Первым определил видимую звездную величину солнца


Темной ясной ночью далеко за городом на небе видны тысячи звезд. Первое, что бросается в глаза, все они различаются между собой по яркости или, как говорят астрономы, по блеску. Астрономы давно научились точно определять блеск звезд и других небесных светил. Измеряется блеск в звездных величинах. Ясно, что под «величиной» имеется в виду не размер звезд! Но все же встает вопрос: что вообще такое звездная величина и как ей пользоваться?

Звездная величина — один из самых старых стандартов измерения, которыми мы пользуемся.

Впервые этот термин употребил великий астроном античности Гиппарх (130 г. до н. э.). Гиппарх решил разделить все звезды на небе по их яркости на шесть групп или «величин». Самым ярким звездам он присвоил 1-ю величину. Они стали как бы лучшими, первыми среди остальных. Чуть менее яркие звезды получили 2-ю величину. Еще менее яркие — 3-ю. Наконец, самым тусклым звездам, видимым невооруженным глазом, Гиппарх присвоил 6-ю величину.


В соответствии с этим разделением такие звезды как Вега, Альдебаран или Сириус были отнесены к звездам первой величины, а звезды ковша Большой Медведицы — к звездам второй величины. Сегодня кажется немного странным, что звезды бо́льшего блеска имеют меньшую величину. Сегодня мы бы действовали наоборот: если звезда ярче, то и ее блеск больше!.. Но в целом логика Гиппарха понятна.

Система звездных величин была очень удобна, хотя и весьма субъективна. Шкала сильно зависела от наблюдателя. Например, если одному астроному в силу его восприятия казалось, что вот эта звезда второй величины, то другому астроному — что она первой величины. Каков же блеск звезды на самом деле? Нужен было дать какое-то строгое определение для звездной величины, чтобы перейти к объективным оценкам.

Шкала звездных величин

Такое определение дал в XIX астроном Норман Погсон. Он заметил, что разница в одну звездную величину соответствует изменению светового потока примерно в 2,5 раза. То есть звезда 0m освещает наши глаза в 2,5 раза сильнее, чем звезда 1m. Получается, что звезда 1-й величины в 100 раз ярче, чем звезда 6-й.

Для кого-то этот момент может показаться странным. Субъективное ощущение подсказывает, что звезды звезды 6-й величины всего в 6-10 раз слабее, чем звезды 1-й. Руководствуясь этим ощущением, Гиппарх, собственно, и разработал шкалу звездных величин.

Но наше зрение, как и слух, устроены по-другому. Когда сила источника света изменяется в геометрической прогрессии, мы принимаем ее за прогрессию арифметическую! Нам кажется, что две звезды 6-й величины дадут нам звезду 3m, а две звезды 3m дадут звезду 1m. Но если мы в реальности приблизим две звезды одинакового блеска друг к другу (в их роли могут выступить фонарики), то это отношение работать не будет!


Погсон предложил логарифмическую шкалу величин — разница в 5 единиц по шкале звездных величин точно соответствует 100-кратному различию светового потока. То есть звезда 1-й величины ровно в 100 раз ярче звезды 6-й величины и в 100 × 100 = 10000 раз ярче звезды 11-й величины. Это правило в точности соответствует действительности.

Осталось определить стандарт, по отношению к которому можно измерять звездные величины всех других звезд. Таким стандартом долгое время считалась звезда Вега, блеск которой был взят за нуль-пункт звездных величин (0m).

На практике блеск звезд измеряются фотоэлектрическим способом при помощи фотометров. Следовательно, звездные величины неплохо бы привязать к общепринятой физической величине потока излучения. В физике освещенность измеряется в люксах. Связь между звездной величиной (m) и люксом (J) выражается формулой: m = -14 — 2,5lgJ. Так, Солнце имеет звездную величину -26,75m или 125000 люкс. Блеск полной Луны -12,74m, что соответствует 0,3 люкса.

Источник: skygazer.ru

абсолютная


Абсолютная звёздная величина (M ) определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Абсолютная болометрическая звёздная величина Солнца +4,7. Если известна видимая звёздная величина и расстояние до объекта, можно вычислить абсолютную звёздную величину по формуле:

Первым определил видимую звездную величину солнца где d 0 = 10 пк ≈ 32,616 световых лет.

Соответственно, если известны видимая и абсолютная звёздные величины, можно вычислить расстояние по формуле Первым определил видимую звездную величину солнца

Абсолютная звёздная величина связана со светимостью следующим соотношением: Первым определил видимую звездную величину солнца где и — светимость и абсолютная звёздная величина Солнца.

