Солнечные пятна на солнце


Как происходят магнитные бури и вспышки на Солнце, почему солнечные пятна темнее поверхности Солнца, как они возникают и чем опасно их образование для жителей Земли.


Самое древнее упоминание о солнечных пятнах сделано ещё во времена Древней Греции, учеником Аристотеля – Теофрастом из Афин. Так уж получилось, что именно ученику, довелось основательно пошатнуть теорию учителя – ведь Аристотель (и Птолемей), считали звезды за совершенные и неизменяемые сферы. Однако, как сказал поэт (Михаил Херасков) “И в Солнце, и в Луне есть темные места!”.

Упоминают о пятнах на солнце есть и во “Всемирной хронологии” Иоанна Вустерского (Англия), и в наших, русских никоновских летописях, а по словам китайских историков – в Китае солнечные пятна заметили и описали ещё до древних греков. Однако началом “научного” осмысления пятен на Солнце все же принято считать 1610 год, когда (с появлением телескопа и первых наблюдений Галилео Галилея) появилась возможность инструментально их зафиксировать.

Систематические наблюдения за пятнами на Солнце начали вести примерно с 1750 г., и, хотя природа их появления оставалась не ясной вплоть до 20-го века, выявить некоторые закономерности и сходные черты этого явления, астрономам удалось довольно быстро.

Солнечные циклы и солнечные пятна


Уже с начала XVIII в. было известно, что интенсивность пятен и время их появления находятся в рамках периода, равного примерно 11 земным годам. Этот период получил название солнечный цикл. За это время пятна на Солнце появляются, достигают максимальных размеров, а затем понемногу уменьшаются. Солнечный цикл может длиться от 7 до 15 лет, его средняя продолжительность составляет 11,07 года.

В начальной фазе солнечного цикла в течение многих дней или недель на Солнце не наблюдается никаких следов пятен. На заключительном этапе периода на Солнце можно видеть около двух десятков скоплений пятен, не говоря об единичных.

Каждое солнечное пятно существует в среднем в течение нескольких месяцев, но тот факт, что цикл составляет 11 лет, свидетельствует о глубоких и длительных процессах, происходящих в недрах Солнца.

Солнечный цикл, судя по всему, связан с взаимодействием магнитного поля светила с конвективным слоем.

В 1908 г. Иоганн Галле совершил открытие — солнечные пятна имеют мощные магнитные поля. Мощность поля типичного пятна составляет 0,25 теслы. Для сравнения — мощность магнитного поля Земли меньше и составляет 0,0001 теслы.


Замечена интересная регулярность в плане распределения магнитных полей — если группа солнечных пятен образуется в Северном полушарии, значит, в предыдущем цикле пятна дислоцировались в Южном полушарии, и так далее. Когда заканчивается один цикл и начинается другой, полярность уравновешивается. Таким образом, полный солнечный цикл, включая и перемещение полярности, длится около 22 лет.

Впрочем, пятна могут появиться одновременно в двух полушариях Солнца симметрично в отношении экватора. Места образования пятен перемещаются на 4,5° — 5° в течение всего цикла.

Солнечные пятна и солнечные вспышки

Именно солнечные пятна являются областями наибольшей активности на Солнце. В том случае, если пятен появляется много, существует высокая вероятность того, что произойдет пересоединение магнитных линий — линии, проходящие внутри одной группы пятен, соединяются с линиями из другой группы пятен, имеющими противоположную полярность.

Видимым результатом этого процесса является солнечная вспышка.

Всплеск излучения от солнечной вспышки, достигая Земли, вызывает сильные возмущения её магнитного поля (“магнитная буря“), нарушает работу искусственных спутников и даже оказывает влияние на расположенные на планете объекты.

Из-за нарушений магнитного поля Земли увеличивается вероятность возникновения северных сияний в гораздо более низких  географических широтах, чем обычно. Ионосфера Земли также сильно подвержена изменению солнечной активности, что проявляется в нарушении распространения коротких радиоволн – в периоды сильной солнечной активности, Солнце “глушит” волны коротких диапазонов и вносит в них весьма ощутимые помехи.

Почему солнечные пятна выглядят темными


Солнечные пятна на фоне поверхности Солнца выделяются своим темным цветом. Это связано с тем, что температура солнечных пятен довольно значительно ниже, чем температура фотосферы звезды.

Вокруг самой темной области пятна (ее называют «тень») — находится зона средней светимости — «полутень». Температура солнечного пятна колеблется от 4300° до 4800° К, то есть, примерно на  1000-1500° ниже, чем температура фотосферы.

