Энергия излучаемая солнцем


Есть одна причина, по которой Земля является единственным местом в Солнечной системе, где существует и процветает жизнь. Конечно, ученые подозревают, что под ледяной поверхностью Европы или Энцелада может тоже существовать микробная или даже водная форма жизни, также ее могут найти и в метановых озерах Титана. Но до поры до времени Земля остается единственным местом, которое обладает всеми необходимыми условиями для существования жизни.

Солнце

Одна из причин этому заключается в том, что Земля расположена в потенциально обитаемой зоне вокруг Солнца (так называемой «зоне Златовласки»). Это означает, что она находится в нужном месте (не слишком далеко и не слишком близко), чтобы получать обильную энергию Солнца, в которую входит свет и тепло, необходимые для протекания химических реакций. Но как именно Солнце обеспечивает нас энергией? Какие этапы проходит энергия на пути к нам, на планету Земля?


Ответ начинается с того, что Солнце, как и все звезды, может вырабатывать энергию, поскольку является, по сути, массивным термоядерным реактором. Ученые считают, что оно началось с огромного облака газа и частиц (т. е. туманности), которое коллапсировало под силой собственной тяжести — это так называемая теория туманности. В этом процессе родился не только большой шар света в центре нашей Солнечной системы, но и водород, собранный в этом центре, начал синтезироваться с образованием солнечной энергии.

Технически известный как ядерный синтез, этот процесс высвобождает огромное количество энергии в виде тепла и света. Но на пути из центра Солнца к планете Земля эта энергия проходит через ряд важных этапов. В конце концов, все сводится к слоям Солнца, и роль каждого из них играет важную роль в процессе обеспечения нашей планеты важнейшей для жизни энергией.

Ядро

Ядро Солнца — это область, которая простирается от центра до 20-25% радиуса светила. Именно здесь, в ядре, производится энергия, порождаемая преобразованием атомов водорода (H) в молекулы гелия (He). Это возможно благодаря огромному давлению и высокой температуре, присущим ядру, которые, по оценкам, эквивалентны 250 миллиардам атмосфер (25,33 триллиона кПа) и 15,7 миллионам градусов по Цельсию, соответственно.


Конечным результатом является слияние четырех протонов (молекул водорода) в одну альфа-частицу — два протона и два нейтрона, связанных между собой в частицу, идентичной ядру гелия. В этом процессе высвобождается два позитрона, а также два нейтрино (что меняет два протона на нейтроны) и энергия.

Ядро — единственная часть Солнца, которая производит значительное количество тепла в процессе синтеза. По сути, 99% энергии, произведенной Солнцем, содержится в пределах 24% радиуса Солнца. К 30% радиуса синтез почти целиком прекращается. Остаток Солнца подогревается энергией, которая передается из ядра через последовательные слои, в конечном счете достигая солнечной фотосферы и утекая в космос в виде солнечного света или кинетической энергии частиц.

Солнце высвобождает энергию, преобразуя массу в энергию со скоростью 4,26 миллиона метрических тонн в секунду, что эквивалентно 38,460 септиллионам ватт в секунду. Чтобы вам было понятнее, это эквивалентно взрывам 1 820 000 000 «царь-бомб» — самой мощной термоядерной бомбы в истории человечества.

Зона лучистого переноса

Эта зона находится сразу после ядра и простирается на 0,7 солнечного радиуса. В этом слое нет тепловой конвекции, но солнечная материя очень горячая и достаточно плотная, чтобы тепловое излучение запросто передавало интенсивное тепло из ядра наружу. В основном она включает ионы водорода и гелия, испускающие фотоны, которые проходят короткое расстояние и поглощаются другими ионами.

Температура этого слоя пониже, примерно от 7 миллионов градусов ближе к ядру до 2 миллионов градусов на границе конвективной зоны. Плотность тоже падает в сто раз с 20 г/см³ ближе к ядру до 0,2 г/см³ у верхней границы.

Конвективная зона


Это внешний слой Солнца, на долю которого приходится все, что выходит за рамки 70% внутреннего радиуса Солнца (и уходит примерно на 200 000 километров ниже поверхности). Здесь температура ниже, чем в радиационной зоне, и тяжелые атомы не полностью ионизированы. В результате радиационный перенос тепла проходит менее эффективно, и плотность плазмы достаточно низка, чтобы позволить появляться конвективным потокам.