Звёздные величины некоторых объектов


Объект m
Солнце −26,7
Луна в полнолуние −12,7
Вспышка Иридиума (максимум) −9,5
Сверхновая 1054 года (максимум) −6,0
Венера (максимум) −4,4
Земля (глядя с Солнца) −3,84
Марс (максимум) −3,0
Юпитер (максимум) −2,8
Международная космическая станция (максимум) −2
Меркурий (максимум) −1,9
Галактика Андромеды +3,4
Проксима Центавра +11,1
Самый яркий квазар +12,6
Самые слабые звёзды, наблюдаемые невооружённым глазом От +6 до +7
Самый слабый объект, заснятый в 8-метровый наземный телескоп +27
Самый слабый объект, заснятый в космический телескоп Хаббла +30

Объект Созвездие m
Сириус Большой пёс −1,47
Канопус Киль −0,72
α Центавра Центавр −0,27
Арктур Волопас −0,04
Вега Лира 0,03
Капелла Возничий +0,08
Ригель Орион +0,12
Процион Малый пёс +0,38
Ахернар Эридан +0,46
Бетельгейзе Орион +0,50
Альтаир Орёл +0,75
Альдебаран Телец +0,85
Антарес Скорпион +1,09
Поллукс Близнецы +1,15
Фомальгаут Южная рыба +1,16
Денеб Лебедь +1,25
Регул Лев +1,35

Солнце с разных расстояний

(обозначается m — от англ. M agnitude) — безразмерная величина, характеризующая блеск небесного тела (количество света, поступающего от него) с точки зрения земного наблюдателя. Чем ярче объект, тем меньше его видимая звездная величина.

Слово «видимая» в названии означает лишь то, что звездная величина наблюдается с Земли, и используется для того, чтобы отличать ее от абсолютной звездной величины. Это название относится не только видимого света. Величина, которая воспринимается человеческим глазом (или другим приемником с такой же спектральной чувствительностью), называется визуальной.

Звездная величина обозначается маленькой буквой m в виде верхнего индекса до числового значения. Например, 2 m означает вторую звездную величину.

История

Понятие звездной величины ввел древнегреческий астроном Гиппарх во II веке до нашей эры. Он распределил все доступные невооруженному глазу звезды на шесть величин: яркие он назвал звездами первой величины, найтьмяниши — шестой. Для промежуточных величин считалось, что, скажем, звезды третьей величины, столь же тусклее звезды второй, насколько они ярче звезды четвертой. Этот способ измерения блеска получил распространение благодаря «Альмагесту» — звездном каталога Клавдия Птолемея.


Такая классификационная шкала почти без изменений применялась до середины 19 века. Первым, кто отнесся к звездной величины как в количественной, а не качественной характеристики, был Фридрих Аргеландер. Именно он начал уверенно применять десятичные доли звездных величин.

1856 Норман Погсон формализовал шкалу звездных величин, установив, что звезда первой величины ровно в 100 раз ярче звезду шестой величины. Поскольку в соответствии с закон Вебера — Фехнера изменение освещенности в одинаковое количество раз воспринимается глазом как изменение на одинаковую величину, то разница в одну звездную величину соответствует изменению интенсивности света в ≈ 2,512 раз. Это иррациональное число, которое называют числом Погсон.

Итак, шкала звездных величин является логарифмической: разница звездных величин двух объектов определяется уравнением:

, , — Звездные величины объектов, , — Освещенности, создаваемые ими.

Эта формула дает возможность определить лишь разницу звездных величин, но не сами величины.


обы с ее помощью построить абсолютную шкалу, необходимо задать нуль-пункт — освещенность, которой соответствует нулевая звездная величина (0 m). Сначала Погсон применял как эталон Полярную звезду, положив, что она имеет ровно второй величины. После того, как выяснилось, что Полярная является переменной звездой, шкалу начали привязывать к Веге (которой приписывали нулевую величину), а затем (когда в Веги тоже заподозрили изменчивость) нуль-пункт шкалы переопределили с помощью нескольких других звезд. Впрочем, для визуальных наблюдений Вега может служить эталоном нулевой звездной величины и дальше, поскольку ее звездная величина в видимом свете равен 0,03 m, что на глаз не отличается от нуля.

Современная шкала звездных величин не ограничивается шестью величинами или только видимым светом. Звездная величина очень ярких объектов является отрицательной. Например, Сириус, самая яркая звезда ночного неба, имеет видимую звездную величину -1,47 m. Современная техника позволяет также измерить блеск Луны и Солнца: полная Луна имеет видимую звездную величину -12,6 m, а Солнце -26,8 m. Орбитальный телескоп «Хаббл» может наблюдать звезды до 31,5 m в видимом диапазоне.

