В настоящий момент основной способ изучения свойств далёких звёзд заключается в исследовании приходящего от них электромагнитного излучения, которое при помощи спектральных аппаратов представляется в виде спектра. Он в свою очередь различается в зависимости от характеристик той или иной звезды. По виду спектра и можно установить эти самые характеристики. В данной статье упор будет сделан непосредственно на характеристики, от которых зависит вид спектра. Углубляться в изучение самого спектра (почему спектральные линии конкретных элементов преобладают в тех или иных звёздах, почему ширина у них такая-то и количество такое-то) мы не будем, дабы слишком не уходить в сторону физики.
Собственно основной вопрос – «Чем обусловлен различный вид спектров»? Тут можно выделить три характеристики звезды, которые определяют вид спектра – это химический состав атмосферы, плотность атмосферы и её температура.
м не менее, наибольшее различие в спектрах звёзд обусловлено именно различной температурой их атмосфер, потому что химический состав большинства звёзд практически одинаков (водород, гелий и очень небольшая доля тяжёлых элементов), соответственно он не оказывает такого влияния на вид спектра, как температура, которая меняется в весьма значительных пределах (от 2500 до 100000 и более кельвинов). Конечно, есть отдельные группы звёзд с некоторыми аномалиями в химическом составе, но они также и имеют свою отдельную классификацию.
Основная современная (или гарвардская, поскольку разработана была в Гарвардской обсерватории) спектральная классификация звёзд – это температурная классификация, также её дополняет классификация по светимости (которая как раз таки и учитывает влияние на вид спектра различных плотностей звёздных атмосфер), но о классах светимости будет рассказано во второй части. А здесь рассмотрим именно основные спектральные классы температурной классификации и вкратце пройдёмся по дополнительным классам.
Основные спектральные классы
Существует 7 основных спектральных классов, которые отражают температуру звёзд: O, B, A, F, G, K, M. Однако такая шкала всё же довольно груба, поэтому для более точного указания температуры эти классы дополняются подклассами от 0(наиболее горячие) до 9(наиболее холодные) и всё идёт в следующей последовательности от более холодных к более горячим: …G2, G1, G0, F9, F8… и т.д., в некоторых случаях подкласс может быть записан десятичной дробью. Классы O, B, A также называют ранними или горячими, F и G – солнечными, а K и М – поздними или холодными.
Класс O
Самые горячие звёзды, с температурой фотосферы (видимой поверхности) более 30000 K, имеют голубой цвет. Эти звёзды редки, поскольку для такой температуры на поверхности звезда должна производить много энергии у себя в ядре, а это возможно только при достаточно большой массе, так что для образования такой звезды нужно много вещества, а оно есть только в очень плотных молекулярных облаках. Собственно звёзды класса O и встречаются в тех местах, где есть массивные газопылевые туманности – это комплексы звёздообразования в созвездии Ориона и Киля, а также туманность Тарантул в Большом Магеллановом Облаке. Примеры звёзд, относящихся к классу O − звёзды из Трапеции Ориона; Дзета Кормы. В виду значительной массы, продолжительность жизни таких звёзд весьма невелика (миллионы, десятки миллионов лет).
Класс B
Менее горячие звёзды, с температурой фотосферы от 10000 до 30000 K, также имеют голубоватый оттенок, но не такой насыщенный. Более распространены в Галактике, несколько из них имеется даже в радиусе 100 световых лет от Солнца (Регул и один из компонентов системы Алголь). Возникают также преимущественно в самых плотных газопылевых облаках, однако изначально при образовании эти звёзды получают меньшую массу, чем звёзды класса O, так что их срок жизни может составлять уже более 100 миллионов лет, и они могут улететь на значительное расстояние от места своего образования. Помимо Регула и главного компонента Алголя, к классу B также относятся самые яркие звёзды из скопления Плеяды; Беллатрикс; Спика; Ригель и др.