Из-за этого поднимающиеся тепловые ячейки переносят большую часть тепла наружу к фотосфере Солнца. После тог, как эти ячейки поднимаются чуть ниже фотосферической поверхности, их материал охлаждается, а плотность увеличивается. Это приводит к тому, что они опускаются к основанию конвективной зоны снова — где забирают еще тепло и продолжают конвективный цикл.

На поверхности Солнца температура падает до примерно 5700 градусов по Цельсию. Турбулентная конвекция этого слоя Солнца также вызывает эффект, который вырабатывает магнитные северный и южный полюса по всей поверхности Солнца.

Именно в этом слое также появляются солнечные пятна, которые кажутся темными по сравнению с окружающей область. Эти пятна соответствуют концентрациям потоков магнитного поля, которые осуществляют конвекцию и приводят к падению температуры на поверхности по сравнению с окружающим материалом.

Фотосфера


Наконец, есть фотосфера, видимая поверхность Солнца. Именно здесь солнечный свет и тепло, излученные и поднятые на поверхность, распространяются в космос. Температуры в этом слое варьируются между 4500 и 6000 градусами. Поскольку верхняя часть фотосферы холоднее нижней, Солнце кажется ярче в центре и темнее по бокам: это явление известно как затемнение лимба.

Толщина фотосферы — сотни километров, именно в этой области Солнце становится непрозрачным для видимого света. Причина этого в уменьшении количества отрицательно заряженных ионов водорода (H-), которые с легкостью поглощают видимый свет. И наоборот, видимый свет, который мы видим, рождается в процессе реакции электронов с атомами водорода с образованием ионов H-.

Энергия, испускаемая фотосферой, распространяется в космосе и достигает атмосферы Земли и других планет Солнечной системы. Здесь, на Земле, верхний слой атмосферы (озоновый слой) фильтрует большую часть ультрафиолетового излучения Солнца, но пропускает часть на поверхность. Затем эта энергия поглощается воздухом и земной корой, согревает нашу планету и обеспечивает организмы источником энергии.

Солнце находится в центре биологических и химических процессов на Земле. Без него жизненный цикл растений и животных закончился бы, циркадные ритмы всех земных существ были бы сорваны, и жизнь на Земле перестала бы существовать. Важность Солнца была признана еще в доисторические времена, и многие культуры рассматривали его как божество (и зачастую помещали его в качестве главного божества в свои пантеоны).


Однако только в последние несколько столетий мы начали понимать процессы, которые питают Солнце. Благодаря постоянным исследованиям физиков, астрономов и биологов, мы теперь можем понять, как Солнце производит энергию и как она проходит через нашу Солнечную систему. Изучение известной Вселенной с ее разнообразием звездных систем и экзопланет также помогает нам провести аналогию с другими типами звезд.

Источник: Hi-News.ru

Общая характеристика

Солнце – это огромный разогретый шар из газа, чей диаметр оценивается в 1,392 млн км. Это в 109 раз больше диаметра нашей планеты. На звезду приходится 99,87% всей массы Солнечной системы.

С Земли кажется, что светило имеет желтый цвет, однако это иллюзия, связанная с влиянием атмосферы нашей планеты на солнечный свет. На самом деле Солнце излучает почти белый свет.

Солнце – это одна из сотен миллиардов звезд галактики Млечный путь. Ближайшая к Солнцу звезда – это Проксима Центавра, находящаяся от неё на расстоянии 4,24 световых лет. Для сравнения – расстояние от Земли до Солнца, принимаемое за астрономическую единицу (а.е.), солнечный свет проходит всего за 8,32 минут.

По астрономической классификации Солнце относится к типу «желтых карликов». Это значит, что оно не так и велико по сравнению с размерами других звезд, но довольно ярко светит. Наше светило входит 15% самых ярких звезд Млечного Пути. Вместе с тем в галактике есть звезды, чей радиус превышает солнечный в 2000 раз!


