Современные исследования солнечной системы 5 класс кратко


Солнечной системой называют систему небесных тел, в состав которой входит Солнце и множество других астрономических объектов, вращающихся вокруг него. Это планеты, спутники планет, астероиды и другие тела. Солнечная система не уникальна, на сегодняшний день обнаружены тысячи других планетных систем. Располагается Солнечная система в галактике Млечный путь, в районе, известном как Рукав Ориона.

До сих пор не единого мнения о том, где следует проводить границы нашей планетной системы. Ряд ученых предлагают учитывать влияние солнечного ветра на межзвездное пространство. Там, где ветер останавливается межзвездным веществом, проходит граница, которую называют гелиопаузой. Гелиопауза находится на расстоянии примерно в 113–120 астрономических единиц (а.е.) от Солнца.

Однако некоторые астрономы выделяют ещё и гравитационную границу Солнечной системы, или сферу Хилла. Она ограничивает участок космического пространства, в котором солнечная гравитация преобладает над гравитацией других звезд. Для Солнца такая сфера имеет радиус примерно в световой год, или 63 тыс а.е.

Структура и состав


Главным телом в Солнечной системы является, естественно, Солнце. На него приходится 99,86% массы всей Солнечной системы. На сегодняшний день достоверно известно о 8 планетах, вращающихся вокруг светила. Из них ближайшие четыре относятся к планетам земного типа, а следующие четыре являются газовыми гигантами. Между этими двумя группами располагается пояс астероидов, который называют главным, а за орбитой Нептуна, последнего газового гиганта, находится ещё одно скопление астероидов, пояс Койпера.

В 2006 году был введен новый термин – карликовая планета. Они похожи на обычные планеты, а отличаются только тем, что на их орбите есть другие крупные тела. На 2019 год 5 объектов получили статус карликовых планет, но, по оценкам астрономов, их может быть значительно больше.

В состав планетной системы включают и спутники, вращающиеся вокруг планет. Некоторые из них, например, Ганимед и Титан, настолько велики, что превосходят по размерам Меркурий, самую маленькую из планет.

Солнце

Солнце – это одна из сотни миллиардов звезд Млечного пути. Его диаметр равен примерно 1,4 млн км, то есть он более чем в 100 раз превышает диаметр Земли. Масса светила оценивается в 2•10³º кг. Эта огромная величина, которая больше массы Земли в 333 тыс раз.

На поверхности Солнца температура составляет 5500° С. Однако над поверхностью есть область, которая называется короной. Интересно, что ее температура может достигать 1,5 млн градусов. До сих пор непонятен механизм, из-за которого солнечная корона так сильно нагревается.


В центре светила располагается ядро диаметром 300 тыс км. Температура здесь оценивается в 13,5 млн градусов, а давление доходит до 200 млрд атм. Столь экстремальные условия являются необходимыми для реакции термоядерного синтеза. В ходе нее атомы водорода объединяются и превращаются в гелий, а также выделяется тепло. Именно этот процесс и является основным источником тепла для всей Солнечной системы.

На сегодняшний день в Солнце состоит на 73,4% из водорода и на 24,9% из гелия. Понятно, что в ходе термоядерного синтеза водород исчезает (каждую секунду расходуется более 4 млн тонн этого элемента), поэтому раньше его доля в составе звезды была больше, в будущем же она будет сокращаться.

Планеты Солнечной системы

Плоскость, в которой лежит орбита Земли, называется эклиптикой. С высокой степенью точности можно утверждать, что орбиты всех остальных планет лежат в этой же плоскости, максимальное отклонение в 7° наблюдается у Меркурия. При этом все планеты крутятся в одну сторону, что является косвенным доказательством того факта, что когда-то всё вещество Солнечной системы было единым целым.

Движение планет хорошо описывается законами Кеплера. Согласно им, орбиты представляют собой эллипсы, в одном из фокусов которого располагается Солнце. Ближайшая к звезде точка орбиты называется перигелием, а наиболее отдаленная носит название афелий. Скорость движения планет меняется. Она возрастает при приближении к перигелию и падает при приближении к афелию. Планеты, расположенные ближе к светилу, совершают один оборот за меньший промежуток времени.


Планеты не только вращаются вокруг звезды, но и крутятся относительно собственной оси вращения. Условно считают, что 1 поворот вокруг звезды соответствует году на планете, а поворот вокруг собственной оси соответствует одним суткам. Так, на юпитерианские сутки равны примерно 10 часам, а юпитерианский год равен 11,86 земным годам.

Внутренние планеты

Планеты земной группы объединяет то, что они имеют твердую оболочку, над которой сразу начинается атмосфера. Их размеры относительно невелики, и у них либо очень мало спутников, либо их вообще нет. У землеподобных планет нет колец, как у Сатурна. Состоят планеты в основном из твердых пород и тяжелых элементов: кислорода, железа, кремния. Считается, что в центре каждой планеты земной группы находится металлическое ядро, окруженное мантией, в которой преобладает кремний. На поверхности же располагается относительно тонкая кора.

