой темные линии разной длины и ширины. В своем большинстве они преобладают в областях наивысшей солнечной активности.

Солнечная корона

Солнечная корона фотоКороной называется последняя, самая легкая оболочка Солнца. В ее составе как основные элементы можно выделить протуберанцы и извержения энергии. Средняя температура данного слоя звезды варьируется от одного до двух миллионов К. Солнечная корона отлично визуализируется без особых приспособлений и технических приборов только в то время, когда можно наблюдать солнечное затмение.

Чрезвычайно высокие температуры, преобладающие в этом слое, можно объяснить тем, что здесь происходит эффект магнитного присоединения. Также сказывается и последствие ударных волн. Очертания короны изменчивы в зависимости от того, в какой фазе и цикле находится солнечная активность. Например, во время своего максимума корона приобретает более округлые очертания. В наименьший же период — вытягивается вдоль экваторной линии звезды. Для излучения солнечной короны необходим рентгеновский и ультрафиолетовый диапазон. Но данные отфильтровываются земной атмосферой. Благодаря технике нового поколения ученые все-таки нашли способ для их более тщательного изучения. Оказалось, что излучения солнечной короны неравномерны. В ней имеются, как и более активные, так и спокойные зоны. А в данном слое существуют и коронарные дыры, через которые в космос вырывается поток магнитных силовых линий.

Солнечный ветер

Солнечный ветер схемаНаружняя коронарная часть звезды пропускает солнечный ветер, который состоит из направленных потоков ионизированных частиц. Существует два вида солнечного ветра:
— медленный способен развивать скорость до 400 км/с.;
— быстрый развивает скорость от 750 км/с.

Первый вид солнечного ветра характеризуется большей плотностью, нежели быстрый. Его структура также является более сложной. Она характеризуется регионами турбулентности. Наша звезда вместе с таким ветром испускает в 1 секунду в среднем 1,3*1036 частиц.

Магнитные поля Солнца

Разновидности солнечных магнитных полей

Периодически в плазме солнечного ветра наблюдается возникновение электрических токов. Причина этого заключается в том, что она определяется высокой электропроводностью. Ученые разделяют магнитное поле звезды на два вида. Отличаются они в основном по своему масштабу.

Характерной чертой глобального магнитного поля является сильная напряженность, которая достигает своего максимума в области видимого поверхностного слоя. Ее сила может достигать нескольких Гаусс. При слабой солнечной активности структура глобального магнитного поля больше напоминает дипольную. При максимуме данное напряжение начинает уменьшаться. А через несколько лет на полюсах звезды оно и вовсе исчезает. Но, в общем, при мощной солнечной активности оно продолжает существовать. Его структура на данном этапе определяется, как квадрупольная. После завершения данного периода, напряженность диполя снова начинает расти, вследствие чего изменяются и полярности Солнца.

Локальные магнитные солнечные поля имеют мощную напряженность, которая измеряется несколькими тысячами Гаусс. Такие показатели обычно наблюдается в зоне солнечных пятен в период максимума активности. Что касается магнитных полей, которые входят в состав зоны пятен, то они обладают структурой, носящий мультиполярный или биполярный характер. В зоне фотосферы можно наблюдать и униполярные области. Они расположены вблизи полюсов, и, соответственно, носят меньший показатель напряженности.

Действие и циклы Солнца

За действиями на Солнце стоит целый набор всевозможных явлений, спровоцированных совокупностью мощнейших магнитный полей на звезды. Данные поля, зачастую, выглядят пигментными пятнами, где происходят вспышки. Эти процессы сопровождаются разными видами геомагнитной активности. Их появление объясняется достаточно серьезными проявлениями на Солнце, которые достигают поверхности Земли и атмосферной среды.  Ученые условились обозначать мощность солнечной активности «цюрихским числом», названым именем Р. Вольфа. Оно равно числу обозреваемых солнечных пятен на одной половине сферы звезды. Уровень активности для каждого периода всегда неодинаковый.

Периодичность активности Солнца равна 11 годам. Необычно огромное количество солнечных пятен было зафиксировано в 1947 году. Общая их длина составила 300 тыс. километров, а ширина — 145 тыс. км. Эти пятна можно было наблюдать невооруженным глазом в определенное время суток.

Исследования и наблюдения за Солнцем в прошлых веках

ученый ГалилейДаже в далекие времена люди знали о значимой роли Солнца — источника теплоты и света. Во многих древних культурах Солнце олицетворяли с божеством. Культ поклонения ему был обязательным в регалиях и традициях древних египтян, ацтеков и инков. 