Источником тепла, излучаемого звездой, являются термоядерные реакции. В центре Солнца атомы водорода сливаются друг с другом, в результате чего образуется атом гелия и некоторое количество энергии. Это реакция называется протон-протонным циклом, на него приходится порядка 98% энергии, вырабатываемой светилом. Однако имеют место и иные реакции, в ходе которых «сгорают» такие элементы, как гелий, углерод, кислород, неон и кремний, а образуются металлы (железо, магний, кальций, никель) и другие элементы (сера). Все эти процессы называют звездным нуклеосинтезом.

Влияние Солнца на окружающие небесные тела огромно. Солнечный ветер (частицы вещества, излучаемого звездой), доминируют в межпланетном пространстве на расстоянии до 100-150 а.е. от светила. Считается, что гравитация нашей звезды определяет орбиты тел, находящихся даже на расстоянии светового года от неё (в облаке Оорта).

Само Солнце также вращается вокруг своей оси. Так как оно состоит из газов, то разные его слои вращаются с разной угловой скоростью. Если в районе экватора период обращения составляет 25 дней, то на полюсах он увеличивается до 34 дней. Более того, последние исследования показывают, что внутренние области совершают оборот значительно быстрее, чем внешняя оболочка.

Таблица «Основные физические характеристики Солнца»


Средний диаметр 1 392 000 км
Длина экватора 4 370 000 км
Масса 1,9885⋅1030 кг (примерно 333 тысячи масс Земли)
Площадь поверхности 6 триллионов км²
Объем 1,41•1018 км³
Плотность 1,409 г/м³
Температура на поверхности 6000° С
Температура в центре звезды 15 700 000° С
Период вращения вокруг своей оси (на экваторе) 25,05 дней
Период вращения вокруг своей оси (на полюсах) 34,3 дня
Наклон оси вращения к эклиптике 7,25°
Минимальное расстояние до Земли 147 098 290 км
Максимальное расстояние до Земли 152 098 232 км
Вторая космическая скорость 617 км/с
Ускорение свободного падения 27,96g
Светимость (мощность излучения) 3,828⋅1026 Вт

Состав Солнца

Основными элементами, из которых состоит наша звезда, являются водород (73,5% солнечной) и гелий (24,9%). На все остальные элементы приходится примерно 1,5%.


Химический состав светила непостоянен – он меняется из-за превращений, происходящих во время термоядерных реакций. На заре своего существования Солнце почти полностью состояло из водорода. В ходе термоядерных реакций этот элемент превращается в гелий, поэтому его массовая доля падает. Гелий также превращается в более тяжелые элементы, однако, однако в целом его доля возрастает. Изменения химического состава звезд оказывают огромное влияние на процессы их эволюции.

Строение Солнца

Конечно, у Солнца, состоящего из газов, нет привычной нам твердой поверхности. Значительную ее часть составляет атмосфера, которая по мере движения к центру светила уплотняется. Тем не менее принято выделять 6 «слоев», из которых состоит звезда. Три из них являются внутренними, а следующие три образуют солнечную атмосферу.

Внутреннее строение Солнца

Внутренняя структура нашей звезды включает следующие слои:

Ядро

В центре светила располагается ядро. Именно в этой области идут термоядерные реакции. Радиус ядра оценивается в 150 тыс. км. Температура здесь не опускается ниже 13,5 млн градусов, а давление доходит до 200 млрд атм. Из-за этого вещество здесь находится в крайне плотном состоянии. Его плотность составляет 150 г/куб. см. Это в 7,5 раз выше плотности золота. Именно такие условия необходимы для протекания термоядерных реакций. Надо понимать, что именно в ядре вырабатывается энергия, которую и излучает Солнце. Все остальные области звезды лишь обогреваются ядром, но сами ее не вырабатывают.


Зона лучистого переноса

Над ядром располагается зона радиации, которую также именуют зоной лучистого переноса. Ее внешняя граница проходит по сфере радиусом 490 тыс. км. Температура постепенно падает от отметки в 7 млн градусов на границе с ядром до 2 млн градусов у внешней границы. Также и плотность вещества снижается с 20 до 0,2 г/куб. см. Тем не менее из-за высокой плотности атомы водорода не могут двигаться. То есть если при нагреве, например, воды ее теплые слои поднимаются на поверхность, перенося туда тепло, то здесь такой механизм не работает – вещество остается неподвижным. Единственный способ энергии пробраться через зону радиации – это длительная цепочка поглощений и излучений фотонов атомами водорода. Из-за этого фотон, возникший при термоядерной реакции в ядре, в среднем «пробирается» наружу через зону радиации примерно 170 тыс. лет!

