Образование планетных систем кратко


1

Первые идеи о том, как могла сформироваться Солнечная система, были высказаны еще в XVII-XVIII веке. До сих пор эта общая идеология формирования планетной системы часто называется теорией Канта-Лапласа, по имени тех ученых, которые впервые более или менее её четко сформулировали. Это представление о том, что Солнечная система образовалась из газо-пылевого диска, который вращался вокруг Солнца. И в результате того, что этот диск становился все более плоским, он постепенно разбивался на фрагментики, которые в свою очередь превращались в планеты. В таком виде образование Солнечной системы представлялось до 50-х годов. В 50-е годы оно из образной фазы перешло в фазу более точного, более численного научного исследования. Сегодня мы можем с гордостью говорить о том, что основоположником современных представлений об образовании планет является советский ученый Виктор Сергеевич Сафронов. И хотя основная идеология была сформулирована Шмидтом, в научном плане эти представления были развиты Сафроновым и его учениками.

2


Согласно идеям, высказанным Сафроновым, в газо-пылевом диске, который окружает молодую звезду, пылинки начинают постепенно слипаться между собой, превращаться во все более и более крупные тела, которые достигают сначала метровых, а потом километровых размеров. На этом этапе они приобретают специальное имя — планетезимали. Дальнейшая агломерация планетезималей приводит к тому, что в планетной системе образуются гигантские тела — планеты. При этом протосолнечная система по температурному режиму оказывается разделена на две области: ближе к звезде, там, где достаточно горячо из-за ее излучения, не могут конденсироваться льды, не могут конденсироваться в твердое вещество вода, аммиак, другие газы, поэтому там возможно образование только каменных планет. И, соответственно, эти планеты получаются менее массивными, потому что для их образования доступно меньше вещества. За снеговой линией возможна конденсация льдов, возможно образование более массивных тел, и там мы имеем массивные планеты — планеты-гиганты. Эта картина очень красиво описывает Солнечную систему. Мало того, что она объясняет, почему у нас 4 каменных планеты и 4 планеты-гиганта, она объясняет еще и химический состав пояса астероидов. Эта граница называется снеговой линией и в Солнечной системе проходит по поясу астероидов. И оказывается, что те астероиды, которые находятся внутри снеговой линии, действительно, менее богаты водой, водяным льдом, чем астероиды, которые находятся за снеговой линией, дальше от Солнца, чем это нужно для конденсации водяного льда.


3

Очень логичная и стройная картина существовала до 90-х годов, однако именно в этот период было сделано несколько открытий, которые прямо или косвенно затрагивали наше представление об образовании планет. Во-первых, это открытие пояса Койпера, во-вторых, открытие первых коричневых карликов, в-третьих, начало первых прямых наблюдений протопланетных дисков у других звезд, и, конечно, самое главное — это открытие внесолнечных планет.

Первая внесолнечная планета была открыта в 1995 году. Сейчас их число уверенно приближается к тысяче. И именно с открытием внесолнечных планетных систем мы начали понимать, что Солнечная система далеко не типична среди планетных систем в нашейГалактике. Нельзя сказать, что она имеет совершенно уникальные характеристики, но она, как минимум, представляет собой не единственный возможный вариант. Соответственно, теории, которые разрабатывались для объяснения существования Солнечной системы, нуждаются в каких-то поправках, поскольку они не способны объяснить все многообразие планетных систем, которые нам сейчас известны. Поэтому, начиная с середины 90-х годов, наши представления об образовании планет претерпели довольно-таки существенную эволюцию.


4

Основные новшества, которые пришлось ввести в уже существующие к 90-ым годам теории, связаны с тем, что среди внесолнечных планет оказалось очень большое количество так называемых горячих юпитеров. Это планеты-гиганты, массы которых иногда значительно превышают массу Юпитера и которые обращаются на очень небольшом расстоянии от своих звезд. У многих из них орбиты находятся ближе к их звездам, чем в Солнечной системе орбита Меркурия находится к Солнцу. Согласно прежним объяснениям, Юпитер должен образоваться далеко от Солнца, за снеговой линией. В новой ситуации мы имеем те же самые массивные планеты, но на расстояниях в сотые доли астрономической единицы от звезды. Традиционные представления объяснить данное явление были не в состоянии. Еще одна проблема, с которой пришлось столкнуться людям, которые занимаются изучением образования планет, — это обнаруженное с тех пор очень короткое время жизни протопланетных дисков. Благодаря тому, что мы умеем измерять возраст звезд, мы можем измерять возраст и протопланетных дисков у этих звезд. И оказывается, что протопланетные диски живут не более 10 миллионов лет. Тогда как в стандартном варианте, в варианте Сафронова, для образования планет требуются сотни миллионов лет. Такого времени у молодой планетной системы нет: планету нужно образовать за несколько млн. лет, потом диск просто прекращает существовать, рассеивается вещество протопланетного диска.


5

В настоящее время есть два подхода к образованию планетных систем. Один из них — это развитие подхода Сафронова, так называемая модель аккреции на ядро. Согласно этой модели, сначала образуется некая заготовка планеты, зародыш, каменное ядро, на которое потом аккрецирует газ, и образуется уже планета-гигант наподобие Юпитера, Сатурна или внесолнечных планет-гигантов. В этом случае существует проблема возраста, и люди, которые разрабатывают эту модель, сейчас пытаются каким-то образом ускорить этот модельный процесс, понять, как он может идти не сотни миллионов лет, а всего несколько миллионов лет.