Спектральная зависимость

Звездная величина зависит от спектрального диапазона, в котором осуществляется наблюдение, так как световой поток от любого объекта в различных диапазонах разный.

  • Болометрическая звездная величина показывает полную мощность излучения объекта, то есть суммарный поток во всех спектральных диапазонах. Измеряется болометра.

Наиболее распространенная фотометрическая система — система UBV — имеет 3 полосы (спектральные диапазоны, в которых осуществляются измерения). Соответственно, там существуют:

  • ультрафиолетовая звездная величина (U) — определяется в ультрафиолетовом диапазоне;
  • «Синяя» звездная величина (B) — определяется в синем диапазоне;
  • визуальная звездная величина (V) — определяется в видимом диапазоне; кривая спектральной чувствительности выбрана так, чтобы лучше соответствовать человеческому зрению. Глаз наиболее чувствителен к желто-зеленого света с длиной волны около 555 нм.

Разница (U-B или B-V) между звездными величинами одного и того же объекта в разных полосах показывает его цвет и называется показателем цвета. Чем больше показатель цвета, тем краснее объект.

Есть и другие фотометрические системы, в каждой из которых есть различные полосы и, соответственно, можно измерить различные величины. Например, в старой фотографической системе использовались следующие величины:

  • фотовизуальными звездная величина (m pv) — мера зчорнення изображение объекта на фотопластинке с оранжевым светофильтром;
  • фотографическая звездная величина (m pg) — измеряется на обычной фотопластинке, что чувствительна к синему и ультрафиолетового диапазонов спектра.

Видимые звездные величины некоторых объектов


Объект m
Солнце -26,73
Полнолуние -12,92
Вспышка Иридиуму (максимум) -9,50
Венера (максимум) -4,89
Венера (минимум) -3,50
Юпитер (максимум) -2,94
Марс (максимум) -2,91
Меркурий (максимум) -2,45
Юпитер (минимум) -1,61
Сириус (самая яркая звезда неба) -1,47
Канопус (2-я по яркости звезда неба) -0,72
Сатурн (максимум) -0,49
Альфа Центавра совокупная яркость А, В -0,27
Арктур ​​(3-я по яркости звезда неба) 0,05
Альфа Центавра А (4-я по яркости звезда неба) -0,01
Вега (5-я по яркости звезда неба) 0,03
Сатурн (минимум) 1,47
Марс (минимум) 1,84
SN 1987A — сверхновая звезда 1987 году в Большом Магеллановом Облаке 3,03
Туманность Андромеды 3,44
Слабые звезды, которые видны в мегаполисах 3 … + 4
Ганимед — спутник Юпитера, самый большой спутник Солнечной системы (максимум) 4,38
4 Веста (яркий астероид), в максимуме 5,14
Уран (максимум) 5,32
Галактика Треугольника (М33), видимая невооруженным глазом при хорошем небе 5,72
Меркурий (минимум) 5,75
Уран (минимум) 5,95
Найтьмяниши звезды, видимые невооруженным глазом в сельской местности 6,50
Церера (максимум) 6,73
NGC 3031 (М81), видимая невооруженным глазом при идеальном небе 6,90
Найтьмяниши звезды, видимые невооруженным глазом на идеальном небе (Обсерватория Мауна-Кеа, пустыня Атакама) 7,72
Нептун (максимум) 7,78
Нептун (минимум) 8,01
Титан — спутник Сатурна, 2-й по величине спутник Солнечной системы (максимум) 8,10
Проксима Центавра 11,10
Самый яркий квазар 12,60
Плутон (максимум) 13,65
Макемаке в оппозиции 16,80
Хаумеа в оппозиции 17,27
Эрида в оппозиции 18,70
Слабые звезды, видимые на снимке CCD-детектора на 24 «телескопе при выдержке в 30 мин 22
Найтьмяниший объект, доступный на 8-метровом наземном телескопе 27
Найтьмяниший объект, доступный на орбитальном телескопе «Хаббл» 31,5
Найтьмяниший объект, который будет доступен на 42-метровом наземном телескопе 36
Найтьмяниший объект, который будет доступен на орбитальном телескопе OWL (запуск планируется 2020 года) 38

Продолжим нашу алгебраическую экскурсию к небесным светилам. В той шкале, которая применяется для оценки блеска звёзд, могут, помимо неподвижных звёзд; найти себе место и другие светила – планеты, Солнце, Луна. О яркости планет мы побеседуем особо; здесь же укажем звёздную величину Солнца и Луны. Звёздная величина Солнца выражается числом минус 26,8, а полной1) Луны – минус 12,6. Почему оба числа отрицательные, читателю, надо думать, понятно после всего сказанного ранее. Но, быть может, его приведёт в недоумение недостаточно большая разница между звёздной величиной Солнца и Луны: первая «всего вдвое больше второй».

