Самая низкая температура на солнце наблюдается


Если бы мне пришлось выбирать одно слово, чтобы описать будущее максимально правдоподобно, то это слово было бы «странное». Позвольте мне объяснить.

Такие писатели, как Рэй Курцвейл, проделали хорошую работу, объясняя, почему нам так трудно представить себе будущее, в котором мы направляемся. Он утверждает, наша древняя эвристика линейна — отследить антилопу, пересекающую саванну; оценить, сколько времени будут храниться продукты — но из-за закона Мура, мы входим в фазу экспоненциальных изменений, к которым наша эвристика просто не готова.

Другими словами, мы смотрим на скорость изменений в недавнем прошлом и экстраполируем на ближайшее будущее. Но теперь, когда мы переходим к экспоненциальному росту, этот вид экстраполяции не работает.

Этот аргумент довольно убедителен, но, что более интересно, это не скорость изменений, а непредсказуемость их направлений. Истории, которые я читал, привели меня к мысли, что мы едва знали о небольших последствиях некоторых из технологий, которые разрабатываем, но эти последствия оказались весьма странными.


Возьмем, к примеру, знакомства. На что будут похожи знакомства в мире с высокоразвитым лечением старения? Представьте мужчину и женщину на свидании. Оба выглядят на 25 лет, но их внешний вид ничего не значит. Они должны сыграть в сложную игру, изучая друг друга и пробуя на вкус привычки и предпочтения, чтобы попытаться определить возраст другого, не раскрывая свой. Будут целые школы и институты, обучающие тому, как (и почему) нужно знакомиться с людьми, которые на десятки лет (сотни?) старше или моложе вас.

Область, в которой мы очень скоро сможем наблюдать эти странные вещи самостоятельно, называется виртуальная реальность. Забавно видеть, что большинство передовых портретистов виртуальной реальности считают, что это будет мир, похожий на обычную реальность, с человекоподобными телами в человекоподобном мире. Думаю, очень скоро мы поймем, что эта реальность «баг, а не фича».

Какую форму вы приняли бы, если бы могли принять любую форму? Будет огромное число отраслей, которые помогут вам побыть в шкуре другого человека, животного, неодушевленного объекта, иностранца. Другие отрасли будут посвящены проектированию окружающей среды, законов физики, психических состояний, личностей, воспоминаний и многих других вещей. Фильм с Робин Райт «Конгресс» (2013) отлично описывает такой мир.

Но лучшим примером того, почему будущее будет странным, является искусственный интеллект.


Сама идея, лежащая в основе технологической сингулярности, говорит о том, что есть точка в нашем будущем, за которой мы не можем видеть. Предполагается, что это точка, когда искусственный интеллект человеческого уровня получает доступ к собственному исходному коду, положив начало экспоненциальному взрыву интеллекта.

Но что именно означает этот «сверхчеловеческий интеллект»? Чего можно ожидать от компьютера, который в миллион раз, допустим, умнее всех людей, которые когда-либо жили и умирали?

Мы полагаем, что он посвятит время решению «сложных» задач — мирового голода, земного климата, расшифровке структуры мозга и так далее. Но вы же понимаете, что здесь в силу вступает наше антропоморфное линейное мышление.

Мы можем исследовать это с помощью аналогии: представьте муравья, наблюдающего за поведение человека. С точки зрения муравья, человек не тратит свое время на решение «сложных муравьиных проблем». Практически ничего, что делает человек, муравей не может ни интерпретировать, ни даже наблюдать; масштабы и сложность простейшего действия человека лежат далеко за пределами восприятия муравья. Все, что видит муравей, думаю, он мог бы описать одним словом: «странно».

Точно так же мы будем описывать действия и мышление сверхчеловеческого искусственного интеллекта. Если взрыв интеллекта действительно произойдет, очень скоро мы станем муравьями по сравнению с ним.


Кто знает, каким путем пойдет такой интеллект? Может быть, он изобретет новую логическую систему, несовместимую с человеческой неврологией? Может быть, он обнаружит, что наша система принадлежит кому-то еще и вступит в контакт с нашими старшими братьями? Может быть, он использует чистую математику, чтобы разобрать темную материю и передвинуть нашу реальность в альтернативное квантовое состояние, в котором он будет создателем, а мы искусственными? Скорее всего, он будет делать такое, что даже нашего языка не хватит, чтобы это описать.

Источник: pikabu.ru

Эрик Галимов
«Природа» №6, 2019

Время от времени в геологической истории Земли случались периоды оледенений. Иногда они носили катастрофический характер, приводя к массовым вымираниям отдельных видов. На рис. 1 показаны периоды оледенений на шкале геологического времени от 4,5 млрд лет назад до современности.

История оледенений выглядит замысловато. Первое относительно локальное Понгольское оледенение было отмечено в отложениях, возраст которых 2,7 млрд лет. До этого, в архее, климат оставался теплым. Понгольское оледенение длилось недолго. Но 2,4 млрд лет назад, в раннем протерозое, случилось грандиозное по масштабам и длительности Гуронское оледенение. Оно продолжалось почти 200 млн лет. Затем почти 1,5 млрд лет никаких следов оледенений не обнаруживается. Следующее проявилось только в конце протерозоя (730 млн лет назад). И дальше они стали происходить одно за другим.