Второй вариант связан с попытками объяснить образование планет в протопланетном диске тем же механизмом, который приводит и к образованию звезд — гравитационной неустойчивостью. Другими словами, если диск достаточно массивен и в нем достаточно много вещества, в нем могут образовываться какие-то неоднородности, которые будут сжиматься под действием собственной тяжести. Если они будут достаточно массивны, они будут падать внутрь себя, коллапсировать и превращаться в массивные планеты. У такого процесса нет проблемы возраста: гравитационная неустойчивость может приводить к тому, что планеты типа Юпитера будут образовываться за тысячу лет, за десять тысяч лет. Такое время образования планеты — мгновение даже по сравнению с небольшими возрастами протопланетных дисков. Но пока создателям этой модели не удается объяснить, каким образом сжимающееся вещество успевает остыть.
ло в том, что при сжатии вещество разогревается и эту избыточную энергию необходимо куда-то сбрасывать. Однако пока неизвестно, как этот сброс энергии может происходить так быстро. Именно поэтому в научной среде преимущество сейчас имеет первая, сафроновская теория образования планет, согласно которой образование планеты происходит в два этапа: образование каменного ядра, которое потом либо становится либо самостоятельной планетой земного типа, либо затравкой для планеты-гиганта: потом на него уже выпадает вещество из протопланетного диска и образуется планета-гигант.

6

Слипание пылинок на самом раннем этапе происходит под воздействием физических и химических сил, то есть, они просто прилипают друг к другу. На этом раннем этапе пылинки слишком малы, чтобы они могли гравитационно воздействовать друг на друга. Здесь есть такой интересный момент: на пылинках в межзвездной среде образуется ледяная мантия, которая состоит, в основном, из оксида углерода, воды и аммиака. Под воздействием излучения звезды в этой ледяной мантии могут происходить химические реакции, которые приводят к образованию более сложных органических соединении, которые имеют «липкие» свойства. То есть, пылинки могут обрастать такими органическими мантиями, благодаря чему они будут очень хорошо прилипать друг к другу, и это облегчит образование будущей планеты. Когда эти мега-пылинки вырастают до размеров порядка одного километра, между ними начинает действовать гравитация. Далее пылинки (планетезимали) начинают объединяться друг с другом за счет взаимного притяжения.

Исследования Солнечной системы: состояние и перспективы. Зеленый Л.М., Захаров А.В., Ксанфомалити Л.В. Успехи физических наук, том 179, стр. 1118–1140 (2009)

7

Изучение образования планетных систем связано с двумя трудностями. Во-первых, планетная система, которую мы знаем очень хорошо, — наша Солнечная система — существует уже четыре с половиной миллиарда лет. Мы не знаем, какие её свойства являются врожденными, а какие благоприобретенными. Другими словами, мы не знаем, что именно нам надо образовать, что сначала появилось, а что добавилось в Солнечную систему потом. Вторая трудность состоит в том, что нам пока очень сложно наблюдать другие планетные системы. Сегодня в этой сфере существуют очень значительные наблюдательные продвижения. Запускаются специальные космические телескопы, телескоп «COROT», телескоп «Кеплер», которые специально нацелены на поиск других планетных систем и, в первую очередь, на поиск планет, которые по своим свойствам были бы похожи на Землю. Второе продвижение связано с тем, что осенью 2011 года в Чили начал работать телескоп субмиллиметрового диапазона «ALMA», интерферометр, обладающий очень высоким угловым разрешением.


его помощью мы впервые получим возможность исследовать детальную структуру протопланетных дисков, тех объектов, из которых потом формируются планетные системы. Есть надежда, что благодаря «Альме» мы сможем впервые наблюдать в подробностях начало процесса образования планет, начиная от слипания пылинок и заканчивая образованием планетезималей. До этого мы не имели возможности детального изучения протопланетных дисков: смотрели на них только как на целое, но не знали, что происходит внутри, и вынуждены были догадываться об этом.

Источник:postnauka.ru

Источник: cosmos.mirtesen.ru

    В масштабах космоса планеты — всего лишь песчинки, играющие незначительную роль в грандиозной картине развития природных процессов. Однако это наиболее разнообразные и сложные объекты Вселенной. Ни у одного из других типов небесных тел не наблюдается подобного взаимодействия астрономических, геологических, химических и биологических процессов. Ни в одном из иных мест в космосе не может зародиться жизнь в том виде, как мы ее знаем. Только в течение последнего десятилетия астрономы обнаружили более 200 планет. Поразительное разнообразие масс, размеров, состава и орбит заставило многих задуматься об их происхождении.
1970-е гг. формирование планет считалось упорядоченным, детерминированным процессом — конвейером, на котором аморфные газово-пылевые диски превращаются в копии Солнечной системы. Но теперь нам известно, что это хаотичный процесс, предполагающий различный результат для каждой системы. Родившиеся планеты выжили в хаосе конкурирующих механизмов формирования и разрушения. Многие объекты погибли, сгорев в огне своей звезды, или были выброшены в межзвездное пространство. У нашей Земли могли быть давно потерянные близнецы, странствующие ныне в темном и холодном космосе.

Образование планетных систем кратко
ЮНАЯ ПЛАНЕТА-ГИГАНТ захватывает газ из диска вокруг новорожденной звезды
Образование планетных систем кратко
ЮНАЯ ПЛАНЕТА-ГИГАНТ

    Наука о формировании планет лежит на стыке астрофизики, планетологии, статистической механики и нелинейной динамики. В целом планетологи развивают два основных направления. Согласно теории последовательной аккреции, крошечные частицы пыли слипаются, образуя крупные глыбы.
ли такая глыба притянет к себе много газа, она превращается в газовый гигант, как Юпитер, а если нет — в каменистую планету типа Земли. Основные недостатки данной теории — медлительность процесса и возможность рассеяния газа до формирования планеты.
    В другом сценарии (теория гравитационной неустойчивости) утверждается, что газовые гиганты формируются путем внезапного коллапса, приводящего к разрушению первичного газово-пылевого облака. Данный процесс в миниатюре копирует формирование звезд. Но гипотеза эта весьма спорная, т.к. предполагает наличие сильной неустойчивости, которая может и не наступить. К тому же астрономы обнаружили, что наиболее массивные планеты и наименее массивные звезды разделены «пустотой» (тел промежуточной массы просто не существует). Такой «провал» свидетельствует о том, что планеты — это не просто маломассивные звезды, но объекты совершенно иного происхождения.
    Несмотря на то что ученые продолжают спорить, большинство считает более вероятным сценарий последовательной аккреции. Про него и расскажем.