Меркурий

Ближайшей к Солнцу планетой является Меркурий, среднее расстояние между этими небесными телами равно 58 млн км. Помимо этого, Меркурий также является самой маленькой и самой быстрой планетой. На поворот вокруг Солнца он тратит 87,969 суток (земных), а меркурианский день длится 58,646 суток. Можно заметить, что на 2 поворота вокруг звезды приходится в точности 3 поворота планеты вокруг собственной оси. Радиус Меркурия составляет 2439,7 км, а масса оценивается в 0,055 земных масс. Естественных спутников у Меркурия нет.


Венера

Следующей планетой от Солнца является Венера. По своим габаритам она наиболее близка к Земле, поэтому ее называют «сестрой Земли». Радиус планеты составляет 6050 км, что составляет 95% от земного радиуса. Масса Венеры на 18,5% меньше земной. Расстояние от Венеры до светила колеблется от 107,5 до 108,2 млн км. При этом на поверхности Венеры жарче, чем даже на Меркурии. Средняя температура доходит до 477° С, при этом ее колебания незначительны. Столь высокий показатель связан с очень плотной атмосферой, состоящей на 96% из углекислого газа. Плотность атмосферы столь высока, что у поверхности давление достигает 93 атм. Если бы у Венеры была бы земная атмосфера, то температура на ней не превышала бы 80° С. Спутников у Венеры нет, однако есть теория, что ранее Меркурий был таковым.

Земля

Третьей планетой от Солнца является Земля, родина человечества. Расстояние от нее до Солнца колеблется от 147 до 152 млн км. Среднее значение этой величины равно 149,6 млн км и используется в астрономии в качестве единицы измерения расстояний – астрономической единицы (а. е.). Средний радиус Земли составляет 6371 км, а масса нашей планеты оценивается величиной 5,97•1024 кг. От планет земной группы Землю отличает наличие очень крупного спутника – Луны, радиусом 1737 км.


Марс

Последняя землеподобная планета – Марс. Расстояние между ним и Солнцем меняется от 206 до 249 млн км. Масса Красной планеты в 10 раз меньше земной, а радиус равен 3389,5 км. Сутки на Марсе длятся 24 часа и ещё 37 минут, а длительность марсианского года составляет 687 суток. У Красной планеты есть два спутник – Фобос и Деймос, однако они крайне малы по сравнению с Луной. Так, Фобос, крупнейших из них, имеет неправильную форму и габариты 26,8х22,4х18,4 км.

Внешние планеты

Внешние планеты Солнечной системы являются так называемыми газовыми гигантами. Они очень велики по своим размерам (в сравнении с Землей) и не имеют твердой поверхности, на которую хотя бы теоретически мог бы высадиться человек. Значительную их часть составляет атмосфера, которая на низких высотах из-за роста давления превращается в жидкость. При этом четкой границы между жидким океаном и атмосферой нет. Под океаном в условиях ещё более высокого давления находится твердое ядро.

Состоят планеты-гиганты в основном из водорода, его доля колеблется от 80% у Нептуна и до 96% у Сатурна. Вторым по распространенности является гелий. На все остальные элементы приходится не более 1-3%.

У всех планет-гигантов много спутников, крупнейшие из которых по размерам превышают габариты карликовых планет. Также вокруг каждой планеты-гиганта есть кольца, которые заметнее всего у Сатурна.

Юпитер

Ближайший к солнцу газовый гигант – Юпитер.


о крупнейший после Солнца объект в Солнечной системе, чей средний радиус оценивается в 69911 км. Он превосходит по своей массе Землю в 318 раз. Год длится на Юпитере 11,86 земных лет, а оборот вокруг оси Юпитер совершает за 10 часов. Радиус орбиты Юпитера колеблется от 740 до 816 млн км. На сегодня достоверно известно о 79 спутниках Юпитера, однако их общее количество наверняка больше 100. Среди них выделяются Ганимед, Ио, Европа и Каллисто. Они были открыты в 1610 г. Галилеем и стали самыми первыми спутниками других планет, открытыми астрономами.

Сатурн

За Юпитером располагается орбита Сатурна. Радиус Сатурна оценивается в 58232 км, а масса составляет 95,2 земных масс. Перигелий Сатурна находится на расстоянии 1,353 млрд км от нашего светила, а афелий удален от него на 1,513 млрд км. Сутки на Юпитере длятся 10 часов, а продолжительность сатурианского года составляет 29,5 земных лет. На 2019 г. известно о 82 спутниках планеты, крупнейшим из которых является Титан (радиус 2576 км). Доказано, что на поверхности Титана есть озера и реки, но заполнены они не водой, а метаном и этаном.

Уран

Следующая планета Солнечной системы – Уран. Расстояние от Урана до Солнца колеблется от 2,75 до 3 млрд км. Его радиус составляет 25362 км, а масса превышает земную в 14,5 раз. Сутки на Уране длятся 17 часов, а год – 84 земных года. На сегодняшний день у планеты обнаружено 27 спутников, самым крупным из них является Титания (радиус 788 км).


Нептун

Самая дальняя из известных на сегодня планет Солнечной системы – это Нептун. Он находится на расстоянии 1,45-4,52 млрд км от Солнца. Масса Нептуна превышает земную в 17,1 раз, а радиус составляет 24622 км. один день на планете почти 16 часов, а год – 164,79 земных года. Нептун, как и Уран, относят к особому классу газовых гигантов – ледяным гигантам. Они значительно меньше Юпитера и Сатурна, а в их составе велика доля льда, метана, аммиака и сероводорода. У Нептуна 14 спутников, но лишь один из них, Тритон, является крупным. Его радиус равен 1353 км.