Большинство памятников, сохранившихся по сей день связано с Солнцем. К примеру, мегалиты символизируют солнцестояние летом. Самые крупные такие монументы сейчас расположены в Египте, Великобритании и Мексике. Все они были выстроены с расчетом, чтобы земная тень пересекала фигуру пирамиды в моменты осеннего и весеннего равноденствий.

Астрономы древнего Египта вели наблюдения за наблюдаемыми годовыми движениями Солнца по эклиптике. Солнце по их мнению являлось планетой. В то время их было известно только семь. 
Переворот в научном понимании до современного уровня
Первым, кто решил изучать Солнце, как физический небесный объект, стал греческий ученый Анаксагор. Он открыто заявлял: «что Солнце не является колесницей Галиоса», — как говорилось в греческих мифах. Философ был убежден, что этот объект представляет собой гигантский горячий шар. За свои убеждения Анаксагор был заключен в тюрьму и приговорен к смертной казни. Через какое-то время его все же освободили, благодаря Периклу.

Мысли о том, будто Солнце является центром определенной системы также посещали древнеиндийского ученого Аристарха Самосского. Но только в XVI веке данную теорию возродил Коперник.

Впервые просчитать расстояние от нас до Солнца попытался Аристарх Самосский. Но полученное число было далеким от действительности. 

Ученый предсказал, что расстояние между Землей и Солнцем равно восемнадцати расстояниям между ними, вместо реальных 294. 
Древние китайские ученые занимались изучением солнечных пятен. В 1610 году Солнце начали наблюдать через бинокли и другие примитивные увеличительные приборы, что были доступны в те времена.

После создания первого гелиоскопа, Галилей, Томас Хэрриот и Кристофер Шейн смогли наглядно изучить солнечные пятна. 

Вскоре Галилей объявил пигментные пятна солнца элементами структуры нашей звезды. Шейн же считал, что затемнения на солнечном диске являются пересекающими его планетами. Такое заявление заставило Галилея заняться более тщательным изучением звезды. В конечном счете он смог доказать солнечное движение и высчитать длительность периода. 

В XIX веке известный астроном Ватикана — Пьетро Анджело Секки создал новое направление в астрономии — спектроскопию. 

Ученый сумел разложить луч на семь цветовых спектров. С открытием спектроскопии астрономы смогли обнаружить новый хим. элемент — гелий — главный компонент солнечного вещества.
На протяжении долгого времени люди не понимали, что же является источником такой огромной энергии Солнца. Только в 1848 году ученым Робертом Майером была выдвинута метеоритная гипотеза. Она гласила, что Солнце накаляется в результате постоянной метеоритной бомбардировки. Но данную теорию сразу опровергли, ввиду того, что в такой же ситуации и условиях стала бы когда-то нагреваться и наша планета. 

Лишь в ХХ веке ученые нашли точное объяснение данному процессу. Изначально Резерфодом была предложена гипотеза где предполагалось, что главное составляющее внутренней энергии звезды — радиоактивный распад. В 20-х годах прошлого века Артур Эддингт пытался доказать, что причина надвысоких температурных показателей Солнца кроется во всевозможных реакциях внутри него. В 1930 году ученые — Ганс Бете и Чандрасекар выявили реальный способ поддержания высоких температур у звезд. Астрофизики считали, что она кроется в термических реакциях в ядре, что делает их единственно возможным источником энергии звезды. 
Далее, в 1957 году Маргарет Беридж доказала, что практически все известные элементы Космоса возникли вследствие нуклеосинтеза, происходящего в звездах.

Грандиозные орбитальные изучения Солнечной системы

Строение солнца рисунокКак известно, земная атмосфера играет роль фильтра, который предотвращает проход сквозь нее электромагнитного излучения. Даже там, где атмосфера имеет большую прозрачность, изображения небесных тел могут быть сильно искажены. По этой причине исследовать космические объекты лучше либо из космоса, либо на большой высоте, в обсерваториях. Это справедливо в актуальных аналогичных наблюдениях за нашей звездой. 
Только при исследовании ультрафиолетовым и рентгеновским излучением можно получить более или менее четкие и качественные изображения светила.

Впервые грандиозные изучения Солнца вблизи были проведены во время миссии «Спутник-2» в 1957 году. Данные наблюдения выполнялись сразу в нескольких диапазонах. Обнаружить солнечный ветер астрономом удалось лишь в 1959 году. Для этого им пришлось применить специальные ионные ловушки, расположенные на машинах «Луна 1» и «Луна 2».

После, инициативу наблюдений за звездой перехватило космическое агентство НАСА. Несколько спутников «Пионер» в период с 1960-1968 годы вышли на орбиту Земли с целью измерить показатели «солнечного ветра».