    Наша Солнечная система находится в Галактике, где около 100 млрд звезд и облака пыли и газа, в основном — остатки звезд предыдущих поколений. В данном случае пыль — это всего лишь микроскопические частицы водяного льда, железа и других твердых веществ, сконденсировавшиеся во внешних, прохладных слоях звезды и выброшенные в космическое пространство. Если облака достаточно холодные и плотные, они начинают сжиматься под действием силы гравитации, образуя скопления звезд. Такой процесс может длиться от 100 тыс. до нескольких миллионов лет.


Образование планетных систем кратко
Даже гигантские планеты начинались со скромных тел — микронных пылинок (пепел давно умерших звезд), плавающих во вращающемся газовом диске. С удалением от новорожденной звезды температура газа падает, проходя через «линию льда», за которой вода замерзает. В нашей Солнечной системе эта граница отделяет внутренние твердые планеты от внешних газовых гигантов.

   (1) Частицы сталкиваются, слипаются и растут.
   (2) Малые частицы увлекает газ, но те, что больше миллиметра, тормозятся и по спирали движутся к звезде.
   (3) У линии льда условия таковы, что сила трения меняет направление. Частицы стремятся слипнуться и легко объединяются в более крупные тела — планетезимали.

    Еще лет десять назад ученые, изучающие формирование планет, основывали свои теории на единственном примере — нашей Солнечной системе. Но теперь обнаружены десятки рождающихся и десятки уже сформировавшихся планетных систем, причем среди них нет двух одинаковых.
    Основная идея ведущих теорий формирования планет такова: мелкие пылинки слипаются и захватывают газ. Но эти процессы сложны и запутанны. Борьба конкурирующих механизмов может привести к совершенно различным результатам.

КЛУБКИ КОСМИЧЕСКОЙ ПЫЛИ

    Каждую звезду окружает диск из оставшегося вещества, которого достаточно для образования планет. Молодые диски в основном содержат водород и гелий. В их горячих внутренних областях частицы пыли испаряются, а в холодных и разреженных внешних слоях частицы пыли сохраняются и растут по мере конденсации на них пара. Астрономы обнаружили много молодых звезд, окруженных такими дисками. Звезды возрастом от 1 до 3 млн лет обладают газовыми дисками, в то время как у тех, что существуют более 10 млн лет, наблюдаются слабые, бедные газом диски, поскольку газ «выдувает» из него либо сама новорожденная звезда, либо cоседние яркие звезды. Этот диапазон времени как раз и есть эпоха формирования планет. Масса тяжелых элементов в таких дисках сравнима с массой данных элементов в планетах Солнечной системы: довольно сильный аргумент в защиту того факта, что планеты образуются из таких дисков.
    Результат: новорожденная звезда окружена газом и крошечными (микронного размера) частицами пыли.



    Частицы пыли в протопланетном диске, хаотически двигаясь вместе с потоками газа, сталкиваются друг с другом и при этом иногда слипаются, иногда разрушаются. Пылинки поглощают свет звезды и переизлучают его в длинноволновом инфракрасном диапазоне, передавая тепло в самые темные внутренние области диска. Температура, плотность и давление газа в целом снижаются с удалением от звезды. Из-за баланса давления, гравитации и центробежной силы скорость вращения газа вокруг звезды меньше, чем у свободного тела на таком же расстоянии.
    В результате пылинки размером более нескольких миллиметров опережают газ, поэтому встречный ветер тормозит их и вынуждает по спирали опускаться к звезде. Чем крупнее становятся эти частицы, тем быстрее они движутся вниз. Глыбы метрового размера могут сократить свое расстояние от звезды вдвое всего за 1000 лет. Приближаясь к звезде, частицы нагреваются, и постепенно вода и другие вещества с низкой температурой кипения, называемые летучими веществами, испаряются. Расстояние, на котором это происходит, — так называемая «линия льда», — составляет 2–4 астрономических единицы (а.е.). В Солнечной системе это как раз нечто среднее между орбитами Марса и Юпитера (радиус орбиты Земли равен 1 а.е.).
    Линия льда делит планетную систему на внутреннюю область, лишенную летучих веществ и содержащую твердые тела, и внешнюю, богатую летучими веществами и содержащую ледяные тела. На самой линии льда накапливаются молекулы воды, испарившиеся из пылинок, что служит пусковым механизмом для целого каскада явлений. В этой области происходит разрыв в параметрах газа, и возникает скачок давления. Баланс сил заставляет газ ускорять свое движение вокруг центральной звезды. В результате попадающие сюда частицы оказываются под влиянием не встречного, а попутного ветра, подгоняющего их вперед и останавливающего их миграцию внутрь диска. А поскольку из его внешних слоев продолжают поступать частицы, линия льда превращается в полосу его скопления.
    Скапливаясь, частицы сталкиваются и растут. Некоторые из них прорываются за линию льда и продолжают миграцию внутрь; нагреваясь, они покрываются жидкой грязью и сложными молекулами, что делает их более липкими. Некоторые области настолько заполняются пылью, что взаимное гравитационное притяжение частиц ускоряет их рост. Постепенно пылинки собираются в тела километрового размера, называемые планетезималями, которые на последней стадии формирования планет сгребают почти всю первичную пыль. Увидеть сами планетезимали в формирующихся планетных системах трудно, но астрономы могут догадываться об их существовании по обломкам их столкновений.
    Результат: множество километровых «строительных блоков», называемых планетезималями.