Класс A
Звёзды с температурой фотосферы в пределах от 7500 до 10000 K, видимый цвет у них – белый с лёгким голубоватым оттенком. Встречаются они относительно часто. Срок жизни звёзд изначального этого класса составляет порядка миллиарда лет. Примеры: Сириус A; Альтаир; Вега; все звёзды из ковша Большой Медведицы (кроме Дубхе и Алькаида).
Класс F
Звёзды с температурой фотосферы 6000 – 7500 K, видимый цвет – белый, но по результатам фотометрических измерений их настоящий цвет − желтоватый. К этому классу относятся такие звёзды как: Процион А, Поррима, Полярная, Канопус.
Класс G
Звёзды с температурой фотосферы 5000 – 6000 K, визуально практически белые, но настоящий цвет по результатам фотометрических исследований – жёлтый. К этому классу относится Солнце (G2V, что означает – звезда спектрального класса G2 с эффективной температурой 5780 K , находящаяся на главной последовательности (класс светимости V)), а помимо Солнца к этому классу относятся – Альфа Центавра A; Тау Кита; 51 Пегаса (первая звезда с достоверно открытой экзопланетой); Капелла; Дзета Сетки.
Класс K
Звёзды с температурой фотосферы порядка 4000 – 5000 K. Видимый цвет – светло-оранжевый, настоящий цвет – оранжевый. В отличие от звёзд более ранних классов, составляют уже довольно заметную долю в общем звёздном населении Галактики. К этому классу относятся – Альфа Центавра В; Эпсилон Эридана; Арктур; Альдебаран.
Класс M
Самые холодные звёзды, с температурой фотосферы порядка 2500 – 3500 K, визуально имеют насыщенный оранжевый оттенок, по результатам фотометрических исследований считаются звёздами красного цвета. Карликовые звёзды этого класса – самые распространённые во Вселенной, для их образования нужно меньше всего вещества, а в виду небольшой массы, срок жизни таких звёзд невообразимо громадный и составляет десятки, а то может и сотни миллиардов лет, так что по сути все звёзды, изначально образовавшиеся как карлики класса М, до сих пор ещё не исчерпали запасы своего «топлива». По сравнению с их долей в общем звёздном населении, доля звёзд остальных классов невелика и та приходится в основном на класс K. Основное звёздное население в окрестностях Солнца представлено звёздами-карликами спектрального класса М, но в виду очень низкой светимости мы не можем увидеть ни одну из этих звёзд невооружённым глазом, хотя их в действительности очень много. Примеры звёзд этого класса – Проксима Центавра; Звезда Барнарда; Бетельгейзе; Мира А.
Дополнительные спектральные классы
Пройдёмся по дополнительным спектральным классам, которые введены для характеристик отдельных групп звёзд, которые из-за особенностей своего спектра нельзя отнести к одному из вышеперечисленных основных классов.
Классы R и N
Углеродные звёзды. Это звёзды по температуре и цвету схожие со звёздами спектральных классов K и М, но с повышенным содержанием углерода в атмосфере.
Класс S
Циркониевые звёзды, Это звёзды-гиганты схожие по температуре и цвету со звёздами классов K и М, но в их спектре выражены линии оксида циркония.
Класс W
также WR и подклассы WN, WC
Звёзды Вольфа-Райе. Очень редкие звёзды в Галактике. Считается, что звезда Вольфа-Райе − это поздняя стадия эволюции очень массивной звезды. Для них характерна сильнейшая активность, так что такие звёзды бывают часто окружены туманностями. Температура звёзд Вольфа-Райе выше, чем температура звёзд класса O. Рекордное количество этих звёзд найдено в туманности Тарантула в Большом Магеллановом Облаке.
Класс D
и подклассы DA, DW и т.д.
Белые карлики. Белые карлики – ядра уже проэволюционировавших звёзд малой и умеренной массы, отличаются малым размером (порядка размеров небольших планет, вроде Земли) и как следствие – низкой светимостью. Однако при этом у них довольно высокая температура (десятки тысяч градусов) и масса порядка половины солнечной, а иногда и больше солнечной, что указывает на чудовищную среднюю плотность.