В 70-годах ушедшего века в космос были выпущены машины «Гелиос-I» и «Гелиос-II» для подробного исследования звезды. Спутники вышли на гелиоцентрическую орбиту, лежащую внутри орбиты планеты Меркурий. На тот момент расстояние, которое разделяло машины и Солнце было не более 40 млн. километров. 
Также в процессе данной операции удалось выяснить различие в плотности мелких метеоритов, находящихся вблизи звезды и тех, которые находятся в области нашей планеты. 

В 1973 году начала функционировать космическая обсерватория ATM. С ее помощью ученые получили массу полезной информации о солнечной переходной области, короне и ультрафиолетовом излучении. В ходе наблюдений были открыты коронарные дыры и что влияет на осуществление коронарных выбросов солнечной массы, непосредственно связанных с происхождением солнечного ветра. 

В 1980 году организация НАСА запустила на околоземную орбиту аппарат Solar Mazomum Missian. Предназначением данного зонда было наблюдение за ультрафиолетовыми, рентгеновскими, гамма-излучениями, а также за вспышками на Солнце. Все исследования проходили в периоды солнечных вспышек. 

В 1991 году японцы с целью наблюдения за Солнцем запустили свой спутник Yohkoh. Принцип работы этого аппарата основывался на изучении звезды в рентгеновском диапазоне. Данные, полученные в процессе работы спутника, помогли астрономам классифицировать несколько солнечных вспышек. Позитивным моментом миссии Yohkoh стало определение реальной активности короны.

Еще за одной важной программой SOHO, осуществляемой НАСА и ЕКА, был запущен свой аппарат. Который вместо запланированных двух лет проработал в космосе десять!  Помимо изучения Солнца, SOHO также провел исследования многих комет, которые испарялись по мере приближения к звезде. Что касается отдельных исследований фотосферы Солнца, то во время их проведения ученые использовали спектроскопические методы. Они наиболее эффективны при наблюдении отдельных слоев звезды. 

Чтобы получить гораздо больше информации о веществах составляющих Солнце, астрофизиками был запущен еще одну исследовательскую машину — Genesis. Мисия была завершена в 2004 году. Несмотря на некоторые повреждения, на его борту все же были в целости некоторые образцы «солнечного ветра» для наземных исследований. 

В сентябре 2006 года на земную орбиту вывели обсерваторию Hinode. Она была разработана в японском научном университете ISAS. Обсерватория представляла собой вместилище всего необходимого для исследования — оптический и рентгеновский телескопы и спектрометр, работающий в ультрафиолетовом волновом диапазоне. Целью миссии Hinode было изучение процессов активности, происходящих в короне Солнца.

 В 2006 году для наблюдений в космос была отправлена обсерватория STREO. Ее составляющими были два аппарата. Благодаря им ученым удалось получить изображения Солнца и происходящих на ней явлений. 

 В 2009 году российские ученые запустили спутник «Коронас-Фотон» вместе с группой космических машин «Тесис». Обсерватория была оснащена телескопом, спектрогелиографом и коронографом. Основной задачей этой группы машин являлся постоянный мониторинг солнечной активности. 

В 2010 году для наблюдений в космос была направлена американская ракета Atlas V. Задачей запуска аппарата было выведение на орбиту новой системы SDO.

Солнечные затмения

схема Солнечного затменияВсе отметки о солнечных затмениях велись со времен античности. Больше всего описаний этого события имеется в европейских источниках средневековья. Явление возникает тогда, когда Луна перекрывает солнечный диск.  Солнечное затмение видно только когда новолуние, в это время сторона спутника обращена на Землю и не освещается. За год с Земли можно наблюдать 2-5 СЗ. На сто лет, в целом, приходится около 237 таких явлений. Полные СЗ очень полезны для исследования короны и слоев Солнца. Только в 1996 году ученые научились производить постоянный мониторинг поверхности звезды, благодаря спутнику SOHO. Но ранее, без специальных приборов тщательно исследовать корону Солнца не представлялось возможным.

В 1886 году французский ученый П. Жансен смог во время полного солнечного затмения провести исследование солнечной хромосферы, открыв при этом гелий. 

Планета и Звезда

 Для всего находящегося на Земле жизненно важен свет Солнца. У большей части животных и растений он способствует систематизации циркадного ритма. 

Конкретно на человека свет оказывает воздействие в 1000 люкс. В тех зонах Земли, где отмечаться дефицит солнечного света, отмечается скудный рост растений и малое их биоразнообразие. 
В листьях зеленых растений имеется хлорофилл — зеленый пигмент, на который «ловится» световая энергия, что необходима для протекания процессов фотосинтеза.

Этот процесс заключается в синтезе органических соединений из воды и углекислого газа, в котором задействован солнечный свет. Известно, что основной продукт фотосинтеза это кислород. Что означает — он является одним из главных факторов, поддерживающих жизнь на планете.

Источник: astro-azbuka.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.