Не забудем, однако, что обозначение звёздной величины есть, в сущности, некоторый логарифм (при основании 2,5). И как нельзя, сравнивая числа, делить один на другой их логарифмы, так не имеет никакого смысла, сравнивая между собой звёздные величины, делить одно число на другое. Каков результат правильного сравнения, показывает следующий расчёт.

Если звёздная величина Солнца «минус 26,8», то это значит, что Солнце ярче звезды первой величины

в 2,527,8 раза. Луна же ярче звезды первой величины

в 2,513,6 раза.

Значит, яркость Солнца больше яркости полной Луны в

2,5 27,8 2,5 14,2раза. 2,5 13,6

Вычислив эту величину (с помощью таблиц логарифмов), получаем 447 000. Вот, следовательно, правильное отношение яркостей Солнца и Луны: дневное светило в ясную погоду освещает Землю в 447 000 раз сильнее, чем полная Луна в безоблачную ночь.

Считая, что количество теплоты, отбрасываемое Луной, пропорционально количеству рассеиваемого ею света, – а это, вероятно, близко к истине, – надо признать, что Луна посылает нам и теплоты в 447 000 раз меньше, чем Солнце. Известно, что каждый квадратный сантиметр на границе земной атмосферы получает от Солнца около 2 малых калорий теплоты в 1 минуту. Значит, Луна посылает на 1 см2 Земли ежеминутно не более 225 000-й доли малой калории (т. е. может нагреть 1 г воды в 1 минуту на 225 000-ю часть градуса). Отсюда видно, насколько не обоснованы все попытки приписать лунному свету какое-либо влияние на земную погоду2) .

1) В первой и в последней четверти звёздная величина Луны минус 9.

2) Вопрос о том, может ли Луна влиять на погоду своим притяжением, будет рассмотрен в конце книги (см. «Луна и погода»).

Распространённое убеждение, что облака нередко тают под действием лучей полной Луны, – грубое заблуждение, объясняемое тем, что исчезновение облаков в ночное время (обусловленное другими причинами) становится заметным лишь при лунном освещении.

Оставим теперь Луну и вычислим, во сколько раз Солнце ярче самой блестящей звезды всего неба – Сириуса. Рассуждая так же, как и раньше, получаем отношение их блеска:

2,5 27,8

2,5 25,2

2,52,6

т. е. Солнце ярче Сириуса в 10 миллиардов раз.

Очень интересен также следующий расчёт: во сколько раз освещение, даваемое полной Луной, ярче совокупного освещения всего звёздного неба, т. е. всех звёзд, видимых простым глазом на одном небесном полушарии? Мы уже вычислили, что звёзды от первой до шестой величины включительно светят вместе так, как сотня звёзд первой величины. Задача, следовательно, сводится к вычислению того, во сколько раз Луна ярче сотни звёзд первой величины.

Это отношение равно

2,5 13,6

100 2700.

Итак, в ясную безлунную ночь мы получаем от звёздного неба лишь 2700-ю долю того света, какой посылает полная Луна, и в 2700×447 000, т. е. в 1200 миллионов раз меньше, чем даёт в безоблачный день Солнце.

Прибавим ещё, что звёздная величина нормальной международной

«свечи» на расстоянии 1 м равна минус 14,2, значит, свеча на указанном расстоянии освещает ярче полной Луны в 2,514,2-12,6 т. е. в четыре раза.

Небезынтересно, может быть, отметить ещё что прожектор авиационного маяка силой в 2 миллиарда свечей виден был бы с расстояния Луны звездой 4½-й величины, т. е. мог бы различаться невооружённым глазом.

Истинный блеск звёзд и Солнца

Все оценки блеска, которые мы делали до сих пор, относились только к их видимому блеску. Приведённые числа выражают блеск светил на тех расстояниях, на каких каждое из них в действительности находится. Но мы хорошо знаем, что звёзды удалены от нас неодинаково; видимый блеск звёзд говорит нам поэтому как об их истинном блеске, так и об их удалении от нас, – вернее, ни о том, ни о другом, пока мы не расчленим оба фактора. Между тем важно знать, каков был бы сравнительный блеск или, как говорят, «светимость» различных звёзд, если бы они находились от нас на одинаковом расстоянии.