Классы L, T, Y
Эти классы используются для обозначения коричневых карликов различной температуры. Коричневые карлики – объекты с массой, промежуточной между массами звёзд (которые начинаются в районе 0,1 массы Солнца) и массами больших планет (верхний предел которой установлен на отметке 13-ти масс Юпитера). Наблюдать такие объекты довольно непросто, поскольку они практически ничего не излучают в видимом диапазоне.
В. Грибков
Источник: dsastro.ru
Гарвардская спектральная классификация
Данная классификация считается основной, так как она самая популярная. Была разработана ещё в 1890-1924 гг. в Гарвардской обсерватории, США. Представляет собой температурную классификацию, основанную на виде и интенсивности линий поглощения у звезды, а также ещё и испускания их спектров.
Внутри основного класса, звёзды могут делиться на свои подклассы, обозначающиеся арабской цифрой, от 0 – это самые горячие и до 9 – то есть самые холодные.
Наше Солнце, согласно основной классификации имеет класс G и подкласс 2, обозначающее температуру фотосферы в 5780 К.
Посмотреть основную классификацию в таблице
Йоркская классификация (МКК)
С дальнейшим развитием спектроскопии оказалось, что вид спектра звёзд-карликов и звёзд-гигантов зависит от их светимости. Особенно этот факт заметен в светимости некоторых элементов, присутствующих в химическом составе этих же звёзд (стронций Sr, барий Ba, железо Fe и титан Ti). Поэтому была разработана новая, йоркская классификация, уточняющая спектральные классы звёзд-гигантов и карликов.
Согласно этой классификации, звезде нужно приписывать до гарвардского спектрального класса ещё и её же класс светимости:
- Ia+ или же 0 – значит, что это гипергиганты;
- I, Ia, Iab, Ib – обозначает, что такие звёзды — сверхгиганты;
- II, IIa, IIb – гиганты с большой яркостью;
- III, IIIa, IIIab, IIIb – это гиганты;
- IV – ветвь субгигантов;
- V, Va, Vb – звёзды находящиеся на главной последовательности (карлики);
- VI – субкарлики;
- VII – белые карлики.
Вышеописанная система определяет положение звёзд на диаграмме Герцшпрунга-Рассела, в то время как гарвардская – только её абсциссу.
Наше Солнце, согласно йоркской классификации, имеет спектральный класс G2V.
Классы Анджело Секки
Классификация Анджело Секки – это одна из первых разработанных классификаций, определяющая спектральные классы звёзд. Разработана она в 1860-1870 гг., и позже дополнена и немного изменена.
Согласно этой системе, все звёзды подразделяются на 5 классов:
- I – голубые и белые звёзды, обладающие широкими линиями поглощения водорода;
- II – оранжевые и желтые звёзды, с отчётливыми линиями металлов, но слабыми линиями водорода;
- III – красные и оранжевые звёзды, современный М класс;
- IV – красные звёзды, характерными сильными линиями углерода, ещё называемые углеродными звёздами;
- V – звёзды, имеющие эмиссионные линии азота, гелия и углерода и планетарные туманности;
- подтип Ориона – это те же звёзды I класса, только они имеют узкие линии в спектре, вместо широких.
Выше было приведено не полное описание классов Анджело Секки, так как они уже не используются.
Дополнительная спектральная классификация
Для некоторых видов звёзд также выделяют ещё и дополнительные спектральные классы, такие как:
- W – для звёзд Вольфа-Райе;
- L – коричневые карлики или иные звёзды, с температурой от 1500 К до 2000 К, с различными соединениями металлов в звёздной атмосфере;
- Т – метановые коричневые карлики, с небольшими температурами в 700-1500 К;
- Y – коричневые карлики (предположительно метано-аммиачные) с низкими температурами, до 700 К;
- С – углеродные звёзды-гиганты;
- S – звёзды с повышенным содержанием циркония;
- D – белые карлики;
- Q – новые звёзды;
- Р – планетарные туманности.