В полутени температура составляет 5400-5500° К. Для тени характерна светимость, составляющая 32% от фотосферы, для полутени — 80%, поэтому по контрасту с фотосферой они выглядят темными.

Понижение температуры внутри пятен связано с подавлением мощным магнитным полем пятен, конвективных движений вещества внутри Солнца и, как следствие, снижением потока переноса тепловой энергии в этих областях, то есть “остыванием” участка “накрытого” пятном.

На “холодных” звёздах наблюдаются пятна гораздо большей площади, чем на Солнце.

Появление и время существования солнечных пятен


Пятна на Солнце возникают в результате возмущений отдельных участков магнитного поля Солнца – узкие “языки” магнитного поля звезды внезапно “разрывают” фотосферу в область короны, и сильное магнитное поле подавляет конвективное движение разогретой плазмы, препятствуя в этих местах переносу энергии из внутренних областей Солнца наружу.

В месте “прорыва” фотосферы образуется затемнение, диаметр которого равен нескольким тысячам километров. Это так называемые «поры». Большая часть пор исчезает через день. Другие, напротив, увеличиваются в размерах и приобретают типичные черты пятен, становится заметной полутень, протяженность может составлять от 7000 до 50 000 км.

Срок существования пятен составляет от 2-х недель до нескольких месяцев, то есть отдельные “устойчивые” группы солнечных пятен могут наблюдаться в течение нескольких оборотов Солнца. Интересно, что именно это явление и позволило первым исследователям Солнца, убедительно доказать вращение нашей звезды, а также провести измерения периода обращения Солнца вокруг оси.

Пятна обычно образуются группами, но иногда возникает одиночное пятно, живущее всего несколько дней, или биполярная группа: два пятна разной магнитной полярности, соединённые линиями магнитного поля. Западное пятно в такой биполярной группе называется «ведущим», «головным» или «P-пятном» (от англ. preceding), восточное — «ведомым», «хвостовым» или «F-пятном» (от англ. following).


Только половина солнечных пятен живёт больше двух дней, и всего десятая часть — более 11 дней.

Пятна перемещаются но солнечной поверхности. Дело в том, что Солнце не является твердым телом и его скорость вращения в разных зонах неодинакова. Например, в зоне экватора период вращения составляет примерно 27 суток, в то время как в полярных частях светила он равен примерно 31 суткам. 

В начале 11-летнего цикла солнечной активности пятна на Солнце появляются на высоких гелиографических широтах (порядка ±25—30°), а по ходу времени, перемещаются к солнечному экватору, в конце цикла достигая уже широт ±5—10°. Эта закономерность носит название закон Шпёрера.

Источник: starcatalog.ru

История наблюдения за солнечными пятнами

Итальянский астроном и физик Галилео Галилей был первым, кто сумел разглядеть это астрономическое явление при помощи своей подзорной трубы учитывая расстояние до Солнца. В своем несложном телескопе он наблюдал появление и рост солнечных бляшек, видел, как они изменяют свою форму и вид и через несколько дней или недель исчезают. Он обратил внимание и на то, что все они перемещаются из восточной части Солнца в западную. Это передвижение вызвано вращением небесного тела вокруг оси.

Когда Галилей усовершенствовал телескоп в 1609 году многие ученые впервые смогли увидеть солнечные пятна. Они представляли такой интерес, что велись записи об их количестве и хотя они не были совершенно точными из-за облачных дней, потерянных записей и т. д., записи показывают картину более чем за столетие.


С 1600 по 1715 год нашей эры было замечено очень мало солнечных пятен, а с 1645 по 1715 годы их вообще не было, несмотря на то, что многие ученые с помощью телескопов активно искали эти образования. Это был самый длинный известный минимум (около 50 лет) практически без солнечных пятен. После 1715 года нашей эры число наблюдаемого явления резко возросло с почти нулевого до 50-100 и вроде бы потеплел глобальный климат.солнечные пятна

Свойства солнечных пятен

Солнечные пятна – это области с сильнейшими магнитными полями, а значит, хороший показатель солнечной активности. Эти активные области появляются сначала на более высоких широтах в начале солнечного цикла, а затем дрейфуют к экватору к концу солнечного цикла. Поскольку все явления активности звезды контролируются магнитным полем, они имеют аналогичную зависимость солнечного цикла от явлений на звезде, таких как скорость вспышки, площадь активной области, глобальная мягкая яркость рентгеновского излучения и радиоизлучение. Обеспечивает это явление особый химический состав Солнца: в основном, водород и гелий.