    Покрытые кратерами поверхности Меркурия, Луны и астероидов не оставляют сомнения в том, что в период формирования планетные системы похожи на стрелковый тир. Взаимные столкновения планетезималей могут стимулировать как их рост, так и разрушение. Баланс между коагуляцией и фрагментацией приводит к распределению по размерам, при котором мелкие тела в основном отвечают за площадь поверхности системы, а крупные определяют ее массу. Орбиты тел вокруг звезды вначале могут быть эллиптическими, но со временем торможение в газе и взаимные столкновения превращают орбиты в круговые.
    Вначале рост тела происходит в силу случайных столкновений. Но чем больше становится планетезималь, тем сильнее ее гравитация, тем интенсивнее она поглощает своих маломассивных соседей. Когда массы планетезималей становятся сравнимы с массой Луны, их гравитация возрастает настолько, что они встряхивают окружающие тела и отклоняют их в стороны еще до столкновения. Этим они ограничивают свой рост. Так возникают «олигархи» — зародыши планет со сравнимыми массами, конкурирующие друг с другом за оставшиеся планетезимали.

Образование планетных систем кратко
Планетезимали сталкиваются и слипаются.
Образование планетных систем кратко
Некоторые тела растут быстрее других. Они возмущают орбиты прочих тел
Образование планетных систем кратко
Зародыши вычерпывают строительный материал и перестают расти
Миллиарды километровых планетезималей, сформировавшихся на стадии 2, собираются затем в тела размером с Луну или Землю. Небольшое их количество господствует в своих орбитальных зонах. Эти «олигархи» среди зародышей борются за оставшееся вещество.
РОСТ ОЛИГАРХОВ

    Зоной питания каждого зародыша служит узкая полоса вдоль его орбиты. Рост прекращается, когда зародыш поглотит большую часть планетезималей из своей зоны. Элементарная геометрия показывает, что размер зоны и продолжительность поглощения возрастают с удалением от звезды. На расстоянии 1 а.е. зародыши достигают массы 0,1 массы Земли в течение 100 тыс. лет. На расстоянии 5 а.е. они достигают четырех земных масс за несколько миллионов лет.

ГИГАНТСКИЙ СКАЧОК ДЛЯ ПЛАНЕТНОЙ СИСТЕМЫ
Формирование такого газового гиганта, как Юпитер, — важнейший момент в истории планетной системы. Если такая планета сформировалась, она начинает управлять всей системой. Но чтобы это произошло, зародыш должен собирать газ быстрее, чем он движется по спирали к центру
Образование планетных систем кратко
Формированию гигантской планеты мешают волны, которые она возбуждает в газе. Действие этих волн не уравновешивается, тормозит планету и вызывает ее миграцию в сторону звезды.
Образование планетных систем кратко
Планета притягивает газ, но он не может осесть, пока не остынет. А за это время она может довольно близко по спирали подойти к звезде. Гигантская планета может сформироваться далеко не во всех системах.
ГИГАНТСКИЙ СКАЧОК ДЛЯ ПЛАНЕТНОЙ СИСТЕМЫ

    Зародыши могут стать еще больше вблизи линии льда или на краях разрывов диска, где концентрируются планетезимали. Рост «олигархов» заполняет систему излишком тел, стремящихся стать планетами, но лишь немногим это удается. В нашей Солнечной системе планеты хотя и распределены по большому пространству, но они близки друг к другу насколько это возможно. Если между планетами земного типа поместить еще одну планету с массой Земли, то она выведет из равновесия всю систему. То же самое можно сказать и о других известных системах планет. Если вы видите чашку кофе, заполненную до краев, то можете быть почти уверены, что кто-то ее переполнил и разлил немного жидкости; маловероятно, что можно до краев наполнить емкость, не разлив ни капли. Настолько же вероятно, что планетные системы в начале своей жизни обладают большим количеством вещества, чем в конце. Некоторые объекты выбрасываются из системы прежде, чем она достигнет равновесия. Астрономы уже наблюдали свободно летающие планеты в молодых звездных скоплениях.
    Результат: «олигархи» — зародыши планет с массами в диапазоне от массы Луны до массы Земли.



    Вероятно, Юпитер начинался с зародыша, сравнимого по размеру с Землей, а затем накопил еще около 300 земных масс газа. Такой внушительный рост обусловлен различными конкурирующими механизмами. Гравитация зародыша притягивает газ из диска, но сжимающийся к зародышу газ выделяет энергию, и чтобы осесть, он должен охлаждаться. Следовательно, скорость роста ограничена возможностью охлаждения. Если оно происходит слишком медленно, звезда может сдуть газ обратно в диск прежде, чем зародыш образует вокруг себя плотную атмосферу. Самым узким местом в отводе тепла является перенос излучения сквозь внешние слои растущей атмосферы.

ИСТОРИЯ РОЖДЕНИЯ МИРОВ
Основываясь на радиоизотопной датировке метеоритов и наблюдениях околозвездных дисков, ученые воссоздали историю формирования планет:
    от 0 до 100 тыс. лет — в центре диска формируется звезда, и в ней начинается ядерный синтез.
    от 100 тыс. до 2 млн лет — пылинки слипаются в планетные зародыши с массами от лунной до земной.
    2 млн лет — формируется первый газовый гигант и выметает астероиды первого поколения.
    10 млн лет — газовый гигант стимулирует формирование других гигантов и планет земного типа. К этому времени газа почти не осталось.
    800 млн лет — перегруппировка планет продолжается порядка 1 млрд. лет после своего начала
ИСТОРИЯ РОЖДЕНИЯ МИРОВ