Ставя так вопрос, астрономы вводят понятие об «абсолютной» звёздной величине звёзд. Абсолютной звёздной величиной звезды называется та, которую звезда имела бы, если бы находилась от нас на рас-

Первым определил видимую звездную величину солнца

стоянии 10 «парсеков». Парсек – особая мера длины, употребляемая для звёздных расстояний; о её происхождении мы побеседуем позднее особо, здесь скажем лишь, что один парсек составляет около 30 800 000 000 000 км. Самый расчёт абсолютной звёздной величины произвести нетрудно, если знать расстояние звезды и принять во внимание, что блеск должен убывать пропорционально квадрату расстояния1) .

Мы познакомим читателя с результатом лишь двух таких расчётов: для Сириуса и для нашего Солнца. Абсолютная величина Сириуса +1,3, Солнца +4,8. Это значит, что с расстояния 30 800 000 000 000 км Сириус сиял бы нам звездой 1,3-й величины, а паше Солнце 4,8-й величины, т. е. слабее Сириуса в

2,5 3,8 2,53,5 25раз,

2,50,3

хотя видимый блеск Солнца в 10 000 000 000 раз больше блеска Сириуса.

Мы убедились, что Солнце – далеко не самая яркая звезда неба. Не следует, однако, считать наше Солнце совсем пигмеем среди окружающих его звёзд: светимость его всё же выше средней. По данным звёздной статистики, средними по светимости из звёзд, окружающих Солнце до расстояния 10 парсеков, являются звёзды девятой абсолютной величины. Так как абсолютная величина Солнца равна 4,8, то оно ярче, нежели средняя из «соседних» звёзд, в

2,58

2,54,2

50 раз.

2,53,8

Будучи в 25 раз абсолютно тусклее Сириуса, Солнце оказывается всё же в 50 раз ярче, чем средние из окружающих его звёзд.

Самая яркая звезда из известных

Самой большой светимостью обладает недоступная простому глазу звёздочка восьмой величины в созвездии Золотой Рыбы, обозначаемая

1) Вычисление можно выполнить по следующей формуле, происхождение которой станет ясно читателю, когда немного позднее он познакомится ближе с «парсеком» и «параллаксом»:

Здесь М – абсолютная величина звезды,m – её видимая величина,π – параллакс звезды в

секундах. Последовательные преобразования таковы: 2,5M = 2,5m · 100π 2 ,

M lg 2,5 =m lg 2,5 + 2 + 2 lgπ , 0,4M = 0,4m +2 + 2 lgπ ,

M =m + 5 + 5 lgπ .

Для Сириуса, например, m = –1,6π = 0″,38. Поэтому его абсолютная величина

M = –l,6 + 5 + 5 lg 0,38 = 1,3.

латинской буквой S. Созвездие Золотой Рыбы находится в южном полушарии неба и не видно в умеренном поясе нашего полушария. Упомянутая звёздочка входит в состав соседней с нами звёздной системы – Малого Магелланова Облака, расстояние которого от нас оценивается примерно в 12 000 раз больше, чем расстояние до Сириуса. На таком огромном удалении звезда должна обладать совершенно исключительной светимостью, чтобы казаться даже восьмой величины. Сириус, заброшенный так же глубоко в пространстве, сиял бы звездой 17-й величины, т. е. был бы едва виден в самый могущественный телескоп.

Какова же светимость этой замечательной звезды? Расчёт даёт такой результат: минус восьмая величина. Это значит, что наша звезда абсолютно в: 400 000 раз (примерно) ярче Солнца! При такой исключительной яркости звезда эта, будучи помещена на расстоянии Сириуса, казалась бы на девять величин ярче его, т. е. имела бы примерно яркость Луны в фазе четверти! Звезда, которая с расстояния Сириуса могла бы заливать Землю таким ярким светом, имеет бесспорное право считаться самой яркой из известных нам звёзд.

Звёздная величина планет на земном и чужом небе

Возвратимся теперь к мысленному путешествию на другие планеты (проделанному нами в разделе «Чужие небеса») и оценим более точно блеск сияющих там светил. Прежде всего укажем звёздные величины планет в максимуме их блеска на земном небе. Вот табличка.

На небе Земли:

Венера………………………..

Сатурн…………………………

Марс…………………………….

Уран…………………………….

Юпитер………………………

Нептун………………………..

Меркурий………………….