Появление темных солнечных пятен снижает общую светимость Солнца только примерно на 0,15% при максимуме солнечных пятен, и, таким образом, явление оказывает незначительное влияние на климат Земли.

Солнечное пятно может быть небольшим по размерам и не превышать, например, территорию Франции. Такое малое изменение называется порой. Большие могут в несколько раз превышать площадь Земли. солнечное пятно Они состоят из двух ярко выраженных частей: центральной, черной, которая называется ядром или тенью, и внешней части – полутени, являющейся переходом от ядра к фотосфере (фотосфера-излучающий слой звездной атмосферы). Полутень состоит из тонких ярких и темных волокон, которые направлены из фотосферы к ядру пятна.

Солнечное пятно как уединенная магнитная структура


Объяснение явления появления солнечных пятен основано на убедительных доказательствах наличия смешения магнитного поля и динамики плазмы вдоль границы пятна. Солнечное пятно как уединенная магнитная структура на поверхности небесного тела.

Глобальная структура магнитного поля солнечных пятен была широко изучена в 20 веке при относительно низком пространственном разрешении.
В спектре астрономического явления примечательно расщепление некоторых линий на две составные. Такое расщепление называется эффектом Зеемана: чем сильнее магнитное поле пятна, тем выразительнее этот эффект.

Расщепление спектральных линий служит доказательством того, что образования на поверхности Солнца являются гигантскими мощными магнитами. Конечно, это не железные магниты, так как кусок железа немедленно бы испарился. Магнитные поля на Солнце – проявления сильнейших электрических токов в плазме вокруг пятна. Положительные ионы движутся в одном направлении, отрицательные электроны — в противоположном.

Пятна появляются и остаются на поверхности Солнца в совершенно разное время и после этого исчезают. Они имеют тенденцию возникать группами. Поверхность вокруг группы пятен теплее и ярче у более отдаленной бляшки.

Повышенная яркость фотосферы называется факелом. Факелы легко заметить, если группа пятен находится на краю солнечного диска.солнечные пятна


Наружный слой солнечной атмосферы – хромосфера, вокруг группы теплее и ярче, чем в остальной части. Такие яркие и теплые области хромосферы называются флоккулами.
В группах солнечных бляшек имеют место также и другие явления, например, вспышки, протуберанцы, корональная конденсация и пр.
Все эти явления, включая пятна, факелы и флоккулы – активные образования, входящие в понятие солнечной активности.
Группа пятен со всеми проявлениями солнечной активности называется центром солнечной активности или активной областью.

Наука изучает это наиболее замечательное астрономическое явление. Кроме того его можно наблюдать с поверхности Земли в любительские инструменты как очень красивый объект. активность солнца Явление плохо поддается прогнозированию, но известно только, что оно повторяется примерно через каждые 11 лет и поэтому наиболее вероятно, что пик следующей солнечной активности придется на 2022 -2023 годы.


Источник: v-nayke.ru

На диске Солнца появилась одна из самых крупных в этом году активных областей, а значит, на Солнце снова есть пятна — притом что наша звезда вступает в период минимальной активности. О природе и истории обнаружения солнечных пятен, а также об их влиянии на земную атмосферу рассказывает сотрудник Лаборатории рентгеновской астрономии Солнца ФИАН, доктор физико-математических наук Сергей Богачев.

В первом десятилетии XVII века итальянский ученый Галилео Галилей и немецкий астроном и механик Кристоф Шейнер приблизительно одновременно и независимо друг от друга усовершенствовали изобретенную за несколько лет до этого подзорную трубу (или телескоп) и создали на ее основе гелиоскоп — прибор, позволяющий наблюдать Солнце, проецируя его изображение на стену. На этих изображениях ими были обнаружены детали, которые можно было бы принять за дефекты стены, если бы они не перемещались вместе с изображением — небольшие пятна, усеивающие поверхность идеального (и отчасти божественного) центрального небесного тела — Солнца. Так в историю науки вошли солнечные пятна, а в нашу жизнь — поговорка о том, что на свете нет ничего идеального: «И на Солнце есть пятна».

Солнечные пятна являются основной деталью, которую можно разглядеть на поверхности нашей звезды без применения сложной астрономической техники. Видимые размеры пятен составляю порядка одной угловой минуты (размер 10-копеечной монеты с расстояния в 30 метров), что находится на пределе разрешения человеческого глаза. Однако достаточно совсем простого оптического прибора, увеличивающего всего в несколько раз, чтобы эти объекты были обнаружены, что, собственно, и произошло в Европе в начале XVII века. Отдельные наблюдения пятен, впрочем, регулярно происходили и до этого, причем часто они делались просто глазом, но оставались незамеченными или непонятыми.