    Поток тепла там определяется непрозрачностью газа (в основном зависит от его состава) и градиентом температуры (зависит от начальной массы зародыша). Ранние модели показали, что зародыш планеты для достаточно быстрого охлаждения должен иметь массу не менее 10 масс Земли. Такой крупный экземпляр может вырасти лишь вблизи линии льда, где ранее собралось много вещества. Возможно, поэтому Юпитер расположен как раз за этой линией. Крупные зародыши могут образоваться и в любом другом месте, если диск содержит больше вещества, чем обычно предполагают планетологи. Астрономы уже наблюдали немало звезд, диски вокруг которых в несколько раз плотнее предполагавшихся ранее. Для крупного образца перенос тепла не представляется серьезной проблемой.
    Другой фактор, затрудняющий рождение газовых гигантов, — движение зародыша по спирали к звезде. В процессе, называемом миграцией I-го типа, зародыш возбуждает волны в газовом диске, которые в свою очередь гравитационно воздействуют на его движение по орбите. Волны следуют за планетой, как тянется за лодкой ее след. Газ на внешней стороне орбиты вращается медленнее зародыша и влечет его назад, тормозя движение. А газ внутри орбиты вращается быстрее и тянет вперед, ускоряя его. Внешняя область обширнее, поэтому она выигрывает битву и заставляет зародыш терять энергию и опускаться к центру орбиты на несколько астрономических единиц за миллион лет. Эта миграция обычно прекращается у линии льда. Здесь встречный газовый ветер превращается в попутный и начинает подталкивать зародыш вперед, компенсируя его торможение. Возможно, еще и поэтому Юпитер находится именно там, где он находится.
    Рост зародыша, его миграция и потеря газа из диска происходят почти в одном и том же темпе. Какой процесс победит — зависит от везения. Возможно, несколько поколений зародышей пройдут через процесс миграции, не будучи способными завершить свой рост. За ними из внешних областей диска к его центру движутся новые партии планетезималей, и это повторяется до тех пор, пока в конце концов не образуется газовый гигант, или же пока весь газ не рассосется, и газовый гигант уже не сможет сформироваться. Астрономы открыли планеты типа Юпитера примерно у 10% исследованных солнцеподобных звезд. Ядра таких планет могут быть редкими зародышами, выжившими из многих поколений — по-следними из могикан.
    Итог всех этих процессов зависит от начального состава вещества. Примерно треть звезд, богатых тяжелыми элементами, имеет планеты типа Юпитера. Возможно, у таких звезд были плотные диски, позволившие сформироваться массивным зародышам, у которых не было проблем с теплоотводом. И, напротив, вокруг звезд, бедных тяжелыми элементами, планеты формируются редко. В некий момент масса планеты начинает расти чудовищно быстро: за 1000 лет планета типа Юпитера приобретает половину своей конечной массы. При этом она выделяет так много тепла, что сияет почти как Солнце. Процесс стабилизируется, когда планета становится настолько массивной, что поворачивает миграцию I-го типа «с ног на голову». Вместо того чтобы диск менял орбиту планеты, сама планета начинает изменять движение газа в диске. Газ внутри орбиты планеты вращается быстрее нее, поэтому ее притяжение тормозит газ, вынуждая его падать в сторону звезды, т.е. от планеты. Газ же вне орбиты планеты вращается медленнее, поэтому планета ускоряет его, заставляя двигаться наружу, опять же от планеты. Таким образом, планета создает разрыв в диске и уничтожает запас строительного материала. Газ пытается его заполнить, но компьютерные модели показывают, что планета выигрывает битву, если при расстоянии в 5 а.е. ее масса превышает массу Юпитера.

Образование планетных систем кратко
Во многих системах образуется гигантская планета и начинает приближаться по спирали к звезде. Происходит это потому, что газ в диске теряет энергию из-за внутреннего трения и оседает к звезде, увлекая за собой планету, которая со временем оказывается так близко к звезде, что та постепенно стабилизирует ее орбиту.
КАК ОБНЯТЬ ЗВЕЗДУ

    Эта критическая масса зависит от эпохи. Чем раньше формируется планета, тем больше будет ее рост, поскольку в диске еще много газа. У Сатурна масса меньше, чем у Юпитера, просто потому, что он сформировался на несколько миллионов лет позже. Астрономы обнаружили дефицит планет с массами от 20 масс Земли (это масса Нептуна) до 100 земных масс (масса Сатурна). Это может стать ключом к восстановлению картины эволюции.
    Результат: Планета размером с Юпитер (или ее отсутствие).



    Как ни странно, многие внесолнечные планеты, открытые за последние десять лет, обращаются вокруг своей звезды на очень близком расстоянии, гораздо ближе, чем Меркурий — вокруг Солнца. Эти так называемые «горячие Юпитеры» сформировались не там, где они находятся сейчас, т.к. орбитальная зона питания была бы слишком мала для поставки необходимого вещества. Возможно, для их существования нужна трехступенчатая последовательность событий, которая по какой-то причине не реализовалась в нашей Солнечной системе.
    Во-первых, газовый гигант должен формироваться во внутренней части планетной системы, вблизи линии льда, пока в диске еще достаточно газа. Но для этого в диске должно быть много и твердого вещества. Во-вторых, планета-гигант должна переместиться к месту своего нынешнего расположения. Миграция I-го типа не может обеспечить этого, т.к. она действует на зародыши еще до того, как они наберут много газа. Но возможна и миграция II-го типа. Формирующийся гигант создает разрыв в диске и сдерживает течение газа через свою орбиту. В этом случае он должен бороться с тенденцией турбулентного газа распространяться в смежные области диска. Газ никогда не перестанет сочиться в разрыв, и его диффузия к центральной звезде заставит планету терять орбитальную энергию.
    Этот процесс довольно медленный: нужно несколько миллионов лет для перемещения планеты на несколько астрономических единиц. Поэтому планета должна начать формироваться во внутренней части системы, если в итоге ей предстоит выйти на орбиту вблизи звезды. Когда эта и другие планеты продвигаются внутрь, они толкают перед собой оставшиеся планетезимали и зародыши, возможно, создавая «горячие Земли» на еще более близких к звезде орбитах. В-третьих, что-то должно остановить движение, прежде чем планета упадет на звезду. Это может быть магнитное поле звезды, расчищающее от газа пространство вблизи звезды, а без газа движение прекращается. Возможно, планета возбуждает приливы на звезде, а они в свою очередь замедляют падение планеты. Но эти ограничители могут и не срабатывать во всех системах, поэтому многие планеты могут продолжать свое движение к звезде.
    Результат: планета-гигант на близкой орбите («горячий Юпитер»).