Никакой видимой закономерности во времени наступления периодов оледенения не видно. Это осложняет понимание причин оледенений. Высказывались разные предположения: например, что они связаны с изменением орбиты и флуктуациями в наклонении земной оси [1], с миграцией континентов, интенсификацией вулканизма и магматизма и др. [2, 3]. Некоторые геологи считают, что существует общая направленность климатических изменений, обусловленная остыванием Земли [4, 5]. Высказывалась гипотеза, что охлаждение в неопротерозое обусловлено продукцией органического аэрозоля, производимого эукариотными водорослями, которые получили развитие именно в то время [6]. Каждое из этих событий могло иметь значение. Но, к сожалению, процессы, выдвигавшиеся в качестве причин оледенений, проявляясь в одно время, никак не проявляли себя в другое. А длительная, почти в 1,5 млрд лет, пауза между мощным Гуронским оледенением и каскадом оледенений в неопротерозое считается одной из плохо объяснимых загадок палеоклиматологии.

Недавно я опубликовал статью, в которой высказал идею, что в условиях низкой светимости Солнца оледенения могут быть связаны с конфликтом между ролью СО2 в качестве парникового газа и его ролью в качестве источника углерода биосферы [7].

Низкая светимость Солнца


Понятие низкой светимости обычно относят к молодому, только что возникшему 4,5 млрд лет назад, Солнцу. Этот эффект (faint young sun) обычно обсуждают астрофизики в контексте эволюции светимости звезд. Солнце в начале своей звездной эволюции имело светимость на 30% меньше его современной величины. Но дело в том, что, несмотря на огромный (1367 Вт/м2) поток энергии, идущий от Солнца (тепловой поток из недр Земли составляет всего 0,08 Вт/м2) [8], солнечная радиация на том расстоянии от Солнца, на котором находится Земля, никогда не обеспечивала температуру на ее поверхности выше точки замерзания воды. Средняя глобальная температура Земли сегодня 15°С, в то время как в отсутствие атмосферы температура на поверхности Земли была бы −18°С (255 К). Раннее, только что возникшее Солнце обеспечивало температуру на поверхности не более −40°С (234 К). Но в архейское время существовал теплый океан. Более того, хотя мы не имеем сохранившихся геологических пород старше 3,8 млрд лет, найдены отдельные зерна циркона возрастом 4,2–4,4 млрд лет [9]. Изотопный анализ входящего в их состав кислорода показал, что и тогда уже на Земле существовала жидкая вода.


Температура выше точки замерзания воды и приемлемый для жизни климат обусловлен содержанием в составе атмосферы Земли парниковых газов, к числу которых относятся CO2, CH4 и некоторые другие. В отсутствие атмосферы и парниковых газов нормальное состояние Земли — замерзший шар.

История оледенений — это не история событий, вызывающих охлаждение, а история событий, влияющих на судьбу парниковых газов, которые защищают Землю от космического холода.

Преобладающий парниковый газ в первичной атмосфере — метан

Первые работы, рассматривавшие на количественном уровне палеоклиматическую роль парниковых газов, появились в 1970-е годы. Т. Оуэн с соавторами рассчитали, что при давлении СО2 свыше 0,3 бар дефицит светимости раннего Солнца будет компенсирован и средняя температура на поверхности Земли приблизится к современной [10]. Более поздние работы подтвердили эти расчеты [11].

Правда, американский ученый Дж. Кастинг указал на то, что в первых расчетах не учитывалась конденсации СО2 при низких температурах [12]. В условиях Марса, например, СО2 не может компенсировать дефицит солнечной светимости, хотя следы присутствия жидкой воды на Марсе установлены. Такую роль мог бы выполнять метан, который не конденсируется. Но в то время считалось, что метан быстро разрушается при фотолизе, и потому не может длительно существовать в планетной атмосфере [13]. В научной литературе укрепилось представление об углекислой, нейтральной первичной атмосфере Земли.


Поворот произошел с момента публикации статьи К. Сагана и К. Чайбы, показавших, что при фотолизе метана и аммиака в атмосфере возникает аэрозоль органических соединений, поглощающих солнечную радиацию на частотах распада метана и таким образом защищающих его от дальнейшего фотолиза [14]. Поэтому возможно длительное пребывание метана в атмосфере.

Вскоре в журнале Icarus я опубликовал статью, в которой, опираясь на изотопные данные, показал, что преобладающим компонентом углеродной системы СО2—СН4 на Марсе 4,5 млрд лет назад действительно был метан [15]. На Земле нет образцов с возрастом 4,5 млрд лет, но есть образец с Марса такого возраста. Это SNC-метеорит (АLH840011) — осколок марсианской породы, выбитый с поверхности раннего Марса при столкновении с астероидом. Карбонатные включения в нем имеют необычный изотопный состав углерода: δ13С варьирует от 38 до 42‰ [16, 17]. Таким изотопным составом карбонат может обладать, только когда не менее 90% в системе СО2—СН4 занимает метан. Если метан доминировал в первичной атмосфере Марса, то он мог играть роль преобладающего соединения углерода и в атмосфере Земли.