Природу пятен некоторое время пытались объяснить, не затрагивая идеальность Солнца, например, как облака в солнечной атмосфере, но довольно быстро стало понятно, что они относятся посредственно к солнечной поверхности. Природа их, тем не менее, оставалась загадкой вплоть до первой половины XX, когда на Солнце впервые были обнаружены магнитные поля и оказалось, что места их концентрации совпадают с местами формирования пятен.

Почему пятна выглядят темными? Прежде всего надо заметить, что их темнота не является абсолютной. Она, скорее, подобна темному силуэту человека, стоящего на фоне освещенного окна, то есть является лишь кажущейся на фоне очень яркого окружающего света. Если измерить «яркость» пятна, то можно обнаружить, что оно также излучает свет, но лишь на уровне 20-40 процентов от нормального света Солнца. Этого факта достаточно, чтобы без каких-либо дополнительных измерений определить температуру пятна, так как поток теплового излучения от Солнца однозначно связан с его температурой через закон Стефана-Больцмана (поток излучения пропорционален температуре излучающего тела в четвертой степени). Если положить яркость обычной поверхности Солнца с температурой около 6000 градусов Цельсия как единицу, то температура солнечных пятен должна составлять около 4000-4500 градусов. Собственно говоря, так оно и есть — солнечные пятна (а это впоследствии было подтверждено и иными методами, например спектроскопическими исследованиями излучения), являются просто участками поверхности Солнца более низкой температуры.

Связь пятен с магнитными полями объясняется влиянием магнитного поля на температуру газа. Такое влияние связано с наличием у Солнца конвективной (кипящей) зоны, которая простирается от поверхности на глубину примерно трети солнечного радиуса. Кипение солнечной плазмы непрерывно поднимает из его недр к поверхности горячую плазму и тем самым повышает температуру поверхности. В областях, где поверхность Солнца пробивают трубки сильного магнитного поля, эффективность конвекции подавляется вплоть до полной ее остановки. В результате без подпитки горячей конвективной плазмой поверхность Солнца остывает как раз до температур порядка 4000 градусов. Формируется пятно.

В наши дни пятна изучают в основном как центры активных солнечных областей, в которых концентрируются солнечные вспышки. Дело в том, что магнитное поле, «источником» которого являются пятна, приносит в атмосферу Солнца дополнительные запасы энергии, которые являются для Солнца «лишними», и оно, как и любая физическая система, стремящаяся минимизировать свою энергию, пытается от них избавиться. Эта дополнительная энергия так и называется — свободная. Для сброса лишней энергии существует два основных механизма.

Первый, когда Солнце просто выбрасывает в межпланетное пространство отягощающую его часть атмосферы вместе с лишними магнитными полями, плазмой и токами. Эти явления называют корональными выбросами массы. Соответствующие выбросы, распространяясь от Солнца, достигают порой колоссальных размеров в несколько миллионов километров и являются, в частности, главной причиной магнитных бурь — удар такого сгустка плазмы по магнитному полю Земли выводит его из равновесия, заставляет колебаться, а также усиливает электрические токи, текущие в магнитосфере Земли, что и составляет суть магнитной бури.

Второй способ — это солнечные вспышки. В этом случае свободная энергия сжигается непосредственно в солнечной атмосфере, однако последствия этого тоже могут доходить до Земли — в виде потоков жесткого излучения и заряженных частиц. Такое воздействие, являющееся по своей природе радиационным, является одной из главных причин выхода из строя космических аппаратов, а также полярных сияний.

Не стоит, впрочем, обнаружив на Солнце пятно, сразу готовиться к солнечным вспышкам и магнитным бурям. Довольно частой является ситуация, когда появление на диске Солнца пятен, даже рекордно крупных, не приводит даже к минимальному повышению уровня солнечной активности. Почему так происходит? Связано это с природой высвобождения магнитной энергии на Солнце. Такая энергия не может высвободиться из одного магнитного потока, точно так же как лежащий на столе магнит, как бы его ни трясли, не создаст никакой солнечной вспышки. Таких потоков должно быть, как минимум, два, и они должны иметь возможность для взаимодействия друг с другом.

Поскольку одна магнитная трубка, пробивающая поверхность Солнца в двух местах, создает два пятна, то все группы пятен, в которых пятен всего два или одно, создавать вспышки не способны. Эти группы образованы одним потоком, которому не с чем взаимодействовать. Такая пара пятен может быть гигантской и существовать на диске Солнца месяцами, пугая Землю своими размерами, но не создаст ни одной, даже минимальной, вспышки. Подобные группы имеют классификацию и называются типом Альфа, если пятно одно, или Бета, если их два.