Зона конвективного переноса

Выше располагается зона конвективного переноса толщиной 200 тыс. км. Здесь плотность уже невысока, и вещество активно перемешивается – нагретые газы поднимаются наверх, отдают тепло, остывают и снова погружаются вниз. Скорость газовых потоков может достигать 6 км/с. Именно это движение порождает магнитное поле Солнца. Температура на поверхности падает до 6000° С, а плотность на три порядка ниже плотности земной атмосферы.

Атмосфера

Атмосфера Солнца состоит из следующих слоев:


Фотосфера

Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700° С.

Хромосфера

Над фотосферой располагается хромосфера – слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы – столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20 000° С.

Корона

Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено, однако температура в ней может достигать нескольких миллионов градусов. На сегодня ученым не удалось полностью объяснить, за счет каких механизмов солнечная корона разогревается до такой температуры. В короне можно наблюдать протуберанцы – выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.

Магнитное поле Солнца

У Солнца есть магнитное поле. Исследователи выделяют глобальное поле звезды и множество локальных полей.

Глобальное поле обладает цикличностью. Его напряженность колеблется с частотой 11 лет, при этом наблюдаются изменения в частоте появления солнечных пятен. Такой цикл называют «циклом Швабе» по фамилии ученого, заметившего ещё в XIX веке, что количество солнечных пятен на поверхности светила меняется циклически. Лишь позже стала очевидна связь этого явления с процессами в зоне конвективного переноса и колебаниями магнитного поля. В начале XX века стало ясно, что за один цикл Швабе полярность магнитного поля меняется на противоположное. То есть Солнцу нужна два 11-летних цикла, чтобы магнитное поле вернулось к начальному состоянию. В связи с этим выделяют 22-летний цикл, известный как «цикл Хейла».

В разных районах Солнца могут наблюдаться и малые, то есть локальные магнитные поля. Их напряженность может в тысячи раз превышать напряженность глобального поля, однако время их существования редко превышает несколько десятков дней. Особенно часто локальные поля наблюдаются в районе солнечных пятен. Дело в том, что эти пятна как раз и являются теми точками, через которые магнитные поля из внутренних областей выходят наружу.

Жизненный цикл Солнца

Возраст Солнца оценивается учеными в 4,5 млрд лет. Сформировалось оно из газопылевого облака, которое постепенно сжималось под действием собственной гравитации. Из этого же облака возникли планеты и почти все остальные объекты в Солнечной системе. Когда в центре сжимающегося облака плотность, а вместе с ней температура и давление выросли до критических значений, началась термоядерная реакция – так зажглось Солнце.

В ходе термоядерных реакций масса Солнца постепенно уменьшается. Каждую секунду 4 млн тон солнечного вещества преобразуется в энергию. Вместе с тем звезда разогревается. Каждый 1,1 млрд лет яркость Солнца увеличивается на 10%. Это значит, что ранее температура на Земле была значительно ниже, чем сейчас, а на Венере, возможно, была жидкая вода или даже жизнь (сейчас средняя температура на поверхности Венеры составляет 464° С). В будущем же яркость Солнца будет возрастать, что будет вести к росту температуры на Земле. Через 3,5 млрд лет яркость светила вырастет на 40%, и условия на Земле станут такими же, как и на Венере. С другой стороны, Марс также разогреется и станет более пригодным для жизни. Таким образом, в ходе эволюции звезды так называемая «зона обитаемости», постепенно удаляется от Солнца.

Постепенно из-за выгорания водорода ядро будет уменьшаться в размерах, а вся звезда в целом – увеличиваться. Через 6,4 млрд лет водород в ядре закончится, радиус звезды в этот момент будет больше современного в 1,59 раз. В течение 700 млн лет звезда расширится до 2,3 современных радиусов.