Здесь нужно упомянуть еще одну сторону проблемы состава первичной атмосферы. Аргументом против восстановленного, метанового, характера атмосферы ранней Земли, помимо фотолитической неустойчивости метана, служил тот факт, что земная мантия окислена. Окисленное состояние земной мантии не поддерживает присутствия метана в продуктах ее дегазации, причем это состояние существует по крайней мере с времени 4,0–3,9 млрд лет назад [18, 19]. Из недр Земли мог поступать только СО2. Однако, как было показано, в частности, в наших работах [20, 21], первичное состояние Земли вполне могло быть восстановленным, т.е. находящимся в равновесии с метаном. Окисленным же оно стало благодаря процессу наращивания ядра в первые сотни миллионов лет жизни планеты. Таким образом одновременно объяснялась избыточность теплового потока Земли, что тоже было серьезной геохимической проблемой. Предлагались и другие механизмы эволюции мантии от восстановленного состояния к окисленному. Но важно, что в целом возник консенсус в отношении первично восстановленной мантии, а отсюда — и метансодержащей первичной атмосферы Земли.


Мой интерес к составу первичной атмосферы в то время был связан с работой над проблемой происхождения жизни. Свои представления я изложил в книге «Феномен жизни. Между равновесием и нелинейностью» [22]. Одним из положений предложенной гипотезы было представление об АТФ (аденозинтрифосфате) как о наиболее предпочтительной молекулярной форме, которая находится у самого истока возникновения жизни. Но абиогенный синтез аденозинтрифосфата предполагает глубоко восстановительные условия, допускающие присутствие НСN (брутто-формула аденина Н5С5N5 — объединение пяти молекул цианистого водорода), а цианистый водород образуется в среде, где доминирующая форма углерода — СН4 [23].

В связи с этим упомяну еще одну работу, которую мы выполнили недавно вместе с Б. Н. Рыженко и Ю. В. Наточиным [24]. В воде океана, как известно, натрий преобладает над калием. Доминирование натрия сохранялось в течение всей регистрируемой геологической истории [25]. Однако синтез пептидов в живой клетке осуществляется в условиях преобладания калия над натрием. Эволюция выработала осмотический насос в клеточной мембране, обеспечивающий преобладание калия над натрием во внутриклеточной жидкости современных организмов. Но как осуществлялся первоначальный синтез пептидов на самой ранней молекулярной стадии организации жизни — до возникновения сложной клеточной стенки? Термодинамический анализ показал, что соотношение K/Na > 1 достигается при преобладании в среде метана (рис. 2). Это еще одно свидетельство возникновения жизни в восстановительной среде [26].


Надо сказать, что до начала 70-х годов господствовала точка зрения о первичной метановой атмосфере Земли. Так, первичную атмосферу рассматривал как метановую Г. Юри. Он исходил из результатов своих экспериментов по абиогенному синтезу аминокислот. В 1959 г. вместе с С. Миллером он опубликовал получившую большую популярность работу об абиогенном синтезе аминокислот из смеси метана и аммиака [27]. Но, как я уже говорил, вскоре была показана фотолитическая неустойчивость и метана, и аммиака. К тому же установили, что аминокислоты можно получить и в присутствии СО2. Сделав круг, наука вернулась к представлению о преобладании метана в первичной атмосфере, т.е. к тому ее типу, который предполагал Юри.

Сегодня в качестве одного из базовых представлений при рассмотрении проблемы зарождения биосферы можно принять восстановленный метансодержащий состав первичной атмосферы Земли.

В архее снова метан

К началу архея (4,0 млрд лет назад) мантия становится достаточно окисленной. Метан уже не может быть устойчивым в равновесии с ней. Основной формой углерода, поступающей из мантии, становится СО2. В архее (от 4,0 млрд до 2,5 млрд лет назад) океан теплый. Казалось бы, теперь роль основного парникового газа должен играть СО2.

Но здесь возникает новый интересный поворот. Специалисты по почвам обратили внимание на то, что высокое содержание СО2 в архейской атмосфере неизбежно привело бы к присутствию железа в почвах в форме сидеритов, а этого нет [28]. Допустимый порог 0,003 бар меньше, чем давление, необходимое, чтобы компенсировать низкую светимость Солнца и предотвратить оледенения в архее.

Тогда Кастинг, которого я уже упоминал, с сотрудниками высказывают смелую мысль, что и в архее роль парникового газа мог играть метан, но уже не первичный, а биогенный [29, 30]. Атмосфера в то время была бескислородной. Расчет показывает, что содержание метана в атмосфере могло быть на уровне 10−3 бар, что в дополнение к СО2 должно обеспечить условие компенсации низкой светимости Солнца.

Если жизнь возникла в восстановительной среде, то логично ожидать присутствие метаногенов среди наиболее ранних организмов. Это следует из их молекулярной филогении [31]. Дополнительным указанием на возможное присутствие метана в архейской атмосфере служат изотопные данные. В породах возрастом 2,7 млрд лет описываются пласты аномально изотопно-легкого органического углерода δ13С ≈ −38 — −45‰ [32]. Источником его, вероятнее всего, был СО2, образованный путем окисления метана.