 Если вы обнаружили сообщение о появлении на Солнце нового пятна, не поленитесь и посмотрите тип группы. Если это Альфа или Бета, то можете не беспокоиться — ни вспышек, ни магнитных бурь Солнце в ближайшие дни не произведет. Более сложным классом является Гамма. Это группы пятен, в которых существует несколько пятен северной и южной полярности. В такой области существует как минимум два взаимодействующих магнитных потока. Соответственно, такая область будет терять магнитную энергию и подпитывать солнечную активность. И, наконец, последний класс — Бета-Гамма. Это максимально сложные области, с предельно запутанным магнитным полем. Если такая группа появилась в каталоге, можно не сомневаться — распутывать эту систему Солнце будет не менее нескольких дней, сжигая энергию в виде вспышек, в том числе крупных, и выбрасывая плазму, пока не упростит данную систему до простой конфигурации Альфа или Бета.

Впрочем, несмотря на «устрашающую» связь пятен со вспышками и магнитными бурями, не следует забывать, что это одно из наиболее замечательных астрономических явлений, которое можно наблюдать с поверхности Земли в любительские инструменты. Наконец, солнечные пятна, это очень красивый объект — достаточно посмотреть на их снимки, полученные с высоким разрешением. Тем же, кто даже после этого не способен забыть о негативных аспектах этого явления, можно утешиться тем, что число пятен на Солнце все-таки относительно мало (не более 1 процента поверхности диска, а чаще гораздо меньше).

Ряд типов звезд, как минимум красные карлики, «страдают» в куда большей степени — пятнами в них может быть покрыто до десятков процентов площади. Можно вообразить, какие проблемы с космической погодой имеют гипотетические обитатели соответствующих планетных систем, и еще раз порадоваться, рядом с какой относительно спокойной звездой нам посчастливилось жить.

Источник: nplus1.ru

Наблюдения Солнца, проводившиеся в XVII веке, ставят в тупик современных исследователей

Вы сочинили и напечатали в своем умном соченении, как сказал мне Герасимов, что будто бы на самом величайшем светиле, на солнце, есть черные пятнушки. Этого не может быть, потому что этого не может быть никогда. Как Вы могли видеть на солнце пятны, если на солнце нельзя глядеть простыми человеческими глазами, и для чего на нем пятны, если и без них можно обойтиться? Из какого мокрого тела сделаны эти самые пятны, если они не сгорают? Может быть, по-вашему и рыбы живут на солнце? Извените меня дурмана ядовитого, что так глупо съострил!
А.П.Чехов, Письмо к ученому соседу

Всем знакомо выражение, приписываемое Галилею, что и на Солнце есть пятна. Если иносказательно оно обычно трактуется в том смысле, что у каждого есть недостатки, то для науки наличие пятен на Солнце — бесценный кладезь информации.

Солнечные пятна на солнце Существование пятен на Солнце было известно задолго до Галилея: так, пятна упоминаются в трудах Теофраста Афинского (IV в. до н.э.), а самый древний из известных рисунков солнечных пятен был выполнен 8 декабря 1128 г. Джоном Ворчестерским (опубликован в The Chronicle of John of Worcester — см. рис. 1). Известны были пятна и на Руси: так, в Никоновской летописи за 1365 и 1371 гг. упомянуто «… знамение в солнци, места черныя, аки гвозди …» Однако доктрина о совершенстве Солнца, провозглашенная Аристотелем, доминировала как в западном христианском, так и в мусульманском мире вплоть до XVII в. Например, Кеплер, используя камеру-обскуру, заметил пятно на Солнце в мае 1607 г., но ошибочно приписал его прохождению Меркурия через солнечный диск. Только позднее, после открытия солнечных пятен Галилеем, Кеплер понял, что в 1607 г. зафиксировал пятно. Существуют также записи официальных восточных (в основном китайских династий) хроник о пятнах на Солнце, но они столь туманны, что не поддаются однозначной интерпретации. Таким образом, к моменту, когда Галилей направил свой телескоп на Солнце, сам факт существования пятен был малоизвестен обществу, даже его наиболее образованной части.