Девятая планета

Возможно ли, что за орбитой Нептуна есть ещё планеты Солнечной системы, которые до сих пор не обнаружены астрономами? Поразительно, но это действительно так. Расчеты показывают некоторые аномалии в распределении тел в поясе Койпера. Их можно объяснить существованием ещё одной планеты. В 2014 г. такое предположение высказали астрономы Чедвик Трухильо и Скотт Шепард, а в 2016 г. эти результаты были подтверждены Майклом Брауном и Константином Батыгиным. Существование этой планеты пока не доказано, а для ее наименования используется термин «Девятая планета». Предполагается, что ее масса примерно в 10 раз больше земной, а на полный поворот вокруг Солнца она тратит 10-20 тыс. лет. Орбита Девятой планеты представляет собой сильно сплюснутый эллипс, поэтому расстояние от планеты до звезды меняется в пределах от 30 до 180 млрд км. При этом плоскость орбиты гипотетической планеты не лежит в плоскости эклиптики, а наклонена на 30°. Вероятно, она не формировалась также, как остальные планеты, а была захвачена Солнцем из другой планетной системы.


Подтвердить существование Девятой планеты можно только визуальным наблюдением, однако расчеты не помогают даже приблизительно оценить ее местоположение. Известна только приблизительная орбита этого тела. Из-за этого, а также из-за удаленности планеты от Земли и медленной скорости движения обнаружить ее чрезвычайно сложно.

Межпланетное пространство

До сих пор нет единого мнения, где проходит граница между атмосферой планеты и межпланетным пространством (космосом). Для Земли принято, что эта граница проходит на уровне 100 либо 122 км.

Солнце излучает поток частиц, известный как солнечный ветер. Именно им и заполнено межпланетное пространство Солнечной системы. Он состоит из электронов, протонов и других ионов. Этот ветер буквально сдувает атмосферы Венеры и Марса, в результате чего эти планеты постепенно медленно теряют ее. Земную атмосферу от ветра защищает мощное магнитное поле.

Другие объекты

Ранее считалось, что в Солнечной системе 9 планет, потому что Плутон (радиусом 1188 км), находящийся на расстоянии 4,4-7,4 млрд км от Солнца, также имел статус планеты. Поначалу считалось, что он по размерам близок к Марсу, однако каждый раз при его исследовании оценки его размеров уменьшались. Вместе с тем в начале 2000-х годов астрономы стали находить вблизи него ряд других массивных небесных тел, сопоставимых с ним по размерам. Одно из них, Эрида, и вовсе превосходило Плутон по массе. Стало ясно, что либо все эти тела надо считать, как и Плутон, планетой, либо Плутон должен лишиться этого звания. В 2006 году был введен термин карликовая планета. Этот статус и присвоили Плутону, а также ещё 4 объектам: Церере, Эридне, Макемаке и Хаумеа. Также за орбитой Нептуна есть ещё несколько десятков небесных тел, которые вскоре могут получить этот статус.


Все карликовые планеты, кроме Цереры, располагаются в поясе Койпера. Это облако из астероидов, располагающееся за орбитой Нептуна. Помимо него есть ещё один пояс астероидов, который называют главным. Он располагается между Марсом и Юпитером. Именно там и располагается Церера. Его называют главным, так как объекты в нем были открыты значительно раньше, чем в поясе Койпера. Так, Цереру обнаружили ещё в 1801 г, а Плутон только в 1930 г. Однако на самом деле общая масса объектов в поясе Койпера в 20-200 раз больше, чем в главном поясе.

В отдельную группу ученые выделяют астероиды, которые располагаются между орбитами Юпитера и Нептуна. Их называют кентаврами. Самый большой из кентавров, Харикло, имеет радиус в 129 км.

Помимо астероидов астрономы выделяют и такие небесные тела, как кометы. Они выделяются наличием хвоста из пыли и газа. На сегодня известно более 6000 комет в Солнечной системе. Они также вращаются вокруг Солнца, но по очень вытянутой эллиптической траектории. У некоторых из них период обращения измеряется тысячами лет. Их орбиты не так стабильны, как у крупных тел. Считается, что большинство из них ранее находились в облаке Оорта.

Предполагается, что за поясом Койпера, на расстоянии в 50-100 тыс. а.е., может находиться ещё одно скопление небесных тел, которое называют облаком Оорта. Расстояние до облака Оорта почти в 1000 раз больше расстояния до пояса Койпера. Пока что найдено только 5 тел, которые гипотетически могут быть отнесены к облаку Оорта.


Образование и эволюция Солнечной системы

На сегодняшний день в науке доминирует небулярная гипотеза, согласно которой Солнечная система сформировалась из газопылевого облака. Этот процесс начался 4,57 млрд лет назад. Под действием сил гравитации частицы этого облака притягивались друг к другу, в результате чего облако постепенно сокращалось в размерах. Вместе с тем увеличивалась скорость его вращения, а в центре росла плотность вещества, температура и давление.

Примерно за 50 млн лет количество водорода в центре облака и температура там выросли до таких значений, при которых началась реакция термоядерного синтеза. Так появилось Солнце.