Таким образом, есть основания заключить, что метан, но теперь уже биогенный, и в архее продолжает играть роль активного парникового газа.

Условно (не в количественных характеристиках) это показано на рис. 3, пользуясь которым мы и дальше будем комментировать взаимоотношения биосферы и парниковых газов.

Появление кислорода в океане

Факт присутствия легкого по изотопному составу органического углерода в отложениях возрастом 2,7 млрд лет служит свидетельством одновременно и наличия изотопно-легкого метана, и появления в среде окислителя, т.е. кислорода. Возраст 2,7 млрд лет — тот рубеж, когда отмечены первые признаки присутствия молекулярного кислорода в океане. В океане, но не в атмосфере.

Архейский океан заселялся простейшими организмами — прокариотами. Первый материально зримый феномен жизни представляют строматолиты — стратифицированные биосферные карбонатные постройки, которые образованы сообществами микроорганизмов. В их числе фотосинтезирующие синезеленые водоросли. Производимый ими кислород потреблялся в аэробно-анаэробном цикле в пределах строматолитового мата. Но аппарат фотосинтеза позволял автотрофам вести независимый образ жизни и распространяться на новые пространства, за пределы строматолитовых сообществ. Появление в позднем архее фотосинтезирующих эукариот интенсифицировало производство молекулярного кислорода. В результате приблизительно 2,7 млрд лет назад в океане появился свободный кислород.

Но кислород не мог сразу выйти в атмосферу. В предшествующие геологические эпохи, которые характеризовались восстановленным режимом, сформировался восстановленный минеральный буфер (рис. 4).

В океанской воде в огромных количествах накопился продукт выветривания магматических пород — закисное железо FeO. В этой форме железо хорошо растворимо, и оно образовало значительную часть солевого состава океана. Появившийся в воде свободный кислород потреблялся на окисление растворимой формы железа и его осаждение в нерастворимой форме Fe2O3. Этот отрезок геологической истории отмечен накоплением огромных масс железных руд в виде железополосчатых формаций джеспилитов. В период 2,6–2,1 млрд лет назад сформировалось до 90% известных запасов железных руд в докембрии, включая гигантские месторождения Хамерсли в Австралии, Лабрадора и оз. Верхнего в Северной Америке, Криворожской серии и Курской магнитной аномалии в Восточной Европе [33]. Этот буфер удерживал производимый в ходе фотосинтеза кислород в воде, сохраняя восстановленное состояние атмосферы.

Тем не менее появление кислорода не могло не сказаться на судьбе метана. Приблизительно 2,7 млрд лет назад возник первый сбой в установившемся тепловом балансе, который обеспечивался присутствием метана в атмосфере. В то время фиксируются первые следы оледенения в архее. Это относительно кратковременное и локальное Понгольское оледенение.

Нарастание окислительного потенциала в океане привело к увеличению содержания в нем окисленных форм серы и азота: ионов

SO 4 2−

и 

NO 3

. Как следствие, распространились организмы, использующие в своей жизнедеятельности процессы восстановления данных окисленных форм, — сульфатредуцирующие бактерии и денитрификаторы. На рис. 4 показано, что 2,7–2,6 млрд лет назад в породах возрастает диапазон вариаций изотопного состава серы (δ34S) — показателя изотопного фракционирования серы в процессе бактериальной сульфатредукции.

Выход кислорода в атмосферу. Гуронское оледенение

По мере исчерпания FeO-буфера кислород начинает поступать в атмосферу. Возникновение кислородной атмосферы в изотопной летописи отмечено исчезновением на рубеже 2,4 млрд лет назад так называемого немасс-зависимого изотопного эффекта серы Δ32–34S [34]. Иллюстрирующая это диаграмма приведена на рис. 4. Такой тип изотопного эффекта в геохимии серы проявляется лишь в среде, лишенной кислорода. Наличие его в породах старше 2,4 млрд лет и практическое отсутствие в более молодых отмечает рубеж становления кислородной атмосферы на Земле.

Появление молекулярного кислорода в атмосфере привело к выведению из атмосферы метана. В результате 2,4 млрд лет назад метан перестал играть роль основного парникового газа, которую он выполнял в течение почти 2 млрд лет. Удаление из атмосферы метана, удерживавшего на Земле благоприятный для жизни климат, привело к резкому охлаждению. Наступило глобальное Гуронское оледенение, продолжавшееся почти 200 млн лет. Жизнь замерла.

Тем временем концентрация СО2 в атмосфере нарастала за счет СО2, поступавшего из недр. Происходило также окисление ранее накопленных масс органического углерода. Кроме того, в условиях оледенения потребление углекислоты в процессах биосинтеза и осадконакопления было минимальным.

Таким образом, содержание СО2 в атмосфере достигло уровня 0,015–0,020 бар, достаточного для компенсации дефицита солнечной радиации в тот период (см. рис. 3). Гуронское оледенение завершилось. После этого в течение 1,5 млрд лет никаких следов оледенений в геологической истории протерозоя не отмечалось.