Просматривая её, видим, что Венера ярче Юпитера почти на две звёздные величины, т. е. в 2,52 = 6,25 раза, а Сириуса в 2,5-2,7 = 13 раз

(блеск Сириуса – 1,6-й величины). Из той же таблички видно, что тусклая планета Сатурн всё же ярче всех неподвижных звёзд, кроме Сириуса и Канопуса. Здесь мы находим объяснение тому факту, что планеты (Венера, Юпитер) бывают иногда днём видны простым глазом, звёзды же при дневном свете совершенно недоступны невооружённому зрению.

Даже далекие от астрономии люди знают, что звезды имеют разный блеск. Наиболее яркие звезды без труда видны на засвеченном городском небе, а самые тусклые едва различимы при идеальных условиях наблюдения.

Для характеристики блеска звезд и других небесных светил (например, планет, метеоров, Солнца и Луны) ученые выработали шкалу звездных величин.

Видимая звездная величина (m; часто ее называют просто «звездная величина») указывает поток излучения вблизи наблюдателя, т. е. наблюдаемую яркость небесного источника, которая зависит не только от реальной мощности излучения объекта, но и от расстояния до него.

Это безразмерная астрономическая величина, характеризующая создаваемую небесным объектом вблизи наблюдателя освещенность.

Освещённость – световая величина, равная отношению светового потока, падающего на малый участок поверхности, к его площади.
Единицей измерения освещённости в Международной системе единиц (СИ) служит люкс (1 люкс = 1 люмену на квадратный метр), в СГС (сантиметр-грамм-секунда) – фот (один фот равен 10 000 люксов).

Освещённость прямо пропорциональна силе света источника света. При удалении источника от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния (закон обратных квадратов).

Субъективно видимая звездная величина воспринимается как блеск (у точечных источников) или яркость (у протяженных).

При этом блеск одного источника указывают путем его сравнения с блеском другого, принятого за эталон. Такими эталонами обычно служат специально подобранные непеременные звезды.

Звездную величину сначала ввели как указатель видимого блеска звезд в оптическом диапазоне, но позже распространили и на другие диапазоны излучения: инфракрасный, ультрафиолетовый.

Таким образом, видимая звёздная величина m или блеск является мерой освещённости Е, создаваемой источником на перпендикулярной к его лучам поверхности в месте наблюдения.

Исторически все началось более 2000 лет назад, когда древнегреческий астроном и математик Гиппарх (II век до нашей эры) поделил видимые глазом звезды на 6 величин.

Самым ярким звездам Гиппарх присвоил первую звездную величину, а самым тусклым, едва видимым глазом, – шестую, остальные равномерно распределил по промежуточным величинам. Причем, разделение на звездные величины Гиппарх произвел так, чтобы звезды 1-й величины казались настолько ярче звезд 2-й величины, насколько те кажутся ярче звезд 3-й величины и т. д. То есть от градации к градации блеск звезд изменялся на одну и ту же величину.

Как позже выяснилось, связь такой шкалы с реальными физическими величинами логарифмическая, поскольку изменение яркости в одинаковое число раз воспринимается глазом как изменение на одинаковую величину – эмпирический психофизиологический закон Вебера – Фехнера , согласно которому интенсивность ощущения прямо пропорциональна логарифму интенсивности раздражителя.

Это связано с особенностями человеческого восприятия, для примера, если в люстре последовательно зажигается 1, 2, 4, 8, 16 одинаковых лампочек, то нам кажется, что освещенность в комнате все время увеличивается на одну и ту же величину. То есть количество включаемых лампочек должно увеличиваться в одинаковое число раз (в примере вдвое), чтобы нам казалось, что прирост яркости постоянен.

Логарифмическая зависимость силы ощущения Е от физической интенсивности раздражителя Р выражается формулой:

Е = к log P + a, (1)

где k и a – некие постоянные, определяемые данной сенсорной системой.

В середине 19 в. английский астроном Норман Погсон осуществил формализацию шкалы звездных величин, которая учитывала психофизиологический закон зрения.

Основываясь на реальных результатах наблюдений, он постулировал, что

ЗВЕЗДА ПЕРВОЙ ВЕЛИЧИНЫ РОВНО В 100 РАЗ ЯРЧЕ ЗВЕЗДЫ ШЕСТОЙ ВЕЛИЧИНЫ.

При этом в соответствии с выражением (1) видимая звездная величина определяется равенством:

m = -2,5 lg E + a, (2)

2,5 – коэффициент Погсона, знак минус – дань исторической традиции (более яркие звезды имеют меньшую, в т. ч. отрицательную, звездную величину);
a – нуль-пункт шкалы звёздных величин, устанавливаемый международным соглашением, связанным с выбором базовой точки измерительной шкалы.