В начале XVII в. Галилей изобрел телескоп, усовершенствовав подзорную трубу, и это открыло новую эру в науке. Одним из первых объектов для изучения, разумеется, стало Солнце. Очень быстро наличие динамически меняющихся солнечных пятен стало очевидным, и начались регулярные научные наблюдения Солнца. В течение XVII в. Солнце наблюдалось с удивительной научной тщательностью. Так, например, во второй половине XVII в., для 95% дней существуют записи профессиональных астрономов, таких, как Галилей, Гевелиус, Кассенди, об их наблюдениях Солнца, и зарисовки солнечных пятен. Качество этих данных вполне сопоставимо с ранними фотографическими наблюдениями конца XIX в. Заметим, что позднее качество солнечных наблюдений упало и восстановилось лишь с середины XIX в., когда Рудольф Вольф в Цюрихе организовал патрульную службу наблюдений Солнца, которая в модифицированном виде существует до сих пор. В настоящее время патрульные наблюдения Солнца и вычисления числа солнечных пятен осуществляются Бельгийской Королевской обсерваторией под Брюсселем. Таким образом, сегодня мы располагаем более-менее однородным рядом, отражающим изменения солнечной активности за последние четыре столетия (с 1610 г.). Этот ряд состоит фактически из двух частей: прямые ежеденевные наблюдения Солнца, проводимые регулярно с 1850 г. в Швейцарии (часто называемые Цюрихским рядом), и компиляция данных из разрозненных источников до 1850 г. Первая такая компиляция была выполнена Р.Вольфом в 1860-х годах и известна как ряд чисел Вольфа RW, который формально представляет данные с 1749 г. Число Вольфа определяется как удесятеренное число групп пятен (солнечные пятна часто объединены в группы) плюс общее число пятен. При этом одно единственное пятно соответствует минимальному ненулевому числу Вольфа 11. Для учета разного качества инструментов каждому наблюдателю присваивался индивидуальный корректирующий коэффициент. Числа Вольфа считались за каждый день, при наличии наблюдательных данных. При наличии нескольких наблюдений в день число Вольфа считалось, используя данные только одного наблюдателя, согласно разработанной Вольфом иерархии. Все остальные наблюдения за этот день отбрасывались. При отсутствии наблюдений ряд Вольфа заполнялся интерполяцией. С 1849 по 1981 год числа Вольфа считались только по данным наблюдений в Цюрихской обсерватории. В силу используемой методики не представляется возможным оценить погрешности чисел Вольфа. Этот ряд чисел солнечных пятен, который считался одним из самых длинных непрерывных рядов прямых научных наблюдений, сыграл грандиозную роль в науке, будучи базой для множества работ по солнечному и звездному динамо, солнечно-земным связям и пробным рядом для различных методов анализа временных рядов.

Существенный шаг в усовершенствовании ряда солнечных пятен был сделан в 1998 г., когда американские солнечные физики Дуглас Хойт и Кен Шаттен опубликовали ряд групп солнечных пятен RG с 1610 г. Новый ряд нормирован на ряд Вольфа, но имеет несколько важных усовершенствований. Во-первых, он основан на гораздо более обширной архивной базе: Хойт и Шаттен проанализировали 445242 записи наблюдений 463 наблюдателей, что почти в два раза больше, чем было в распоряжении Вольфа. Это позволяет отодвинуть границу начала надежных данных о солнечной активности с 1750 на 1610 год. Такое расширение интервала исключительно важно, ибо включает в себя минимум Маундера (1645-1700), когда Солнце было аномально спокойно. Во-вторых, новый ряд учитывает только число групп пятен, видимых на Солнце, и не включает отдельные пятна, что уменьшает рассогласование между отдельными наблюдателями и зависимость результатов от используемых инструментов (группы пятен определяются более надежно). Кроме того, в отличие от числа Вольфа число групп пятен RG представляет собой взвешенное среднее по всем существующим данным за день, т.е. использует всю доступную информацию. Такой подход позволяет оценить систематические погрешности полученных чисел пятен, которые составляют несколько процентов до 1849 г. и менее процента — после 1850-го. Как показали результаты нескольких независимых тестов, новый ряд RG практически идентичен ряду Вольфа с середины XIX в., зато гораздо более однороден и надежен в предшествующие века. Таким образом, ряд числа групп солнечных пятен (доступный на ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/GROUP_SUNSPOT_NUMBERS/ ) фактически заменил собой ряд Вольфа до 1849 г.

Так что же представляют собой солнечные пятна, и какое нам дело до этих мелких конопушек на Солнце, которое Аристотель считал совершенным? Почему бы нам просто не «отфотошопить» солнечные изображения по примеру фотомоделей в глянцевых журналах?