Пауза в 1,5 млрд лет в истории оледенений и их каскад в конце протерозоя

Каковы же причины столь длительной паузы и затем возвращения к оледенениям в позднем протерозое? На мой взгляд, это следствие установившегося конфликта между ролью СО2 в качестве основного парникового газа и его ролью в качестве источника углерода биосферы.

Всмотримся подробнее в те процессы, которые сопровождают цикл углерода (рис. 5). Основной сток углекислоты из атмосферы происходит в процессе выветривания. Бикарбонат и катионы выносятся в океан, где происходит осаждение карбоната и биосинтез. Осуществление биосинтеза требует обязательного участия элементов-нутриентов, важнейший из которых фосфор. Именно доступность фосфора ограничивает размеры биопродукции. Большая его часть возвращается в зону биосинтеза при деструкции осаждаемого органического вещества. Обычно безвозвратно захоранивается менее 1% биогенного материала. Сток углерода и нутриентов возмещается их притоком в процессе выветривания.

В нормальном цикле углерода стоки и потоки уравновешены. Однако, если, например, вследствие усиления вулканизма и выветривания увеличивается поступление нутриентов, биопродукция начинает несбалансированно возрастать. Цикл кислорода не успевает обеспечивать деструкцию материала, поступающего в осадок, и в осадочном бассейне устанавливается аноксигенная обстановка. Возрастает масса захораниваемого углерода, и в конечном счете усиливается сток СО2 из атмосферы.

Если величина стока СО2 из атмосферы уменьшит его содержание в атмосфере настолько, что оно не сможет компенсировать дефицит светимости Солнца, то это приведет к оледенению. Значительность стока зависит от соотношения резервуаров углерода в атмосфере и биосфере.

После завершения Гуронского оледенения активность биоты в условиях благоприятного климата стала нарастать. Через 1,5 млрд лет резервуар мобильного углерода биосферы стал соизмерим с массой углерода, содержащегося в атмосфере (см. рис. 3). Теперь колебания интенсивности процессов, происходящих в биосфере, способны были существенно влиять на содержание СО2 в атмосфере. Усиление вулканизма в неопротерозое на рубеже 730 млн лет назад стало спусковым механизмом к охлаждению климата и наступлению Стертского оледенения.

С этого момента устанавливается колеблющееся равновесие между интенсивностью развития биоты и содержанием СО2 в атмосфере. В свою очередь, оледенение приводит к ослаблению биосинтеза и осадконакопления, что ведет к восстановлению доледниковых условий в цикле углерода.

В результате следует череда оледенений: Стертское, Марино, Гаскье. Они и большинство последующих отчетливо коррелируют с эпохами активизации вулканизма. Эта линия продолжается в фанерозое. В ордовике (445–443 млн лет назад) возникает оледенение, сопоставимое по масштабам с неопротерозойскими. Затем оледенение отмечается в позднем девоне.

Еще один важный и полезный для анализа процесс связан с фракционированием изотопов углерода. Дело в том, что биосинтез сопровождается концентрированием в живых организмах легкого изотопа углерода С12. При интенсивном биосинтезе среда, в которой он происходит, обедняется легким изотопом углерода, и карбонат, осаждающийся из этой среды, должен быть изотопно-тяжелым, т.е. характеризоваться более высокими значениями δ13С.

Следовательно, если периоды оледенений связаны с усиленным стоком углерода, им должны предшествовать периоды отложения карбонатов, обогащенных тяжелым изотопом углерода. Действительно, некоторые авторы отмечали связь оледенений с вулканизмом и отложением изотопно-тяжелых карбонатов. На рис. 6 приведен такой пример. Как видно из диаграммы, взятой из работы Дж. П. Хальверсона с соавторами, периодам оледенений в неопротерозое предшествуют периоды отложения карбонатов, аномально обогащенных тяжелым изотопом [35]. Нормальный изотопный состав карбонатов следует приблизительно нулевой линии. Значения δ13С, выходящие за пределы 4, указывают на аномально высокий сток. Однако подобные экскурсы изотопного состава карбонатов наблюдались и раньше (см. рис. 4). Но они не были связаны с оледенениями. Это как раз служит подтверждением нашего понимания причин их появления. Резервуар углерода, связанный с биотой, после Гуронского оледенения был меньше резервуара углерода СО2. Периоды усиления активности биопродукции отражались на изотопном составе углерода в зоне биосинтеза. Но при том объеме биоты, который был в раннем протерозое, усиление стока под действием разных факторов (например, вулканизма) не приводило к такому глобальному оттоку атмосферного СО2, который бы основательно сказывался на тепловом режиме. Отсюда длительная стабильность климата. Только в конце протерозоя, к рубежу 0,8 млрд лет назад, объем биоты в океане достиг величины, при которой колебания биопродукции (если они были значительными) стали сопоставимы с ресурсом СО2 в атмосфере.

Новый режим, связанный с экспансией биоты на сушу

Установившаяся линия колебательного равновесия продолжается в палеозое. Но в девоне — карбоне открывается новая страница в истории биосферы. Происходит экспансия жизни на сушу. Это приводит к принципиально новому перераспределению резервуаров углерода.