Параллельно с этим сформировался протопланетный диск, из которого со временем возникли все планеты Солнечной системы. В нем образовывались планетезимали. Которые со временем слипались друг с другом и образовывали планеты.

Те планеты, которые формировались близко к светилу, разогревались им, поэтому там такие вещества, как вода, аммиак и метан, не переходили в твердое состояние. Планеты-гиганты формировались на удалении от звезды, где было настолько холодно, что эти вещества отвердевали.

Изначально Земля была раскаленной и не имела твердой коры. При этом более твердые вещества опускались в жидкой земле вниз, к центру, а более легкие поднимались наверх. Со временем Земля остыла, из-за чего возникла кора. Аналогично развивались другие землеподобные планеты.

Считается, что Луна появилась в результате столкновения Земли с другой планетой, которую называют Тейя. В результате часть вещества Земли была выброшена на ее орбиту и со временем сформировала спутник.

Термоядерные реакции в Солнце ускоряются, из-за чего за каждый миллиард лет она увеличивает яркость примерно на 10%. Ожидается, что в течение 3,5 млрд лет этот процесс будет продолжаться, в результате чего яркость светила вырастет на 40%.

Далее в Солнце закончится водород. Это произойдет примерно через 7,7 млрд лет. Солнце начнет превращаться в красного гиганта и резко расширяться. В результате оно поглотит Меркурий и Марс, а также, возможно, и Землю. В дальнейшем Солнце превратится в белый, а потом и черный карлик. При этом оно сократится в размерах, а также перестанет излучать тепло в окружающий мир

Открытие и исследование

Первые представления о Солнечной системе появились в глубокой древности. Разные цивилизации (египтяне, шумеры, китайцы, майя и т.д.) наблюдали за небом и знали о существовании первых шести планет солнечной системы. Естественно, люди, наблюдая за Солнцем с Земли, видели, что оно вращается вокруг нашей планеты, а не наоборот. Поэтому первоначально человечество придерживалось геоцентрической картины мира, в которой Земля находилась в центре Солнечной системы. При этом траектории движения планет были очень сложными, некоторые из них могли повернуть свое движение вспять.

Лишь в XVI веке Николай Коперник объяснил эти аномалии тем, что планеты, в том числе и Земля, вращаются вокруг Солнца, а Земля также вращается вокруг своей оси. Его теория именуется гелиоцентрической картиной мира. Параллельно с этим стали развиваться средства наблюдения за космосом. Первый телескоп был создан в 1607 г. В 1610 г. Галилей совершил первое значительное открытие небесных тел. Ему удалось обнаружить 4 крупнейших спутника Юпитера и тем самым подтвердить правоту Коперника. В 1655 г. у Сатурна был обнаружен спутник Титан, а к 1686 г. Джованни Кассини открыл ещё 4 спутника этой планеты.

Следующее важное открытие произошло в 1781 г., когда Уильям Гершель обнаружил седьмую планету – Уран. В 1801 г. был найден первый астероид – Церера.

Расчеты показывали, что Уран движется по орбите не так, как того требует ньютоновская механика. Было сделано предположение, что за ним находится ещё одна планета, названная в будущем Нептуном. В 1846 г. она сначала была найдена теоретически, а только потом ее визуально наблюдал Иоганн Галле.

В 1930 г. был обнаружен Плутон. Сначала он был назван десятой планетой, однако со временем стало ясно, что он не одинок на своей орбите. В 1992 году было доказано существование пояса Койпера, которому и принадлежит Плутон, а в начале 2000-х в нем был найден ряд небесных тел, которые вместе с Плутоном в 2006 г. были признаны карликовыми планетами.

Развитие космонавтики сыграло огромную роль в исследовании Солнечной системы. В 1959 г. советский космический аппарат «Луна-1» впервые в истории преодолел гравитационное поле Земли и обследовал Луну. В дальнейшем аппараты были отправлены ко всем планетам Солнечной системы, а также к ряду спутников, астероидов, комет. «Вояджер-1», запущенный в 1977 г, уже исследует район гелиопаузы.

Единственным объектом Солнечной системы, на который высаживался человек, является Луна. Всего в 1969-1972 г. было осуществлено 6 высадок на спутник Земли.

Интересные факты

На Меркурии наблюдается интересный феномен, известный как эффект Иисуса Навина. Дело в том, что вблизи перигелия скорость вращения планеты вокруг звезды возрастает настолько сильно, что становится больше скорости вращения Меркурия вокруг собственной оси. В этот период времени наблюдателю на планете будет казаться, что Солнце пошло по небосводу в обратном направлении. Можно даже увидеть, как оно сначала восходит в одной точке, а потом там же и заходит. Название эффекта связано с тем, что в Библии Иисус Навин смог остановить движение Солнца.

Наблюдения за Солнечной системой сыграли огромную роль в развитии физики. Именно благодаря им Ньютон сформулировал закон всемирного тяготения и создал всю классическую механику, которую и называют ньютоновской. Однако в 1859 г. было замечено, что фактическая орбита Меркурия отклоняется от теоретической, построенной с помощью классической механики. В результате это подтолкнуло физиков к созданию принципиально другой теории гравитации, известной сегодня как общая теория относительности.