    Если удалось сформироваться одному газовому гиганту, то он способствует рождению следующих гигантов. Многие, а возможно и большинство известных планет-гигантов имеют близнецов сравнимой массы. В Солнечной системе Юпитер помог Сатурну сформироваться быстрее, чем это произошло бы без его помощи. Кроме того, он «протянул руку помощи» Урану и Нептуну, без чего они не достигли бы своей нынешней массы. На их расстоянии от Солнца процесс формирования без посторонней помощи шел бы очень медленно: диск рассосался бы еще до того, как планеты успели бы набрать массу.
    Первый газовый гигант оказывается полезным по нескольким причинам. У внешней кромки образованного им разрыва вещество концентрируется, в общем, по той же причине, что и на линии льда: перепад давления заставляет газ ускоряться и действовать как попутный ветер на пылинки и планетезимали, останавливая их миграцию из внешних областей диска. К тому же гравитация первого газового гиганта часто отбрасывает соседние с ним планетезимали во внешнюю область системы, где из них формируются новые планеты.

Образование планетных систем кратко
Первый газовый гигант создает условия для рождения следующих. Расчищенная им полоса действует как крепостной ров, который не может преодолеть вещество, движущееся снаружи к центру диска. Оно собирается на внешней стороне разрыва, где из него формируются планеты.
ПРИБАВЛЕНИЕ В СЕМЕЙСТВЕ

    Второе поколение планет формируется из вещества, собранного для них первым газовым гигантом. При этом большое значение имеет темп: даже небольшая задержка во времени может существенно изменить результат. В случае Урана и Нептуна аккумуляция планетезималей была чрезмерной. Зародыш стал слишком большим, 10–20 земных масс, что отсрочило начало аккреции газа до момента, когда в диске его почти не осталось. Формирование этих тел завершилось, когда они набрали всего по две земных массы газа. Но это уже не газовые, а ледяные гиганты, которые могут оказаться самым распространенным типом.
    Гравитационные поля планет второго поколения увеличивают в системе хаос. Если эти тела сформировались слишком близко, их взаимодействие друг с другом и с газовым диском может выбросить их на более высокие эллиптические орбиты. В Солнечной системе планеты имеют почти круговые орбиты и достаточно удалены друг от друга, что уменьшает их взаимное влияние. Но в других планетных системах орбиты как правило эллиптические. В некоторых системах они резонансные, т.е. орбитальные периоды соотносятся как небольшие целые числа. Вряд ли это было заложено при формировании, но могло возникнуть при миграции планет, когда постепенно взаимное гравитационное влияние привязало их друг к другу. Различие между такими системами и Солнечной системой могло определяться разным начальным распределением газа.
    Большинство звезд рождаются в скоплениях, причем более половины из них — двойные. Планеты могут сформироваться не в плоскости орбитального движения звезд; в этом случае гравитация соседней звезды быстро перестраивает и искажает орбиты планет, образуя не такие плоские системы, как наша Солнечная, а сферические, напоминающие рой пчел вокруг улья.
    Результат: компания планет-гигантов.



    Планетологи считают, что похожие на Землю планеты распространены больше, чем планеты-гиганты. Несмотря на то что рождение газового гиганта требует точного баланса конкурирующих процессов, формирование твердой планеты должно быть намного сложнее. До обнаружения внесолнечных землеподобных планет мы опирались лишь на данные о Солнечной системе. Четыре планеты земной группы — Меркурий, Венера, Земля и Марс — в основном состоят из веществ с высокой температурой кипения, таких как железо и силикатные породы. Это свидетельствует о том, что сформировались они внутри линии льда и заметно не мигрировали. На таких расстояниях от звезды зародыши планет могут вырасти в газовом диске до 0,1 земной массы, т.е. не больше чем Меркурий. Для дальнейшего роста нужно, чтобы орбиты зародышей пересекались, тогда они будут сталкиваться и сливаться. Условия для этого возникают после испарения газа из диска: под действием взаимных возмущений в течение нескольких миллионов лет орбиты зародышей вытягиваются в эллипсы и начинают пересекаться.
    Гораздо труднее объяснить, как система вновь стабилизирует себя, и как планеты земной группы оказались на их нынешних почти круговых орбитах. Небольшое количество оставшегося газа могло бы это обеспечить, но такой газ должен был предотвратить изначальное «разбалтывание» орбит зародышей. Возможно, когда планеты уже почти сформировались, остается еще приличный рой планетезималей. В течение следующих 100 млн лет планеты сметают часть из этих планетезималей, а оставшиеся отклоняют в сторону Солнца. Планеты передают свое беспорядочное движение обреченным планетезималям и переходят на круговые или почти круговые орбиты. Согласно другой идее, длительное влияние гравитации Юпитера вызывает у формирующихся планет земной группы миграцию, передвигая их в области со свежим веществом. Это влияние должно быть сильнее на резонансных орбитах, которые постепенно сдвигались внутрь по мере опускания Юпитера к его современной орбите. Радиоизотопные измерения указывают, что астероиды сформировались первыми (спустя 4 млн лет после образования Солнца), затем — Марс (через 10 млн лет), а позже — Земля (через 50 млн лет): как будто бы поднятая Юпитером волна прошла через Солнечную систему. Если бы она не встретила препятствий, то сдвинула бы все планеты земной группы к орбите Меркурия. Как же им удалось избежать столь печальной участи? Возможно, они уже стали слишком массивными, и Юпитер не смог их сильно сдвинуть, а может быть, сильные удары выбросили их из зоны действия Юпитера.