Если Е 1 и Е 2 соответствуют звёздным величинам m 1 и m 2 , то из (2) следует, что:

E 2 /E 1 = 10 0,4(m 1 — m 2) (3)

Уменьшение звездной величины на единицу m1 — m2 = 1 приводит к увеличению освещённости Е примерно в 2,512 раза. При m 1 — m 2 = 5, что соответствует диапазону от 1-й до 6-й звездной величины, изменение освещенности будет Е 2 /Е 1 =100.

Формула Погсона в её классическом виде устанавливает связь между видимыми звездными величинами:

m 2 — m 1 = -2,5 (lgE 2 — lgE 1) (4)

Данная формула позволяет определять разницу звёздных величин, но не сами величины.

Чтобы с её помощью построить абсолютную шкалу, необходимо задать нуль-пункт – блеск, которому соответствует нулевая звездная величина (0 m). Сначала в качестве 0 m был принят блеск Веги. Потом нуль-пункт был переопределён, но для визуальных наблюдений Вега до сих пор может служить эталоном нулевой видимой звёздной величины (по современной системе, в полосе V системы UBV, её блеск равен +0,03 m , что на глаз неотличимо от нуля).

Обычно же нуль-пункт шкалы звездных величин принимают условно по совокупности звезд, тщательная фотометрия которых выполнена различными методами.

Также за 0 m принята вполне определенная освещенность, равная энергетической величине E=2,48*10 -8 Вт/м². Собственно, именно освещенность и определяют при наблюдениях астрономы, а уже потом ее специально переводят в звездные величины.

Делают они это не только потому что «так привычнее», но и потому что звездная величина оказалась очень удобным понятием.

звездная величина оказалась очень удобным понятием

Измерять освещенность в ваттах на квадратный метр крайне громоздко: для Солнца величина получается большой, а для слабых телескопических звезд – очень маленькой. В то же время оперировать звездными величинами гораздо легче, так как логарифмическая шкала исключительно удобна для отображения очень больших диапазонов значений величин.

Погсоновская формализация в последующем стала стандартным методом оценки звёздной величины.

Правда, современная шкала уже не ограничивается шестью звездными величинами или только видимым светом. Очень яркие объекты могут иметь отрицательную звездную величину. Например, Сириус, ярчайшая звезда небесной сферы, имеет звездную величину минус 1,47 m . Современная шкала позволяет также получить значение для Луны и Солнца: полнолуние имеет звездную величину -12,6 m , а Солнце -26,8 m . Орбитальный телескоп «Хаббл» может наблюдать объекты, блеск которых составляет величины примерно до 31,5 m .

Первым определил видимую звездную величину солнца

Шкала звездных величин
(шкала – обратная: меньшим значениям соответствуют более яркие объекты)

Видимые звездные величины некоторых небесных тел

Солнце: -26,73
Луна (в полнолуние): -12,74
Венера (в максимуме блеска): -4,67
Юпитер (в максимуме блеска): -2,91
Сириус: -1,44
Вега: 0,03
Самые слабые звезды, видимые невооруженным глазом: около 6,0
Солнце с расстояния 100 световых лет: 7,30
Проксима Центавра: 11,05
Самый яркий квазар: 12,9
Самые слабые объекты, снимки которых получены телескопом «Хаббл»: 31,5

Продолжим нашу алгебраическую экскурсию к небесным светилам. В той шкале, которая применяется для оценки блеска звезд, могут, помимо неподвижных звезд, найти себе место и другие светила – планеты, Солнце, Луна. О яркости планет мы побеседуем особо; здесь же укажем звездную величину Солнца и Луны. Звездная величина Солнца выражается числом минус 26,8, а полной Луны – минус 12,6. Почему оба числа отрицательные, читателю, надо думать, понятно после всего сказанного ранее. Но, быть может его приведет в недоумение недостаточно большая разница между звездной величиной Солнца и Луны: первая «всего вдвое больше второй».

Не забудем, однако, что обозначение звездной величины есть, в сущности, некоторый логарифм (при основании 2,5). И как нельзя, сравнивая числа, делить один на другой их логарифмы, так не имеет никакого смысла, сравнивая между собой звездные величины, делить одно число на другое. Каков результат правильного сравнения, показывает следующий расчет.

Если звездная величина Солнца «минус 26,8», то это значит, что Солнце ярче звезды первой величины

в 2,5 27,8 раза.