Особенности в спектральном классе
В космосе встречаются звёзды, обладающие некоторыми особенностями в своих спектрах, не указанные в стандартных классификациях. Поэтому до обозначения этих светил добавляются свои префиксы и постфиксы.
Но не будем «углубляться в дебри», и закончим разбирать спектральные классы звёзд. Но всё же, если сильно интересно, можете посмотреть эти добавочные индексы ниже.
Источник: astromaniya.at.ua
Получение спектров
В простом случае спектр можно получить следующим образом: свет, излучаемый объектом, пропускается через узкое отверстие, позади которого располагается призма. Последняя преломляет свет, который после направляется на экран или специальную фотопленку. Полученное изображение представляется в виде плавного градиента цветов от фиолетового к красному. Спектр без каких-либо черных линий называется непрерывным. Подобная картина наблюдается при излучении света твердыми или жидкими телами, к примеру – лампой накаливания.
Рассмотрим следующий случай: пусть имеется горелка, в пламя которой поместили некоторую массу соли. В описанном случае в свете пламени будет наблюдаться ярко-желтый цвет. И если посмотреть через спектроскоп на эти испарения, то мы увидим яркую желтую линию. Это означает, что разогретые пары натрия излучают свет с длиной волны желтого цвета. Данное свойство присущее любому веществу в газообразном состоянии, а его спектр называется линейчатым.
При наблюдении за Солнцем немецкий оптик Йозеф Фраунгофер отметил, что в его непрерывном спектре излучения имеются некие тонкие черные линии. Позже Густав Кирхгоф определил, что всякий разреженный газ поглощает лучи света именно тех длин волн, которые испускает сам, находясь в состоянии свечения. Получаемые на непрерывном спектре черные линии были названы как линии поглощения. Применив упомянутые законы к Солнцу, ученые, смогли выявить химический состав атмосферы звезды. Так как газы в атмосфере поглощали излучение с определенными длинами волн.
В дальнейшем в спектроскопии появилось множество методов изучения других свойств звезд, то бишь смещение спектра в определенную сторону, сравнение со спектром абсолютно черного тела, раздвоение линий наложения и прочее.
Сегодня приборы ученых позволяют измерять спектры звезд, в любых диапазонах помимо оптического, при помощи различных фильтров и окуляров, например в рентгеновском или ультрафиолетовом.
Классы Анджело Секки
Впервые классифицировал звездные спектры священник и астроном из Италии — Анджело Секки. В 1866-м году он разделил все небесные светила на три группы, в зависимости от температуры поверхности звезды и соответствующего ей цвета. За последующие 11 лет астроном добавил еще два класса.
- I – небесные светила голубого и белого цветов. В их спектре имеются широкие линии поглощения водорода. По современной классификации, звезды типа А и частично F, такие как Вега или Альтаир. Сюда же включается подкласс звезд с узкими фраунгоферовскими линиями (начало класса B), к ним относится Ригель и γ Ориона.
- II – звезды оранжевого или желтого цвета. Имеют малоразличимые линии поглощения водорода, и отчетливые – металлов. Среди них наше Солнце, или Капелла из созвездия Возничего. В современной классификации – G, K и конец F.
- III – светила оранжевого и красного цветов (класс М). С четкими линиями поглощения в синем диапазоне, металлов, а также слабые линии водорода, кальция и калия. Звезды типа Антарес и Бетельгейзе.
- IV – углеродные звезды, имеют красный цвет.
- V – небесные светила, спектр которых имеет линии поглощения – эмиссионные линии.
Гарвардская спектральная классификация
Разработана в 1890 — 1924 годах учеными обсерватории Гарварда, и постепенно заменившая классификацию Анджело Секки, став основной и использующейся сегодня. Гарвардская классификация строится на относительной интенсивности линий поглощения и фраунгофервских линий, а также на цвете звезд.