В июле 1994 году астрономы впервые в истории наблюдали столкновение двух тел солнечной системы. Комета Шумейкеров – Леви 9 упала на Юпитер. Комета представляла собой 21 фрагмент, диаметр каждого из них составлял около 2 км. В результате столкновения выделилась энергия, оцениваемая в 6 триллионов тонн в тротиловом эквиваленте.

6 из 8 планет вращаются вокруг своей оси в том же направлении, что и вокруг Солнца. Исключение – Венера и Уран. Венера вращается в противоположном направлении, а ось Урана почти лежит в плоскости эклиптики. В результате каждый полюс Урана освещается Солнцем в течение 42 лет, после чего погружается в темноту на следующие 42 года.

В 1921 г. У Сатурна неожиданно исчезли его кольца. В прессе появились опасения, что некоторые частицы этих колец летят на Землю. На самом же деле кольца просто повернулись ребром к Земле, а потому их не было видно.

Список использованных источников

• https://ru.wikipedia.org/wiki/Солнечная_система  • https://spacegid.com/planetyi-nashey-s-vami-solnechnoy-sistemyi.html#i-8 • https://v-kosmose.com/puteshestvie-po-solnechnoy-sisteme/ • http://solarviews.com/eng/solarsys.htm • https://www.nationalgeographic.com/science/space/our-solar-system/

Источник: SunPlanets.info

С давних времён люди наблюдали за небом и пытались составить себе представление о том, что они на нём видели. Самые заметные объекты на небе — это, конечно же, Солнце и Луна. Звёзды и планеты выглядят всего лишь маленькими светящимися точками. Однако, наблюдая за изменением положения этих точек, древние наблюдатели обратили внимание на то, что в то время, как большая часть этих точек (т. е. звёзды) не меняют своего положения на небе относительно друг друга, участвуя лишь в круговом движении, которое вызвано вращением Земли вокруг своей оси, некоторые светящиеся точки перемещаются по небу весьма сложным образом. Так ещё в древности люди стали различать планеты и звёзды.
Астрономические наблюдения имели очень большое значение в древности. Именно на основе наблюдений за небом, изучения закономерностей движения Солнца и Луны люди смогли создать первые календари, научиться вести счёт времени и предсказывать различные природные явления. Из далёкой древности до наших времён дошли впечталяющие сооружения, которые построили древние для того, чтобы с их помощью опеределять точное положение светил.
Важным этапом в истории развития представлений о Солнечной системе стали достижения древнегреческой астрономии. Древние греки не только установили факт шарообразности Земли, вычислив даже её примерные размеры, но и занялись созданием теории планетного движения. Среди дрвенегреческих астрономов были как те, которые выступали за геоцентрическую модель мира, так и те, которые правильно полагали, что в центре Солнечной системы находится Солнце, а Земля и другие планеты вращаются вокруг Солнца. Наиболее значительным трудом, суммировавшим достижения древнегреческой астрономии, стал «Альмагест». Автором его был древнегреческий астроном Птолемей, который разработал собственную довольно сложную модель мира, которая, несмотря на то, что была геоцентрической, позволяла рассчитывать положение планет с большой точностью.
Теория Птолемея стала господствующей в представлениях человечества на многие века, вплоть до Эпохи Возрожденья, при этом геоцентрическая система мира поддерживалась и защищалась католической церковью, которая боролась со всеми, сомневающимися в её правильности. В 15 в. Европе начинается пробуждение науки, которое затронуло в том числе и астрономию. Коперник вновь выдвигает теорию, согласно которой Земля и остальные планеты вращаются вокруг Солнца. Эта теория натолкнулась на жёсткое противодействие католической церкви, которая обвиняла её сторонников в ереси, а одного из её видных последователей — Джордано Бруно инквизиция даже сожгла на костре. Однако, несмотря на все усилия, враги науки не могли остановить прогресс. В начале 17 в. Кеплер, опиравшийся на наблюдения Тихо Браге, установил законы движения планет. Он открыл, в частности, что планеты обращаются вокруг Солнца не по круговым, а по эллиптическим орбитам. Высочайшая точность, с которой теория Кеплера могла предсказывать движения планет, не оставляла сомнений в справедливости гелиоцентрической модели. Законы Кеплера, в свою очередь, стали одним из источников, которые привели Ньютона к созданию механики — первой научной теории Нового Времени, которая описывала закономерности движения тел. С созданием теории Ньютона законы движения планет получили чёткое научное обоснование.
С древних времён человечеству было известно 5 планет, видимых на небе невооружённым глазом. Это — Меркурий, Венера, Марс, Юпитер и Сатурн. О других планетах Солнечной системы и спутниках планет не было известно ничего, пока Галилео Галилей не изобрёл телескоп. Появление телескопа сразу привело к бурному росту астрономических открытий. Сам Галилей с помощью своего телескопа открыл горы на Луне, пятна на Солнце и четыре крупнейших спутника Юпитера — Ио, Ганнимед, Европу и Каллисто. Это произошло в 1610 году. На протяжении 17 в. были открыты ещё несколько крупных спутников, например, спутник Сатурна Титан. Первая новая планета — Уран — была случайно открыта в 1781 г. Уильямом Гершелем. В 1846 г. был открыт Нептун, причём уже не случайно, а на основании расчётов учёных, которые предсказали существование ещё одной планеты Солнечной системы на основании того влияния, которое она своей гравитацией оказывала на движение Урана. На протяжении 18, 19 и начала 20 в. с помощью всё более мощных наземных телескопов продолжали открывать спутники планет, в 19 в. были открыты, например, два спутника Марса — Фобос и Деймос, а кроме этого, в самом начале 19 в. было положено начало открытию множества малых планет — астероидов, которые, хотя и не были спутниками других планет и самостоятельно обращались вокруг Солнца, но были слишком малы, чтобы считать их настоящими планетами.
Новый старт астрономическим открытиям был дан началом космической эры.
В 1957 г. СССР запустил первый спутник. И почти сразу космические аппараты были направлены для исследования других планет Солнечной системы. Долгие годы люди могли наблюдать за небесными телами лишь с поверхности Земли, но даже самые лучшие наземные телескопы не позволяли сделать каких-либо выводов о том, каковы условия на других планетах, как протекают на них природные процессы, есть ли на них жизнь и т. д. — узнать это стало возможным лишь с началом исследований космоса при помощи космических аппаратов.
Первые аппараты были направлены к Луне. В 1959 г. Луна-2 впервые достигла поверхности Луны, а Луна-3 сфотографировала обратную сторону Луны, которую до тех пор никто не видел. Затем были направлены аппараты к Венере и Марсу. Американские «Маринеры» получили фотографии этих планет с близкого расстояния, советская станция «Венера-7» впервые получила достоверные данные о климате Венеры, а «Венера-9» в 1975 г. стала первым космическим аппаратом, который смог совершить посадку на поверхность другой планеты и передать на Землю изображение её поверхности.
Хотя после запуска первого спутника многие надеялись на начало быстрого освоения других планет, до сих пор единственной попыткой людей добраться до поверхности другого небесного тела является программа «Апполон», осуществлённая на рубеже 70-х, в ходе которой американцы несколько раз слетали к Луне и высадились на её поверхность. СССР использовал автоматические станции для исследования поверхности Луны — они доставили с Луны на Землю пробы грунта, а «Луноход» стал первым аппаратом, способным передвигаться по поверхности, за время своей миссии он смог исследовать довольно обширный участок лунной поверхности. В конце 90-х маленькие аппараты, подобные «луноходу», были отправлены американцами на Марс и использовались для исследования его поверхности (подробнее о луноходах и марсоходах).
Существенный вклад в расширение знаний о дальних планетах Солнечной системы принесли миссии космических аппаратов «Пионер-10» и «Пионер-11», и, особенно, «Вояджеров». Удачно пролетев вблизи всех больших планет — Юпитера, Сатурна, Урана и Нептуна, они смогли передать на Землю фотографии крупным планом этих планет и некоторых их спутников, а также открыли множество новых небольших спутников этих планет.