Луна же ярче звезды первой величины

в 2,5 13,6 раза.

Значит, яркость Солнца больше яркости полной Луны в

Вычислив эту величину (с помощью таблиц логарифмов), получаем 447 000. Вот, следовательно, правильное отношение яркостей Солнца и Луны: дневное светило в ясную погоду освещает Землю в 447 000 раз сильнее, чем полная Луна в безоблачную ночь.

Считая, что количество теплоты , выделяемое Луной, пропорционально количеству рассеиваемого ею света, – а это, вероятно, близко к истине, – надо признать, что Луна посылает нам и теплоты в 447 000 раз меньше, чем Солнце. Известно, что каждый квадратный сантиметр на границе земной атмосферы получает от Солнца около 2 малых калорий теплоты в 1 минуту. Значит, Луна посылает на 1 см 2 Земли ежеминутно не более 225 000-й доли малой калории (т. е. может нагреть 1 г воды в 1 минуту на 225 000-ю часть градуса). Отсюда видно, насколько не обоснованы все попытки приписать лунному свету какое-либо влияние на земную погоду.

Распространенное убеждение, что облака нередко тают под действием лучей полной Луны, – грубое заблуждение, объясняемое тем, что исчезновение облаков в ночное время (обусловленное другими причинами) становится заметным лишь при лунном освещении.

Оставим теперь Луну и вычислим, во сколько раз Солнце ярче самой блестящей звезды всего неба – Сириуса. Рассуждая так же, как и раньше, получаем отношение их блеска:

Первым определил видимую звездную величину солнца

т. е. Солнце ярче Сириуса в 10 миллиардов раз.

Очень интересен также следующий расчет: во сколько раз освещение, даваемое полной Луной, ярче совокупного освещения всего звездного неба, т. е. всех звезд, видимых простым глазом на одном небесном полушарии? Мы уже вычислили, что звезды от первой до шестой величины включительно светят вместе так, как сотня звезд первой величины. Задача, следовательно, сводится к вычислению того, во сколько раз Луна ярче сотни звезд первой величины.

Это отношение равно

Первым определил видимую звездную величину солнца

Итак, в ясную безлунную ночь мы получаем от звездного неба лишь 2700-ю долю того света, какой посылает полная Луна, и в 2700 х 447 000, т. е. в 1200 миллионов раз меньше, чем дает в безоблачный день Солнце.

Источник: realartist.ru

Наиболее яркие звезды без труда видны на засвеченном городском небе, а самые тусклые едва различимы при идеальных условиях наблюдения. Для характеристики блеска звезд и других небесных светил (например, планет, метеоров, Солнца и Луны) ученые разработали шкалу звездных величин.

Наиболее яркие звезды условились называть звездами 1-й звездной величины; те из звезд, которые по своему блеску в 2,5 раза (точнее, в 2,512 раза) слабее звезд 1-й величины, получили наименование звезд 2-й звездной величины. К звездам 3-й звездной величины отнесли те из них. которые слабее звезд 2-й величины в 2,5 раза, и т. д. Самые слабые из звезд, доступных невооруженному глазу, были причислены к звездам 6-й звездной величины. Нужно помнить, что название «звездная величина» указывает не на размеры звезд, а только на их видимый блеск.

(шкала – обратная: меньшим значениям соответствуют более яркие объекты)

В 1856 году Норман Погсон предложил следующую формализацию шкалы звёздных величин, ставшую общепринятой:

где m — звёздные величины объектов, L — освещённости от объектов. Такое определение соответствует падению светового потока в 100 раз при увеличении звёздной величины на 5 единиц.

Следующие свойства помогают пользоваться видимыми звёздными величинами на практике:

  • Увеличению светового потока в 100 раз соответствует уменьшение видимой звёздной величины ровно на 5 единиц.
  • Уменьшение звёздной величины на одну единицу означает увеличение светового потока.

Данная формула даёт возможность определить только разницу звёздных величин, но не сами величины.

Видимые звездные величины некоторых небесных тел

Солнце: -26,73
Луна (в полнолуние): -12,74
Венера (в максимуме блеска): -4,67
Юпитер (в максимуме блеска): -2,91
Сириус: -1,44
Вега: 0,03
Самые слабые звезды, видимые невооруженным глазом: около 6,0
Солнце с расстояния 100 световых лет: 7,30
Проксима Центавра: 11,05
Самый яркий квазар: 12,9
Самые слабые объекты, снимки которых получены телескопом «Хаббл»: 31,5

Источник: zen.yandex.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.