Посмотрим это на примере современной биосферы. В ней содержится примерно 590 · 109т СО2. Масса биоты в современном океане составляет немногим более 4 · 109 т углерода, а годовая биопродукция — 71 · 109 т. Степень фоссилизации органического вещества в морских осадках составляет приблизительно 0,4%, а общий сток углерода — приблизительно 1,25 · 109 т/год. Если сток будет превосходить приток, то в относительно короткое геологическое время может произойти заметное изменение СО2-ресурса атмосферы. Так и было.

Но теперь на суше присутствует биота, масса которой составляет 746 · 109т. При почти замкнутом цикле она играет роль не столько потребителя СО2, сколько буфера. К тому же биомасса на суше связывает нутриенты (в том числе фосфор) и препятствует их движению в океан. Реакция биомассы океана на вулкано-тектонические события становится более консервативной. Оледенения более не возникают с той периодичностью и в том масштабе, как в неопротерозое и в начале палеозоя.

На этом фоне ярче проявляются другие факторы. На границе перми и триаса (252–250 млн лет назад) происходит небывалый по масштабам трапповый вулканизм. На границе мела и палеогена (65,4 млн лет назад) случилось массовое вымирание фауны, вызванное, как полагают, падением астероида. В позднем палеоцене (55,6 млн лет назад) возникает быстрое (за 104 лет) потепление донных вод океана — более чем на 4°С. Оно могло стать следствием внедрения в атмосферу больших масс высвободившегося газгидратного метана. Но в целом эти потрясения были лишь осложнениями на фоне основного тренда в истории биосферы. Последние 40 млн лет происходит медленное охлаждение климата. Мы должны иметь в виду, что в осадочной оболочке складируется все большее количество углерода. А внутренний углеродный ресурс Земли медленно исчерпывается. При все еще недостаточной светимости Солнца это приведет к глобальному охлаждению климата Земли в течение геологического времени.

Источник: elementy.ru

Солнце является уникальной звездой нашей Солнечной системы. В древности люди поклонялись ему, приносили щедрые дары и жертвы. Солнце является источником жизни на Земле, но температура там настолько огромна, что на нашей планете таких значений просто не существует. Так какие температурные значения на поверхности Солнца, в ядре и короне?

Каждая звезда обладает уникальными составными характеристиками и параметрами, от которых во многом зависит, возможна ли жизнь на близлежащих планетах. Жизнь на Земле – единственной населённой планете солнечной системы – без самого Солнца представить невозможно. И всё наше существование напрямую зависит в первую очередь оттого, какие процессы происходят на нём.

Самая низкая температура на солнце наблюдается
Солнце даёт необходимое тепло, свет, энергию, используя которую земные организмы могут нормально функционировать. Тем не менее, значительная перемена в параметрах этой звезды способна повлечь за собой гибель всего сущего. Даже самые древние культуры поклонялись небесному светилу, сравнивали его с всесильным божеством, дарующим жизнь. Особенно отчётливо это видно в такой древнейшей религии, как язычество, в том числе египетские мифы. Что же из себя представляет наше солнце? Раскалённый газовый шар, состав которого в процентном содержании можно обозначить следующим образом:

— 70% — водород;

— 28% — гелий;

— 2% — прочие элементы и их соединения.

Учёные, занимающиеся «солнечными» исследованиями, попробовали установить примерный возраст нашей звезды. По приблизительным подсчётам, он составляет около 5 миллиардов лет. Исследователи выдвигали теорию, по которой ещё через 4 миллиарда звезда станет светить гораздо ярче, чем сейчас.

Ещё одна интересная особенность светила состоит в том, что оно имеет свой цикл – так называем цикл Швабе. Он составляет примерно 11 лет, в течение которых меняется солнечная активность. Есть и удвоенный цикл Швабе – 22 года соответственно. Считается, что именно в течение этого периода магнитное поле Солнца восстанавливается до прежнего состояния.

Строение Солнца

Прежде чем мы перейдём к показателям в различных частях звезды, необходимо узнать, из чего, собственно, она состоит. Центр солнца образует ядро – оно в среднем занимает около четверти всего объёма светила. Ядро очень плотное само по себе – практически в 150 раз плотнее, чем вода, что и позволяет неустанно протекать термоядерным реакциям.

Следующий слой – лучистая зона, она же – зона переноса. В ней постоянно перемещаются фотоны, и несмотря на то что это движение непрерывно, следующего за лучистой зоной слоя они достигают более ста семидесяти тысяч лет. Наконец, верхняя зона – конвективная. Здесь постоянно циркулируют горячие потоки плазмы. Между конвективной и лучистой зонами расположено тонкое, но чрезвычайно мощное магнитное поле.

Самая низкая температура на солнце наблюдается
Температура Солнца

Ни для кого не секрет, что температурные значения звезды поистине колоссальные. Тем не менее, мало кто сможет назвать даже примерную цифру. А она равна 14 миллионам градусов Цельсия! Откуда же появляются такие невероятные цифры?

Обусловлено это тем, что на Солнце неустанно проходят термоядерные реакции. Они возникают в результате деления ядер водорода под действием высокого давления. Впоследствии происходит синтез более крупных ядер гелия и освобождение мощного потока энергии. Собственно, за счёт данной энергии и поддерживается высокая температура.