Далее рост температуры приведет к тому, что термоядерные реакции горения водорода запустятся уже не в ядре, а в оболочке звезды. Из-за этого она резко расширится, и ее внешние слои будут достигать современной земной орбиты. Однако к тому моменту светило потеряет значительную часть своей массы (28%), что позволит нашей планете перейти на более отдаленную орбиту. Солнце в этот период своей жизни, который продлится 10 млн лет, будет являться красным гигантом.

После из-за роста температуры в ядре до 100 млн градусов там начнется активная реакция горения гелия – «гелиевая вспышка». Радиус светила сократится до 10 современных радиусов. На выгорание гелия уйдет порядка 110 млн лет, после чего звезда снова расширится и станет красным гигантом, но эта стадия будет длиться уже 20 млн лет.

Из-за пульсаций, связанных с изменениями температуры Солнца, его внешние слои отделятся от ядра и образуют планетарную туманность. Само же ядро превратится в белый карлик – объект, чьи размеры будут сопоставимы размерами Земли, а масса будет равна половине современной солнечной массы. Далее этот карлик, состоящий из углерода и кислорода, будет постепенно остывать. Никаких термоядерных реакций в белом карлике идти не будет, поэтому со временем (за десятки млрд лет) он превратится в черный карлик – остывшую плотную массу вещества. На этом эволюция Солнца завершится.

Орбита и расположение Солнца в галактике Млечный путь

Солнце вместе со всей Солнечной системой вращается относительно центра Млечного пути, в котором располагается огромная черная дыра. Расстояние от нее до нашего светила составляет 26 тыс. св. лет. Один оборот Солнечная система совершает примерно за 225-250 млн лет. Скорость движения звезды относительно центра галактики составляет 225 км/с.

На сегодня Солнце располагается в рукаве Ориона. Нам повезло с расположением Солнечной системы в Млечном Пути. Дело в том, что скорость вращения нашей системы почти совпадает со скоростью вращения так называемых спиральных рукавов. Из-за этого наша система не попадает в них, хотя большинство других звезд периодически оказываются там. В спиральных рукавах очень сильное излучение, которое способно убить всё живое. Если бы Солнце находилось на другой орбите, оно периодически попадало бы в спиральные рукава, что приводило бы к «стерилизации» жизни на Земле.

Исследование Солнца

Изначально люди относились к Солнцу как к божеству, дающему людям свет. Древние астрономы полагали, что наше светило – это лишь одна из планет, к которым также относили и Луну. Поэтому в честь него, как и в честь других планет, нередко называли дни недели. И сегодня в английском языке воскресенье носит название «Sunday», что переводится как «день Солнца». В 800 г. до н. э. китайцы впервые обнаружили на Солнце пятна.

Аристарх Самосский в III в. до н. э. первым предположил, что именно Земля вращается вокруг Солнца, а не наоборот. Но лишь во времена Коперника и Галилея эта теория была принята научным сообществом. Тогда же начались исследования Солнца с помощью телескопа. Галилей понял, что солнечные пятна – это часть светила. Изучая их, он понял, что звезда вращается вокруг своей оси, и даже смог определить период обращения.

В 1672 г. Д. Кассини смог достаточно точно рассчитать расстояние до светила. Для этого он определял положение Марса на небосводе в Париже и Кайенне (Южная Америка). Он получил значение в 140 млн км.

В XIX в. физики стали изучать спектр солнечного света. Этот метод позволял определить химический состав звезды. В 1868 г. было обнаружено, что в состав светила входит элемент, до того неизвестный человечеству. Его назвали гелием.

Большой загадкой для ученых оставалась природа энергии, излучаемой Солнцем. Выдвигались ошибочные версии, что звезда нагревается за счет падения на нее метеоритов или за счет гравитационного сжатия. Лишь с открытием ядерных реакций физики смогли предположить, что источник солнечного тепла – это термоядерный синтез.

Дальнейшее изучение Солнца связано с развитием космонавтики. С помощью советских аппаратов «Луна-1» и «Луна-2» в 1959 г. был открыт солнечный ветер.

Интересные факты о Солнце

Для любого объекта, излучающего тепло, можно посчитать отношение мощности к его объему. Оказывается, что удельная мощность Солнца примерно в тысячу раз меньше, чем удельная мощность человеческого организма! Это означает, что огромный объем выделяемого светилом тепла в первую очередь объясняется его гигантскими размерами.