Каждый из перечисленных классов включает 10 подклассов от 0 до 9, где 0 – это наиболее горячие звезды, а 9 – наиболее холодные. Лишь класс O делится иначе — от 4 до 9,5.
Йеркская классификация с учётом светимости
В 1943 г. в одноименной обсерватории была разработана еще Йеркская классификация, которая учитывает светимость звезд, что отражается в ее названии. Иначе ее называют МКК — по первым буквам фамилий ученых: В.В. Морган, П.К. Кинан и Э. Келлман. Дело в том, что Гарвардская классификация не принимает в расчет такую важную характеристику небесного светила как светимость. Позже Йеркская классификация была отображена Эйнаром Герцшпрунгом (Дания) и Генри Расселом (США) в виде диаграммы с зависимостью спектрального класса от светимости. Таким образом, мы можем визуально наблюдать закономерность в свойствах звезд разного рода.
Ia+ или 0 — сверхгиганты с наивысшей мощностью, массой, яркостью и короткой длительностью жизни;
- I, Ia, Iab, Ib — одни из наиболее массивных звезд – «сверхгиганты»;
- II, IIa, IIb — светила, имеющие светимость близкую к светимости сверхгигантов, однако их массы обычно недостаточно, чтобы относить их к сверхгигантам. Называются – «яркие гиганты»;
- III, IIIa, IIIab, IIIb — тела, обладающие большей светимостью и размером, чем звезды главной последовательности ( см. ниже), но схожей температурой верхних слоев. Зовутся как «гиганты»;
- IV — звезды, которые некогда являлись объектами главной последовательности, однако после их водородное топливо иссякло – «субгиганты»;
- V, Va, Vb — карлики (звезды главной последовательности, которых около 90% среди всех светил);
- VI —класс с аномальной светимостью, промежуточный между карликами главной последовательности и белыми карликами – «субкарлики»;
- VII — компактные объекты, являющиеся последним этапом существования большинства звезд – «белые карлики».
Данная диаграмма позволяет также определить светимость звезды, при наличии ее спектра. Исходя из вышеописанных классификаций сегодня Солнце относят к классу G2V.
Существует множество дополнительных спектральных классов для более экзотических объектов. Например, Q – для молодых звезд, P – для планетарных туманностей, D – для белых карликов, W для самых горячих светил, температура которых превышает температуру звезд класса O, и может достигать около 100 000 К.
Характеристические особенности в классе
Очевидно, каждая звезда хоть и относится к определенному классу, все же остается индивидуальным и неповторимым объектом, как и человек. Потому существует ряд дополнительных буквенных обозначений, которые указывают на особенности светила. Тип звезды обозначается буквой, которая стоит перед спектральным классом: карлик (d от dwarf), сверхгигант (с), гигант (g), субгигант (sg), субкарлик (sd), белый карлик (w или wd).
Многие свойства звезды выражаются особенностями его спектра, для них существует множество буквенных обозначений, которые располагаются после спектрального класса, например сильные линии металлов буквой m, а резкие и узкие линии – s.
Используя вышеописанные спектральные классы, астрономы могут кратко изложить основные свойства и особенности космического объекта. Так ярчайшая точка ночного небосвода – Сириус АB представляет собой систему из двух звезд и имеет спектральный класс A1Vm/DA2. Это означает, что видимая звезда (Сириус А) относится к классу А с подклассом температуры 1, является карликом главной последовательности и имеет сильные линии металлов, о чем говорят буквы «V» и «m». Ее компаньон Сириус Б – желтый карлик с подклассом 2, имеющий в атмосфере водород, и не имеющий гелий, линии которых соответственно присутствуют/отсутствуют в спектре, на что указывает буква А.
Полная версия: https://spacegid.com/spektralnyie-klassyi-zvezd.html
Источник: zen.yandex.ru