Самые низкие значения на поверхности, самые высокие – в ядре. Стоит учесть, что наиболее точные показатели ввиду отсутствия настолько надёжного оборудования заполучить так и не удалось, оттого все значения в той или иной мере приближены к действительности.

Начнём с температуры короны – части солнечной атмосферы. Наблюдать корону можно во время затмений. Когда Луна закрывает собой звезду, вокруг неё остаётся рыжий светящийся ореол. Как раз он и называется короной. Чтобы изучить её, даже есть специальные приборы, используемые во время затмений – коронографы. Корона может нагреваться до 1 500 000 миллиона градусов Цельсия. Необходимо учитывать, что в разных участках это значение варьируется.

Температура самых верхних слоёв поверхности достигает приблизительно 5000 градусов. Самым раскалённым, что вполне ожидаемо, является ядро. Именно в нём по примерным измерениям температурные значения преодолевают отметку в 15,5 миллионов °C. За неимением настолько мощных устройств, которые могли бы проникнуть на Солнце и измерить точную температуру ядра, учёные идут на риск и активно занимаются моделированием и экспериментами. Они пробуют воссоздать условия термоядерных реакций на звезде и фиксируют получаемые значения. Их задача – с нужной степенью достоверности прикинуть, как ведёт себя раскалённая плазма в естественных условиях.

Должно быть, увидев значения на поверхности и короне, вы задались совершенно логичным вопросом: почему же корона, находясь гораздо дальше от ядра, настолько горячее?

На самом деле, как таковой атмосферы у солнца нет. Но есть слой, который имеет ряд сходств с ней. Его принято именовать фотосферой, и в высоту он составляет около 500 километров над поверхностью светила. Здесь особенно активны конвекционные процессы, вследствие которых более горячие воздушные потоки поднимаются снизу наверх. Так самая тёплая часть и получается выше. Следует учесть, что солнце не статично. Оно тоже вращается вокруг своей оси, но совершенно не таким образом, как все планеты солнечной системы.

Объясняется это отсутствием у солнца действительно твёрдого ядра. Оно пластично и не имеет чётко обозначенной твёрдой формы. Это, в свою очередь, отражается и на траектории движения. Как показали изучения других ближайших к нам звёзд, в их движении есть ряд сходств.

Уровень радиации на поверхности запределен, отчего она и превращается в свет, который помогает нам, находящимся на безопасном расстоянии, спокойно существовать. Что касается пятен на звезде, то это области, в которых температура ниже, чем в других участках. Именно поэтому они существенно темнее – радиация превращается в свет не так интенсивно. Некоторые пятна то появляются, то исчезают. Причём, просуществовать они могут от нескольких дней до нескольких недель – относительно небольшой промежуток времени. Тем не менее, не стоит принижать их роли – всё же, некоторые пятна гораздо крупнее, чем весь диаметр Земли.

У пятен есть и полные противоположности – так называемые факелы. И если первые темнее и холоднее, то последние, напротив, ярче и горячее. Это своеобразные участки ультраяркости, где энергия реакций достигает своего пика. Как ни странно, два этих явления взаимообусловлены: там, где были пятна, образуются факелы и наоборот.

Самая низкая температура на солнце наблюдается
Ещё один своеобразный элемент фотосферы – гранулы. Они в телескопе выглядят как маленькие ячейки на рыжем шаре. Каждая из этих ячеек охватывает тысячи километров солнечной поверхности. Отдельные гранулы можно увидеть и простым взглядом. Есть и супергранулы – от обычных они отличаются выдающимися габаритами, охватывая объём до 35 000 километров.

Выше фотосферы – хромосфера. Она заметно холоднее – на тысячу градусов по сравнению с предшественницей (4320). В хромосфере сосредоточена внушительная часть водорода. Он придаёт этому слою своеобразной солнечной атмосферы красноватый оттенок. Мощность нашей звезды – 386 миллиардов МегаВатт. Для сравнения – в обычной лампочке накаливания 25 Ватт.

Температура на планетах

Теперь немного отдалимся от Солнца и перейдём к близлежащим от него планетам.

Меркурий

Самый близкий к звезде, а оттого и самый раскалённый. Анализируя теплоту на Меркурии, необходимо иметь в виду, что у него нет атмосферы, задерживающей температуру надолго. Именно поэтому он может как нагреваться до 427 °C, так и охлаждаться до -173. И всё это буквально за сутки!

Венера

Вторая по близости к небесному светилу планета, которая по размерам гораздо крупнее Меркурия. Как ни странно, но, находясь дальше от источника света, она в среднем горячее Меркурия. Обусловлено это тем, что, в отличие от последнего, у неё присутствует достаточно плотная атмосфера. Конечно, она непригодна для дыхания, ведь облака состоят сплошь из двуокиси серы и углекислого газа. Тем не менее, раскалённый воздух они удерживают надёжно. В связи с чем температура тут достигает отметки в 460°C. Эта планета – самый яркий пример парникового эффекта. Не способная к охлаждению, она мгновенно превращается в печь.