Периодически всплески солнечной активности приводят к геомагнитным бурям. Мощнейшая из них произошла в 1859 г. В результате на Земле перестала работать телеграфная связь, а северное сияние наблюдалось даже над Кубой.

Сейчас общепризнанна теория, что Солнце образовалось из газопылевого облака. Однако откуда появилось само облако? Ученые предполагают, что оно является остатком предыдущих звезд. Химический анализ показывает, что Солнце является звездой уже третьего поколения. Это значит, что вещество, из которого состоит светило, ранее входило в состав двух других звезд, уже прекративших существование.

Хотя большинство планет вращаются вокруг Солнца в плоскости эклиптики, экватор самой звезды не совпадает с этой плоскостью, а наклонен на 7°. Эту аномалию до сих пор не удалось объяснить. Возможно, причиной этого является существование ещё одной планеты в Солнечной системе, чья орбита лежит не в плоскости эклиптики, а под углом к ней. Ряд наблюдений подтверждает существование Девятой планеты, но пока что говорить об ее открытии преждевременно.

Список использованных источников

• https://v-kosmose.com/solntse-interesnyie-faktyi-i-osobennosti  • https://postnauka.ru/faq/65260 • http://obshe.net/posts/id345.html • https://www.popmech.ru/science/7853-puteshestvie-iz-tsentra-solntsa-nichto-v-mire-ne-vechno-eto-otnositsya-i-k-svetilu-kotoromu-my-obyaz/#part2 • https://astrogalaxy.ru/042a_Sun.html

Источник: SunPlanets.info

Солнце — самое важное из всех светил для жителей Земли. Оно дает свет и тепло, поддерживая жизнь на нашей планете. Все виды энергии, которыми пользуется человек (за исключением ядерной), имеют своим конечным источником Солнце.

Солнце — одно из двух постоянных светил нашего неба, у которого даже невооруженный глаз различает протяженный диск. И все же мы посмотрим на Солнце в телескоп, чтобы разобраться в видимых элементах его строения.

Кстати, солнечные телескопы — не такие, как те, в которые рассматривают светила ночью. Важной частью солнечного телескопа является подвижное зеркало — целостат. Именно он и поворачивается вслед за суточным движением Солнца, отбрасывая изображение солнечного диска в одном и том же направлении, где установлены приборы для анализа солнечного света. Для обычных светил это неприемлемо, так как при отражении теряется часть излучения, а телескоп призван собрать его как можно больше. Но Солнце излучает так много света, что эти потери для него несущественны.

Первое, что мы замечаем на изображении солнечного диска, — яркость его неравномерная. К краям диск гораздо темнее, чем посередине. Это происходит оттого, что солнечное вещество, излучение которого мы наблюдаем (все очень горячее!), меняет qeoro температуру с глубиной: чем глубже, тем горячее. В центре диска толщина внешнего, менее горячего слоя оказывается незначительной, и мы сквозь него видим яркие горячие внутренние слои. А на краю (Солнце ведь шар, а не диск!) наш взгляд проходит сквозь значительную толщу этих менее горячих слоев и воспринимает это как более темную область.

В хороший телескоп видно, что поверхность Солнца не ровная, а как бы усеяна многочисленными зернами — гранулами, очень недолговечными. Это — горячие массы газа, поднимающиеся из недр Солнца к его поверхности. Ведь горячий газ легче холодного, вот он и поднимается на поверхность. Происходит как бы кипение на видимой поверхности Солнца — ее называют фотосферой.

На диске есть и совсем «темные» области, их называют солнечными пятнами. Пятна бывают совсем маленькими («поры»), а бывают огромными — больше размеров нашей Земли. Это области относительно низких температур — около 4500° (средняя температура фотосферы около 6000°). Исследования показали, что пятна — это места выхода силовых линий магнитного поля на поверхность Солнца. Магнитные поля подавляют перемешивание, проявляющееся в грануляции, горячее вещество не поступает из недр, и температура понижается.