ОБЪЯСНЕНИЕ НЕКРУГОВОГО ДВИЖЕНИЯ
Во внутренней области Солнечной системы зародыши планет не могут расти, захватывая газ, поэтому они должны сливаться друг с другом. Для этого их орбиты должны пересекаться, а значит, что-то должно нарушить их первоначально круговое движение.
Образование планетных систем кратко
Когда образуются зародыши, их круговые или почти круговые орбиты не пересекаются.
Образование планетных систем кратко
Взаимодействие зародышей между собой и с гигантской планетой возмущает орбиты.
Образование планетных систем кратко
Зародыши объединяются в планету типа Земли. Она возвращается на круговую орбиту, перемешивая оставшийся газ и разбрасывая сохранившиеся планетезимали.
ОБЪЯСНЕНИЕ НЕКРУГОВОГО ДВИЖЕНИЯ

    Заметим, что многие планетологи не считают роль Юпитера решающей в формировании твердых планет. Большинство солнцеподобных звезд лишено планет типа Юпитера, но вокруг них есть пылевые диски. А значит, там есть планетезимали и зародыши планет, из которых могут сформироваться объекты типа Земли. Основной вопрос, на который должны ответить наблюдатели в ближайшее десятилетие, — в скольких системах есть земли, но нет юпитеров.
    Важнейшей эпохой для нашей планеты стал период между 30 и 100 млн лет после формирования Солнца, когда зародыш размером с Марс врезался в прото-Землю и породил гигантское количество обломков, из которых сформировалась Луна. Столь мощный удар, конечно же, разбросал огромное количество вещества по Солнечной системе; поэтому землеподобные планеты в других системах тоже могут иметь спутники. Этот сильный удар должен был сорвать первичную атмосферу Земли. Ее современная атмосфера в основном возникла из газа, заключенного в планетезималях. Из них сформировалась Земля, а позже этот газ вышел наружу при извержении вулканов.
    Результат: планеты земного типа.



    К этому моменту планетная система уже почти сформировалась. Продолжаются еще несколько второстепенных процессов: распад окружающего звездного скопления, способного своей гравитацией дестабилизировать орбиты планет; внутренняя неустойчивость, возникающая после того, как звезда окончательно разрушает свой газовый диск; и, наконец, продолжающееся рассеивание оставшихся планетезималей гигантской планетой. В Солнечной системе Уран и Нептун выбрасывают планетезимали наружу, в пояс Койпера, или же к Солнцу. А Юпитер своим мощным тяготением отсылает их в облако Оорта, на самый край области гравитационного влияния Солнца. В облаке Оорта может содержаться около 100 земных масс вещества. Время от времени планетезимали из пояса Койпера или облака Оорта приближаются к Солнцу, образуя кометы.
    Разбрасывая планетезимали, сами планеты немного мигрируют, и этим можно объяснить синхронизацию орбит Плутона и Нептуна. Возможно, орбита Сатурна когда-то располагалась ближе к Юпитеру, но затем отдалилась от него. Вероятно, с этим связана так называемая поздняя эпоха сильной бомбардировки — период очень интенсивных столкновений с Луной (и, по-видимому, с Землей), наступивший спустя 800 млн лет после формирования Солнца. В некоторых системах грандиозные столкновения сформировавшихся планет могут возникать на поздней стадии развития.
    Результат: Конец формирования планет и комет.


    До начала эры открытия внесолнечных планет мы могли изучать только Солнечную систему. Несмотря на то что это позволило нам понять микрофизику важнейших процессов, у нас не было представления о путях развития иных систем. Удивительное разнообразие планет, обнаруженных за последнее десятилетие, значительно раздвинуло горизонт наших знаний. Мы начинаем понимать, что внесолнечные планеты — это последнее выжившее поколение в ряду протопланет, испытавших формирование, миграцию, разрушение и непрерывную динамическую эволюцию. Относительный порядок в нашей Солнечной системе не может быть отражением какого-то общего плана.
    От попыток выяснить, как в далеком прошлом формировалась наша Солнечная система, теоретики обратились к исследованиям, позволяющим делать прогнозы о свойствах еще не открытых систем, которые могут быть обнаружены в ближайшее время. До сих пор наблюдатели замечали вблизи солнцеподобных звезд только планеты с массами порядка массы Юпитера. Вооружившись приборами нового поколения, они смогут искать объекты земного типа, которые в соответствии с теорией последовательной аккреции должны быть широко распространены. Планетологи только начинают осознавать то, насколько разнообразны миры во Вселенной.


ПОСЛАНЦЫ ИЗ ПРОШЛОГО

Источник: galspace.spb.ru

Естествознание, 10 класс

Урок 50. Образование галактик, звёзд, планетных систем

Перечень вопросов, рассматриваемых в теме:

  • Как и когда образовались галактики?
  • Какой механизм ответствен за образование галактик и звезд?
  • Может ли стать звездой Юпитер?
  • Как образуются планетные системы?
  • Какие процессы происходят в недрах звезд и какова их роль в эволюции Вселенной?

Глоссарий по теме:

Космогония – область астрономической науки, изучающая происхождение и развитие отдельных небесных тел и их систем.

Протозвезда – от греч. protos – первый, условное название тел, из которых формируются звезды.

Нормальная звезда – шарообразные объекты космоса, реализующие своё физическое состояние равновесия посредством осуществления в своей глубине (в недрах) термоядерных реакций синтеза.

Белый карлик – тип звезды, которая по величине сравнима с Землёй, однако, по массе соизмерима с Солнцем. В результате, плотность её чрезвычайно велика и превышает плотность любого земного вещества. Поэтому нормальная атомная структура полностью разрушена, и электроны с ядрами плотно упакованы. Имеют низкую яркость и постепенно остывают, становясь холодными, темными объектами. Они представляют собой заключительную стадию эволюции звёзд с малой массой, после того, как звезды лишаются наружного слоя.

Нейтронная звезда – очень маленькая звезда с большой плотностью, состоящая из нейтронов. Является последней стадией эволюции многих звёзд. Нейтронные звезды образуются, когда массивная звезда вспыхивает в качестве сверхновой звезды, взрывая свои внешние оболочки и сжимая ядро до такой степени, что содержащиеся в нем протоны и электроны превращаются в нейтроны. Эти звезды наблюдают как пульсары.