Источник: www.sites.google.com

Планеты земной группы и спутник Земли

Планеты земной группы. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Планеты земной группы. Автор24 — интернет-биржа студенческих работ

Меркурий.

Меркурий является ближайшей планетой к Солнцу.

В 1973 году был запущен американский зонд «Маринер-10», с помощью которого впервые удалось составить достаточно надёжные карты поверхности Меркурия. В 2008 году было заснято впервые восточное полушарие планеты.

Однако, Меркурий остаётся на момент 2018 года самой малоизученной планетой земной группы – Венерой, Землёй и Марсом. Меркурий отличается малым размером, непропорционально крупным расплавленным ядром и имеет в наличии менее окисленный материал, чем его соседи.

В октябре 2018 года ожидается запуск к Меркурию миссии Bepi Colombo, совместного проекта Европейского и Японского космического агентства. Итогом семилетнего путешествия должно стать изучение всех особенностей Меркурия и анализ причин появления таких особенностей.

Готовые работы на аналогичную тему

  • Курсовая работа Исследование планет Солнечной системы 470 руб.
  • Реферат Исследование планет Солнечной системы 220 руб.
  • Контрольная работа Исследование планет Солнечной системы 250 руб.

Венера.

Венера была исследована более 20 космическими аппаратами, преимущественно советским и американским. Рельеф планеты удалось увидеть при помощи радиолокационного зондирования поверхности планеты космическими аппаратами «Пионер-Венера» (США, 1978 г.), «Венера-15 и -16» (СССР, 1983-84 гг.) и «Магеллан» (США, 1990-94 гг.).

Наземная радиолокация позволяет «увидеть» только 25% поверхности, причем с гораздо меньшим разрешением деталей, чем способны космические аппараты. Например, «Магеллан» получил изображения всей поверхности с разрешением в 300 м. Оказалось, что большая часть поверхности Венеры занята холмистыми равнинами.

Из последних исследований Венеры отметим миссию Европейского Космического Агентства Venus Express по исследованию планеты и особенностей её атмосферы. Наблюдение за Венерой проходило с 2006 по 2015 год, в 2015 году аппарат сгорел в атмосфере. Благодаря этим исследованиям была получена картина южного полушария Венеры, а также получена информация о недавней вулканической активности гигантского вулкана Идунн, имеющего диаметр 200 километров.

Луна.

Первым объектом пристального внимания со стороны землян стала Луна.

Ещё в 1959 и 1965 году советские аппараты «Луна – 3» и «Зонд – 3» впервые сфотографировали невидимое с Земли «темное» полушарие спутника.