Перемещение пятен по диску со временем показывает, что Солнце вращается. Но поскольку это не твердое тело, а газовый шар, то и вращение у него особенное — разные слои имеют разную скорость вращения. Быстрее других вращаются экваториальные области — один оборот за 27 суток.

Источником энергии, излучаемой Солнцем, являются термо — ядерные реакции, протекающие в его недрах. В центре Солнца огромные давления и температуры — до 15 миллионов градусов! Это создает условия для того, чтобы ядра водорода — самого обильного на Солнце химического элемента — объединялись в ядра другого элемента — гелия, выделяя при этом много энергии. Многократно преобразуясь, энергия просачивается к поверхности Солнца и уходит с нее в окружающее космическое пространство в виде электромагнитного излучения, в том числе — как свет и тепло. И этот процесс идет уже пять миллиардов лет — с того момента, как в Галактике вспыхнула звезда Солнце. Но он, конечно, не бесконечен — ядерное горючее хотя и медленно, но истощается, и еще через пять миллиардов лет на Солнце начнутся необратимые преобразования. Внешние слои станут охлаждаться, а вся звезда — «разбухать», превращаясь в красный гигант. Потом — сброс оболочки, белый карлик, остывание… На стадии красного гиганта современная орбита Земли окажется внутри звезды. Означает ли это гибель человечества в результате катастрофы? Наверное, нет: пять миллиардов лет — чудовищно огромный срок, за это время могут произойти всякие события.

А не произойдут — так можно успеть что-нибудь придумать…

Источник: zen.yandex.ru

1. Излучение Солнца и солнечная постоянная. Земной шар перехватывает ничтожную часть всей энергии, излучаемой Солнцем. Зная размер Земли и ее расстояние от Солнца, можно подсчитать, какова ее доля. Она составляет 1 : 2 000 000 000. Измерив же количество солнечной энергии, падающей на Землю, можно подсчитать и полную энергию излучения Солнца.

Солнечной постоянной называется количество солнечной энергии, падающей за одну минуту на 1 (кв см) земной поверхности, перпендикулярной к солнечным лучам при среднем расстоянии от Земли до Солнца. При измерении солнечной постоянной учитывается частичное поглощение солнечного излучения в земной атмосфере. Солнечная постоянная составляет 1,94 калории в минуту на 1 (кв см) и устанавливается измерением нагревания воды за определенное время в особом зачерненном сосуде, подвергнутом нагреванию солнечными лучами.

Зная величину солнечной постоянной, расстояние до Солнца и его размер, можно подсчитать температуру поверхности Солнца. Результат находится в согласии с другими способами ее определения. Эти данные показывают, что энергия Солнца так велика, что если Солнце окружить слоем льда толщиной 14 ж, то излучаемое им тепло могло бы растопить всю эту ледяную кору за одну минуту.

2. Солнечная деятельность и пятна. Темные пятна чаще всего наблюдаются к северу и к югу от солнечного экватора. Они появляются и через несколько дней или недель, реже — через несколько месяцев, распадаются. Пятна — это участки фотосферы, где газы охлаждены до 4500° и кажутся темными лишь по контрасту с более горячей и оттого более яркой окружающей поверхностью. Здесь газы совершают медленное и сложное движение, находясь в сильном магнитном поле, которое временами возникает в областях, где появляются пятна.

Пятна часто встречаются парами. Оказывается, в таких парах в одном полушарии Солнца переднее (по вращению Солнца) пятно имеет магнетизм одной полярности (например, южной), а другое — противоположной полярности. В другом полушарии Солнца распределение полярности магнетизма во всех парах пятен противоположное. Так длится около 11 лет, после чего полярность в парах пятен двух полушарий Солнца меняется.

С 11-летним периодом меняется также число пятен и величина площади, занятой ими, а также число наблюдаемых протуберанцев и многие другие явления на Солнце, например форма солнечной короны. В среднем через каждые 11 лет число пятен, площадь, занятая пятнами, и число протуберанцев достигают максимума, и так же чередуются их минимумы. Полярность пятен меняется в год минимума.
Солнечные пятна, часто появляющиеся группами, по площади нередко гораздо больше, чем площадь сечения земного шара. Вблизи пятен чаще всего появляются истечения горячих газов из более глубоких слоев Солнца. В таких активных областях — областях сильных горизонтальных и вертикальных течений газов в магнитном поле — время от времени возникают так называемые хромосферные вспышки. Это небольшие области, в которых под действием магнитных сил быстро возникает огромное сжатие газов. Вследствие этого температура газа быстро повышается, и он временно излучает гораздо больше энергии, в том числе света. При этом возникает и усиленный поток невидимых глазом ультрафиолетовых лучей, а также потоки мельчайших частиц, с большой скоростью покидающих Солнце.