Земля

Перейдём к нашему родному дому. И здесь найдётся немало интересного. Земле тоже свойственны большие перепады температур, хотя, естественно, она сильно уступает безатмосферному Меркурию. В целом условия на нашей планете можно назвать благоприятными. Средняя температура в год составляет 7 градусов. При этом самый высокий показатель за всю историю был зафиксирован в Иране и равен семидесяти градусам! Самый низкий же, как и предполагалось, в Антарктиде – до минус девяноста °C.

Марс

Марс оказывается закономерно холоднее Земли. Это вполне объяснимо, потому что он лишён атмосферы и, к тому же, находится дальше от источника света. Ещё одна особенность связана с тем, что орбита красной планеты имеет эллиптическую форму – соответственно, в некоторых точках она ближе к солнцу, чем в других. Именно поэтому на Марсе наблюдается разница температур в разных местах вплоть до 30 градусов. В среднем, температурный минимум здесь достигает минус 140, а максимум двадцати °C.

Юпитер

Имеет больше схожего со звездой, чем может показаться на первый взгляд. Дело в том, что Юпитер – газовый гигант. Строго говоря, у него нет чётко обозначенной поверхности. Это влечёт за собой ещё ряд специфических особенностей. У него есть подобие атмосферы, и на самых верхних облаках достаточно холодно – минус 145 градусов Цельсия. Дальше — интереснее. На линии так называемой поверхности значительно теплеет – до двадцати одного градуса. Исследователи даже посмеивались, что это, если так подумать, комнатная температура.

Обусловлено это тем, что давление у воображаемой поверхности до десяти раз больше, чем в облаках. Но самым горячим, конечно же, является ядро. Оно раскалено до 24 000 °C. Если хотите сравнить, то поверхность Солнца, в общем-то, холоднее практически в пять раз.

Самая низкая температура на солнце наблюдается
Сатурн

Ещё одна специфическая планета. На самых верхних слоях атмосферы по-прежнему невыносимо холодно – 175 с˚. Но чем ближе к ядру, тем теплее. Конечно, Сатурн не такой горячий, как Юпитер, но и его центр нагрет до 11 700 с˚. Особенность планеты заключается в том, что она сама в некотором роде источает тепло. Как это возможно, особенно в таком отдалении от звезды?

В первую очередь потому, что потоки частиц с Сатурна вступают во взаимодействие с солнечным ветром, что ведёт к появлению сияний на полюсах. Эти сияния – концентрация электрических токов, которые и служат «на разогреве» планеты. По примерным подсчётам, Сатурн самостоятельно преумножает тепло светила в 2, 5 раза.

Уран

Самый холодный во всей солнечной системе. Измерения проводятся периодически, но самый низкий показатель, который удалось зарегистрировать, равнялся – 224 градусов Цельсия. И причина не только в том, что Уран расположен далеко. Помимо всего прочего, у него достаточно слабое ядро, которое не способно сильно нагревать планету, хотя соседи Урана сохраняют относительно высокую температуру в том числе и благодаря этому фактору. Его показатель — 4737°C, и это, учитывая его размеры, самое низкое значение из всех в солнечной системе.

Нептун

Нептуну с теплотой от светила тоже не слишком повезло. Расположенный дальше всех, он в атмосфере держит планку в минус двести восемнадцать °C. Тем не менее, от Урана его отличает одна очень существенная деталь. Ядро Нептуна гораздо горячее, чем у ближайшего соседа. Оно прогревается до семи тысяч градусов.

Плутон

Много споров было о том, считается ли Плутон планетой вообще. Мы будем рассматривать его отдельно от предшественников. Эта карликовая планета маленькая и холодная, что неудивительно: от солнца его отделяют практически шесть миллиардов километров. Температура варьируется, но обычно близка к – 223 °C.

Из-за такого холода атмосфера Плутона замерзает и буквально «выпадает» на его поверхность в форме льдов. Когда же в ходе движения по небосклону Плутон становится ближе к Солнцу, он опять «оттаивает», и ледники переходят в газообразное состояние.

Источник: 13news.ru

Расчеты нагретости нашей звезды

солнце излучает тепло Несмотря на то, что из недр Солнца не проникает ни один фотон, мы можем рассчитать температуру в любой точке в недрах звезды. Состав и строение Солнца более-менее известны ученым по расчетам. Расчеты показывают, что чем глубже проникать в недра, тем выше нагревается плазма.

Температура повышается с 6000 в фотосфере до 13 миллионов градусов в центре.

Нам известно, что чем выше нагревается вещество, тем быстрее движутся его частицы. Так, например, в фотосфере протоны и атомы водорода движутся со скоростью около 7 км/сек, а легкие электроны – со скоростью 300 км/сек. В короне и в раскаленном солнечном центре скорость протонов составляет около 350 км/сек, а электронов – 15 000 км/сек.

Самая низкая температура на Солнце наблюдается в области солнечных пятен. Большие пятна нагреты ниже 4000 С. Излучение 1 м2 окружающей пятно белой фотосферы с  6000 градусов примерно в 5 раз интенсивнее излучения 1 м2 самого пятна. По этой причине пятна  нам кажутся темными или даже черными.

Источник: v-nayke.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.