В 1969 году на Луну впервые высадились люди. Самым известным из американских астронавтов, побывавшем на Луне, является Нил Амстронг. Всего на Луне побывало 12 американских экспедиций с помощью космических кораблей «Аполлон». В результате исследований на Землю было привезено около 400 килограммов лунной породы.

Впоследствии, из-за гигантских затрат на лунную программу, пилотируемые человеком полёты на Луну прекратились. Исследования Луны стали проводиться с помощью автоматических и управляемых с Земли космических аппаратов.

В последние четверть века происходит новый этап изучения Луны. В результате исследований космических аппаратов «Клементина» в 1994 году, «Лунар Проспектор» в 1998-1999, и «Смарт-1» в 2003-2006 году земные исследователи смогли получить более новые и уточнённые данные. В частности, были обнаружены залежи предположительно водяного льда. Большое количество этих залежей было обнаружено вблизи полюсов Луны.

А в 2007 году наступил черед китайских космических аппаратов. Таким аппаратом стал «Чаньэ-1», который был запущен 24 октября. 8 ноября 2008 года на лунную орбиту был выведен уже индийский космический аппарат «Чандрайян 1». Луна является одной из главных целей в освоении человечеством ближнего космоса.

Марс.

Следующей целью земных исследователей является планета Марс. Первым исследовательским аппаратом, который положил начало изучению Красной планеты, был советский зонд «Марс- 1». Согласно данным американского аппарата «Маринер – 9» полученным в 1971 г. удалось составить подробные карты поверхности Марса.

Что касается современных исследований, отметим следующие изыскания. Так, в 2008 году космическим аппаратом «Феникс» удалось впервые произвести бурение поверхности и обнаружить лёд.

А в 2018 году радар MARSIS, который установлен на борту орбитального аппарата Европейского космического агентства «Mars Express», смог предоставить первые доказательства того, что на Марсе есть жидкая вода. Этот вывод следует из обнаруженного на южном полюсе озера немалых размеров скрытое подо льдом.

Планеты-гиганты

Планеты-гиганты. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Планеты-гиганты. Автор24 — интернет-биржа студенческих работ

Юпитер.

Впервые Юпитер был исследован с близкого расстояния в 1973 году с помощью советского зонда «Пионер-10». Важное значение для изучения Юпитера имели и полёты американских аппаратов «Вояджер», осуществляемые в 1970-е годы.

Из современных исследований отметим такой факт. В 2017 году команда американских астрономов, во главе с Скоттом С. Шеппардом, занимаясь поисками потенциальной девятой планеты за пределами орбиты Плутона случайно обнаружили новые луны у Юпитера. Таких лун оказалось 12. В итоге количество спутников Юпитера увеличилось до 79.

Сатурн.

В 1979 году космический аппарат «Пионер -11» исследуя окрестности Сатурна, смог обнаружить новое кольцо у планеты, измерить температуру атмосферы и выявить границы магнитосферы самой планеты.

В 1980 г. аппарат «Вояджер-1» передал впервые ясные снимки колец Сатурна. Из этих снимков стало ясно, что кольца Сатурна состоят из тысяч отдельных узких колечек. Также было найдено 6 новых спутников Сатурна.

Наибольший вклад в изучение планеты гиганта внёс космический аппарат «Кассини», проработавший на орбите Сатурна с 2004 по 2017 год. С помощью его удалось установить, в частности, из чего состоит верхняя атмосфера Сатурна и особенности ее химического взаимодействия с материалами, которые поступают от колец.

Уран.

Планета Уран была открыта в 1781 году астрономом В. Гершелем. Уран является ледяным гигантом.

В 1977 году удалось обнаружить, что у Урана также есть свои кольца.

Нептун.

Нептун является планетой-гигантом и первой планетой, открытой с помощью математических вычислений.

Единственным пока аппаратом, побывавшим там, является «Вояджер -2». Он прошёл около Нептуна в 1989 году, что позволило увидеть некоторые детали атмосферы планеты, а также гигантский антициклон, размером с Землю в южном полушарии.

Планеты-карлики

К планетам-карликам относятся те небесные тела, которые обращаются вокруг Солнца и имеют достаточную массу для поддержания собственной сферической формы. Такие планеты не являются спутниками иных планет, но и не могут в отличие от планет расчистить свою орбиту от прочих космических объектов.

К карликовым планетам относятся такие объекты как Плутон, исключенный из списка планет, Макемаке, Церера, Хаумеа и Эрида.

Планеты-карлики. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Планеты-карлики. Автор24 — интернет-биржа студенческих работ

Планета Девять

20 января 2016 года астрономы, работающие в Калифорнийском технологическом институте, Константин Батыгин и Майкл Браун выдвинули гипотезу о предполагаемом существовании массивной транснептуновой планеты находящейся за пределами орбиты Плутона. Однако, до настоящего момента планету Девять обнаружить не удалось.

Планета Девять. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Планета Девять. Автор24 — интернет-биржа студенческих работ

Источник: spravochnick.ru

Путешествия зонда «Новые горизонты»

Межпланетная станция New Horizons, созданная НАСА, помогла исследователям изучить наиболее отдаленные области нашей звездной системы. Первоначально миссией аппарата было изучение Плутона и его спутника Харона, однако это программа была закончена еще в 2015 году. Следующими целями «Новых горизонтов» стали пояс Койпера и границы гелиосферы (гелиопаузы).