Испускаемые Солнцем лучи и покинувшие его быстро летящие частицы оказывают заметное влияние на некоторые явления в земной атмосфере. Так, с усилением солнечной деятельности увеличивается на Земле число магнитных бурь (довольно быстрых и значительных колебаний стрелки компаса), число полярных сияний, ухудшается прием радиопередач!

3. Полярные сияния. Полярные сияния в виде колеблющихся светлых, часто цветных лучей или полос в северном полушарии бывают видны ночью в северной стороне неба тем лучше и чаще, чем дальше от экватора Земли находится наблюдатель. Но иногда они бывают видны даже на широте Северной Африки. В южном полушарии Земли такие же полярные сияния видны в южной стороне неба.
Наука выяснила, что в соответствии с гениальным предвидением М. В. Ломоносова полярные сияния представляют собой холодное электрическое свечение земной атмосферы на высотах в сотни километров над Землей.

Природа этого свечения сходна с природой свечения разреженного газа в газосветных трубках под действием электрического тока в газе. В высоких слоях земной атмосферы разреженный воздух светится от бомбардировки его мельчайшими частицами, которые выбрасываются из активных областей Солнца. Магнитное поле земного шара отклоняет эти частицы, когда они приближаются к Земле, так что эти частицы попадают в нашу атмосферу преимущественно вблизи магнитных полюсов Земли. Вот почему полярные сияния происходят чаще всего именно там. Частицы, выбрасываемые Солнцем и бомбардирующие нашу атмосферу, меняют ее электропроводность и другие свойства, от которых зависят сила и частота радиоприема.

Само Солнце и его корона испускают радиоволны. Мощность этого излучения сильно колеблется.

Влияние изменений солнечного излучения на ряд явлений на Земле весьма многосторонне, но изучено пока недостаточно.

4. Значение излучения Солнца и источники его энергии. Все сказанное выше подтверждает взаимосвязь явлений во Вселенной. Изучение Солнца необходимо и для практических целей — для более точного предсказания погоды, влияющей на все народное хозяйство, для борьбы с помехами при радиопередачах и т. д. Поэтому в СССР широко поставлено изучение солнечных явлений и их воздействия на Землю. Такова одна из практических сторон астрономии.

К сожалению, мы не знаем причин еще многих явлений на Солнце, в частности причин периодичности в его деятельности. Но человек научился предвидеть наступление некоторых явлений. Теперь уже даются полезные указания о необходимых изменениях в радиопередаче на коротких волнах для улучшения радиосвязи.

Источником энергии Солнца и звезд являются так называемые ядерные реакции в недрах Солнца и звезд. Эти реакции возможны лишь при температурах в десятки миллионов градусов. Они приводят к тому, что водород постепенно превращается в гелий, причем выделяется огромное количество энергии. Запасов водорода на Солнце хватит еще на много миллиардов лет. С тех пор как на Земле возникла жизнь, излучение энергии Солнца заметно не изменилось. Поэтому вопрос об исчерпании источников солнечной энергии не имеет для человечества ни малейшего практического значения.

Большое практическое значение имеет другое — более полное использование солнечной энергии, получаемой Землей. В этом направлении достигнуто еще очень мало, хотя за последние годы построен ряд установок с большими зеркалами, концентрирующими солнечное тепло для нагревания воды, например для паровых машин и даже для плавильных печей, в которых достигается температура до 3000°. Построены также опреснители, сушилки и тому подобные установки, использующие солнечную энергию.

Аккумулировать солнечную энергию можно и другими путями, превращая ее в энергию электрохимическую. Такого рода использование солнечной энергии применяется на советских искусственных спутниках Земли и на космических ракетах.
 

Источник: astronom-us.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.