Солнечное пятно — это темная область на поверхности Солнца. Темнота пятна относительна: если бы пятно подобной яркости появилось на Луне, оно показалось бы нам ослепительно-ярким. Солнечные пятна появляются в местах выхода на поверхность так называемых силовых трубок магнитного поля, которые, согласно современным представлениям, «всплывают» из глубоких слоев конвективной оболочки Солнца. Поскольку магнитное поле внутри такой «трубки» сильнее, чем в среднем на поверхности Солнца, вещество там холоднее (около 4000 К по сравнению со средней температурой в 6000 К). Поэтому они и кажутся темнее. Если, однако, мы сравним общую светимость Солнца в спокойный период (мало пятен) и в активный период (много пятен), то обнаружим, что активное Солнце немного ярче, несмотря на большее количество пятен и их суммарную площадь. Этот кажущийся парадокс объясняется тем, что вокруг темного пятна существуют также яркие образования, факелы и флоккулы, питающиеся энергией силовой трубки при ее взаимодействии с окружающей плазмой и магнитными полями. В силу меньших размеров и быстрых динамических изменений они менее заметны по сравнению с пятнами, хотя в конечном итоге яркие образования преобладают над потемнением Солнца за счет пятен; их роль прояснилась только недавно, с помощью современных спутниковых наблюдений.

Солнечные пятна на солнце Пятна имеют довольно сложную структуру (см. рис. 2). Основные части пятна включают тень (или умбру) и полутень (пенумбру). Тень выглядит довольно однородной, хотя иногда через нее бывают перекинуты яркие «мостики». Полутень же, которая является результатом взаимодействия холодной и намагниченной плазмы пятна и горячей окружающей плазмы, очень динамична, в ней постоянно видны движения вещества. Пятна редко появляются по отдельности, обычно возникает группа пятен, объединенная в единую биполярную структуру или активную область. Отдельное пятно может существовать несколько недель, а активная область — несколько месяцев.

Обычно, говоря о магнитном поле Солнца, мы имеем в виду его полоидальный компонент (в первом приближении — магнитный диполь). Аналогичное полоидальное магнитное поле существует и у Земли, и оно всем знакомо (например, по стрелке компаса). Однако при работе «динамо-машины», которая собственно и воспроизводит постоянно магнитное поле и на Солнце, и на Земле, существует еще и тороидальный компонент магнитного поля. Тороидальное поле обычно запрятано глубоко внутри конвективной зоны и не может быть измерено напрямую in situ. Например, мы не можем измерить тороидальное поле у Земли, ибо оно никогда не выходит на поверхность. На Солнце же при определенных условиях магнитная трубка тороидального поля может «всплыть» и проявится на поверхности в виде пятна. Таким образом, солнечные пятна позволяют косвенно оценить тороидальный компонент солнечного магнитного поля и, соответственно, работу всей солнечной динамо-машины. Благодаря этому мы имеем больше информации о работе динамо-машины на Солнце, чем на Земле, как это ни парадоксально.

Благодаря наблюдениям многих поколений астрономов мы можем оценить работу солнечного динамо в течение последних четырех веков. Все знают, что 11-летняя цикличность доминирует в изменениях солнечной активности. Однако не все так просто. Во-первых, длительность 11-летнего цикла (называемого также циклом Швабе) не постоянна, а варьируется от 9 до 14 лет. Во-вторых, что более важно, уровень активности (или среднее число солнечных пятен) сильно меняется со временем в течение последних четырех столетий. Так, пятна на Солнце практически полностью отсутствовали во второй половине XVII в., что теперь известно как гранд-минимум Маундера. Однако только в 1970-х годах, во многом благодаря усилиям американского астронома Джека Эдди, научное сообщество осознало и признало факт существования таких гранд-минимумов. До этого идея существования длительных периодов спокойного Солнца отвергалась научным сообществом. С другой стороны, Солнце было аномально активным во второй половине XX в. Заметим, что современные модели солнечного (и звездного) динамо не могут адекватно объяснить столь сильную нерегулярную переменчивость. Интересно, что если бы наблюдения солнечной активности существовали бы, например, только с 1950 г., мы бы и не подозревали о таком феномене и искренно полагали бы, что солнечная активность блестяще описывается существующей динамо-теорией в виде регулярного 11-летнего цикла. Таким образом, наличие длительного ряда наблюдений позволяет нам существенно улучшить качество знания о Солнце. Заметим, что подобная проблема существует во многих смежных областях: например, солнечно-земные связи, магнитосферные и гелиосферные явления активно исследуются, в основном в течение последних десятилетий аномально активного Солнца. При этом остается не ясным, что же происходит, когда Солнце менее активно. Типичным примеров являются неопределенности в оценках долговременных изменений солнечной светимости и их роли в земном климате.