Чёрная дыра – состояние вещества, при котором свет (излучение) неспособен преодолеть гравитационный барьер, возникший при определённых сверхвысокого сжатия массивных звёзд в период последней стадии их существования (жизни). Термин предложил в 1968 г. Астрофизик из США Дж. Уилер. В составе галактики Млечный путь возможно наличие 109 черных дыр.

Основная и дополнительная литература по теме урока:

Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017.: с 225 – 229.

Электронные ресурсы:

Эволюция звезд. Портал Астронет [Электронный ресурс]// доступ : http://www.astronet.ru/db/msg/1188340

Теоретический материал для самостоятельного изучения

Вселенная представляет собой огромную самоорганизующуюся систему. В ходе эволюции происходило упорядочивание и усложнение её структуры. В расширяющейся однородной Вселенной возникали флуктуаций, которые привели к образованию различных структур от планет и звёзд до метагалактик. Ведущую роль в самоорганизации Вселенной играет гравитационное взаимодействие. Происхождение и развитие космических объектов и их систем изучает наука космогония.

Формирование галактик. По модели Дж. Джинса галактики образуются из газопылевых облаков в результате возникновения гравитационной неустойчивости. Уплотнение в какой-либо части материи Вселенной приводят к возрастанию взаимного притяжения частиц и в конечном итоге к обособлению вещества и формированию макротел. Гравитация возрастает до тех пор, пока не будет скомпенсирована другими силами (центробежными, давления). В результате образуются предшественники галактик – протогалактики. Протогалактики по своей структуре не однородны. Поэтому внутри их образуются свои уплотнения протозвезды, которые приводят к появлению звёзд.

Эволюция звёзд. Появившись в результате сгущения газово-пылевых туманностей протогалактик, протозвёзды под действием гравитации продолжают сжиматься. Повышение давления приводит к их разогреву. При достижении температуры в несколько миллионов кельвинов в недрах протозвезды начинаются термоядерные реакции. Тогда её можно считать нормальной звездой. Продолжительность этого первого этапа эволюции звёзд зависит от массы и может протекать сотни тысяч и миллионов лет.

Сформировавшись из облаков горячего газа, звёзды в течение долгого времени сохраняют устойчивость благодаря балансу между выделением тепла в термоядерных реакциях и гравитационным притяжением. Стадия нормальной звезды длится пока не будет использовано все топливо (например, водород) в реакциях термоядерного синтеза. В ходе которого формируются атомы всех элементов вплоть до железа.

Если масса звезды сопоставима массе Солнца, то её развитие приведёт к формированию так называемого — белого карлика. Синтезируемые тяжелы ядра атомов концентрируются в центральной области звезды, образуя плотное ядро. Оболочки звезды значительно раздуваются. Наступает стадия красного гиганта, (до размера орбиты Юпитера) и в конечном итоге будут сброшены. Раскалённое ядро (размером с Землю), продолжается светиться ещё примерно 10 12 лет.

Звёзды массой, не превышающей пяти масс Солнца в итоге, превращаются в коричневого карлика. Размеры стадии красного гиганта сопоставимы с несколькими десятками радиусов Солнца. А взорвавшиеся оболочки наблюдаются как планетарные туманности.

Более массивные звезды увеличиваются в размерах на стадии красного гиганта до сотни радиусов Солнца. Их взрыв называют вспышкой сверхновой. Сверхвысокие температуры (миллиарды кельвинов) позволяют синтезироваться элементам тяжелее железа. При взрыве, эти элементы обогащают межзвёздное пространство. Сверхвысокое сжатие образует ядро такой плотности, что протоны и электроны превращаются в нейтроны, тогда на месте взрыва такой звезды остаётся нейтронная звезда. Если масса оставшегося ядра сверхмассивной звезды превысит 2,5 массы Солнца, то гравитация такого тела будет настолько велика, что любое излучение не сможет его покинуть. Такие объекты называют черными дырами.

В недрах звёзд происходит основная эволюция вещества Вселенной. Образование многообразия химических элементов открыло новый этап в развитии вещества и в формировании его структур. Наличие звёзд подчёркивает необратимость процессов эволюции вещества во Вселенной.

Формирование планетарных систем. Согласно современным представлениям, рождение звёзд и планет представляет собой единый процесс. Так образование Солнечной системы связывают с гравитационной неустойчивостью туманности из газа и пыли, от взрыва сверхновой звезды. Скопление вещества в центре туманности привело к формированию Солнца. На периферии формировались предшественники планет. Они сталкивались, разрушались. Более мелкие обломки притягивались крупными, их размеры увеличивались, что за 100 млн лет в конечном итоге привело к формированию знакомых нам планет, а также малых тел Солнечной системы.

На сегодняшний день обнаружено огромное количество планетарных систем. Место центральной звезды некоторых систем занимают массивные планеты или даже пары звёзд. В некоторых планетарных системах, пока по необъяснимым причинам, большие планеты (сопоставимых с Юпитером) располагаются ближе к центру, а не на периферии, как в Солнечной системе.

Конечно, наши рассуждения всего лишь иллюстрируют модельные представления современной науки. Но однозначно то, что в процессе самоорганизации и эволюции Вселенной – звезды, планетарные системы рождаются, живут и умирают, подчиняясь фундаментальным законам природы. И этот процесс непрерывен и бесконечен.

Примеры и разбор решения заданий тренировочного модуля:

Задание 1. Выберите один правильный ответ.

Реакции синтеза тяжёлых элементов при слиянии лёгких ядер, происходящие в недрах звёзд называются:

  • Ядерными;
  • Термоядерными;
  • Химическими.

Ответ: Термоядерными

Пояснение: поскольку реакции происходят между ядрами при сверхвысоких температурах, такие реакции получили названия термоядерные

Задание 2. Составьте схему из элементов, иллюстрирующую эволюцию звёзд

Маленькая звезда; Планетарная туманность; Нейтронная звезда; Сверхновая звезда; Белый карлик; Красный супергигант; Звёздное облако с протозвёздами; Чёрная дыра; Маленькая звезда; Сверхновая;

Ответ:

Образование планетных систем кратко

Источник: resh.edu.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.