Аппарат имеет размеры 2,2×2,7×3,2 и массу в полтонны. Он оснащен жидкостным ракетным двигателем и резервуаром для топлива на 77 кг. На станции установлены ультрафиолетовый спектрометр, камеры высокого разрешения, радиоспектрометр, анализатор солнечного ветра и детектор пыли. Максимальная скорость передачи данных 38 кбит/с, максимальная скорость полета — 58*103км/ч.

Зонд «Новые горизонты» был запущен 19 января 2006 года. Сейчас он отдалился от Солнца на расстояние 43,5 а.е. Основные открытия и исследования Солнечной системы, проведенные межпланетной станцией New Horizons:

  • Получение снимков Юпитера и его спутников в высоком разрешении.
  • Получение детальных снимков нептунианского спутника Тритона.
  • Наблюдение за Плутоном и Хароном (с января 2015 года): получение снимков высокого разрешения, обнаружение на Плутоне залежей метанового льда, исследование поверхностного слоя мелких частиц на Хароне.
  • Изучение транснептуновых объектов: астероидов (486958) 2014 MU69, 2011 KW48, 2014 PN70, 2014 OS393, (15810) Араун, 1994 JR1, (50000) Квазар. «Новые горизонты» передал на Землю снимки данных объектов, а также сведения об их строении и составе.
  • Съемка галактик  IC 1048 и UGC 09485.
  • Обнаружение «водородной стены» на границе гелиосферы.
  • Исследование ТНО «Ultima Thule» (2014 MU69), расположенного на расстоянии 43,4 а.е. от Солнца.

Исследования Луны

Казалось бы, естественный спутник Земли уже давно изучен. На нем даже побывали американские астронавты. Однако, даже у ближайшей земной соседки остается еще много тайн, разгадка которых поможет дополнить современное представление о Солнечной системе.

18 июня 2009 года был запущен LCROSS (Lunar CRater Observation and Sensing Satellite) – космический аппарат, созданный НАСА для изучения кратеров Луны. 9 октября того же года в районе южного лунного полюса зонд LCROSS сбросил разгонный блок «Центавр». С поверхности земного спутника поднялось облако пыли высотой в 1,6 километра, куда упал сам аппарат. По пути он собирал и анализировал частицы лунной пыли.

Данные полученные станцией, были очень интересны. Доля воды в подповерхностном слое лунного грунта оказалось равной 8%. Кроме того, в больших количествах  были найдены ртуть и серебро. По мнению ученых, вода и металлы были занесены на Луну кометами и метеоритами. Ранее эти вещества находились в грунте спутника лишь в следовых количествах. LCROSS же помог исследователям изучить прошлое Луны и ее взаимодействие с другими космическими телами.

Еще одним значимым событием в исследовании Луны стал спуск планетохода на ее «темную» сторону. В рамках Лунной программы Китая к спутнику Земли была запущена станция  «Чанъэ́-4», на борту которой находился луноход. Его прилунение состоялось в начале 2019 года. Миссией аппарата является исследование кратеров и поверхности незримой стороны Луны.

Изучение астероидов

Изучение астероидов является значимой частью современных исследований Солнечной системы. Анализируя состав и строение этих объектов можно изучить прошлое нашей системы, а также других уголков галактики. Кроме того, астероиды гипотетически могут стать сырьевой базой для Земли. Ведь они богаты различными минералами и другими полезными ископаемыми.

Японская межпланетная станция Хаябуса-2 была запущена 3 декабря 2014 года. Ее целью является изучение околоземного астероида (162173) Рюгу. На данный момент зонд уже достиг поверхности небесного тела и проводит изучение его грунта. Возвращение Хаябуса-2 на Землю планируется в 2020 году.

Другой космический аппарат OSIRIS-REx, созданный НАСА, на данный момент изучает поверхность околоземного астероида (101955) Бенну. Этот объект входит в список астероидов, представляющих наибольшую  опасность  для Земли.

На пути к Солнцу

Изучение Солнца – задача крайне непростая. Любой аппарат, приближаясь к нему, попадает под действие экстремально высоких температур и зашкаливающих доз излучения. Поэтому большинство миссий по изучению небесного светила оканчивались провалом.

Солнечный зонд Паркер, созданный НАСА, был запущен для изучения верхних слоев солнечной атмосферы. На данный момент он приблизился к звезде на рекордные 15 млн. км. Телескопы и анализаторы, которыми оснащен Паркер, будут передавать на Землю информацию о гелиосфере, солнечном ветре и магнитных полях звезды. Кроме того, на пути к Солнцу зонд совершил 7 пролет вокруг Венеры, попутно делая снимки этой планеты.

Все проведенные исследования помогли ученым составить  наиболее современное представление о Солнечной системе. Все больше утверждается правдивость небулярной теории происхождения Солнца и объектов, вращающихся вокруг него. Обнаруживаются новые тела и даже целые карликовые планеты на значительном удалении от небесного светила. Изучено взаимодействие планет и их спутников. Но вся информация о космосе, которой мы владеем на данный момент, составляет миллионные доли процента от того, что нам еще предстоит узнать.

Источник: spaceworlds.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.