Можем ли мы хотя бы приблизительно оценить, как солнечная активность менялась в еще более далеком прошлом? Оказывается, можем! И здесь на помощь приходят не тщательность и аккуратность предыдущих поколений ученых, а изощренные методы современной науки. На более длительной временной шкале солнечная активность может быть восстановлена с помощью метода космогенных изотопов. Космогенные изотопы — это радиоактивные изотопы, единственным естественным источником которых на Земле являются ядерные реакции, инициированные в атмосфере Земли космическими лучами. После перераспределения в земной системе эти изотопы могут оказаться захваченными в природных архивах, где и сохраняются до нашего времени. Особенно важна возможность независимой датировки таких архивов. В наши дни содержание изотопов в таких датированных архивах измеряется с помощью современных методов, таких, как ускорительная масс-спектрометрия, что позволяет оценить уровень космических лучей в прошлом. Поскольку интенсивность космических лучей на Земле модулируется солнечной активностью, в конечном итоге это дает возможность восстановить уровень солнечной активности в прошлом. Наиболее подходящими изотопами являются радиоуглерод 14С (сохраняется в кольцах деревьев) и 10Ве (в ледниках). С помощью физических моделей генерации и переноса космогенных изотопов в атмосфере мы в состоянии извлечь из измерений космогенных изотопов вариации солнечной активности за последние несколько тысяч лет. Разумеется, качество восстановления падает по мере удаления в прошлое, но сильная переменчивость солнечной магнитной активности не вызывает сомнений. Так, за последние 10 тыс. лет довольно четко выделяются более 20 гранд-минимумов активности, подобных минимуму Маундера. Современный высокий уровень активности также не уникальное, хотя и редкое явление: в предыдущий раз Солнце было столь же активным несколько тысячелетий назад.

Хотя мы и можем заглянуть в прошлое солнечной активности, мы пока не в состоянии предсказать ее поведение даже на ближайший солнечный цикл, что связано с существенным вкладом стохастических процессов в солнечное динамо. Заметим, что данные о солнечной активности «кормят» не только солнечных, но и звездных астрофизиков. Наличие пятен и циклически изменяющаяся магнитная активность подтверждены для многих звезд, в частности для молодых активных звезд солнечного типа. Это -важная солнечная парадигма для звездной астрофизики. Так, например, предполагается, что некоторые молодые звезды солнечного типа, находящиеся в необычно спокойном состоянии, просто находятся в гранд-минимуме активности.

Солнечная магнитная активность не только является объектом академических исследований, но и влияет на нашу повседневную жизнь, особенно в эпоху бурного технического прогресса. Быстрые потоки солнечного ветра, возмущения межпланетного магнитного поля, ударные волны в околоземном пространстве, потоки заряженных частиц, бомбардирующих Землю, усиление ультрафиолетового и рентгеновского излучения — вот далеко не полный список внешних «раздражителей», сопутствующих интенсификации солнечной магнитной активности.

От большей части этих «раздражителей» нас хорошо защищают магнитосфера и атмосфера. Однако кое-что остается, и это кое-что приводит к нарушению радиосвязи, ошибкам в системах навигации, выходу из строя спутников, повышенной коррозии трубопроводов, наведенным токам в линиях электропередач, повышенной радиационной опасности для космонавтов и даже пассажиров и экипажей транс-полярных авиарейсов. Изучение таких последствий солнечной активности составляет молодую отрасль науки о космической погоде.

Кроме того, активно обсуждается вопрос о возможном влиянии солнечной активности на земной климат и даже на развитие общества. Так, например, советский ученый Чижевский в книге «Земное эхо солнечных бурь» предположил, что социальные возмущения (войны, революции) происходят преимущественно на пике солнечной активности. Популярность этой идеи в начале XX в. Подтверждается цитатой из «Похождений бравого солдата Швейка» Ярослава Гашека: «Пятна на солнце действительно имеют большое значение, — вмешался Швейк. — Однажды появилось на солнце пятно, и в тот же самый день меня избили в трактире, «У Банзетов», в Пуслях. С той поры перед тем, как куда-нибудь пойти, я смотрю в газету, не появилось ли опять какое-нибудь пятно». Хотя прямых доказательств таких влияний и адекватной численной модели, описывающей их, пока так не найдено, появляется все больше косвенных данных о том, что солнечная активность может влиять на климат и социум.

Несмотря на столь обильную информацию и несомненный прогресс в моделировании процессов солнечной магнитной активности, до полного понимания всех процессов еще далеко. И работа по изучению солнечной активности не прекращается.

Илья Усоскин,
профессор Университета Оулу

Источник: trv-science.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.