Каким образом происходило формирование солнечной системы


На этот вопрос поможет ответить ведущая теория, которую принято называть «протопланетной гипотезой». Согласно ей, небольшие космические объекты влетали друг в друга, из-за чего происходило их соединение. Именно так формировались гиганты нашей планетарной системы, в том числе и «газовый гигант» Юпитер. Сам процесс формирования планет очень интересен и до конца еще не разгадан.

Все началось с рождения нашего светила – звезды по имени Солнце

Как формировались планеты Солнечной системы

Вышесказанная теория гласит, что примерно 4,6 миллиардов лет назад на месте нашей планетарной системы не было практически ничего, кроме газа и мелкодисперсной пыли. Данные составляющие образовывают туманности, о которых в современное время часто говорят астрофизики. Примером таких объектов является «Туманность Ориона».

Однажды, как считают планетологи, произошло некое событие, которое изменило давление в центральной части туманности.


зможно, данным событием являлся взрыв «сверхновой» либо пролет массивного космического объекта в непосредственной близости. В любом случае, после этого события туманность распалась, а в ее центре образовался диск. Давление в центральной части диска возросло настолько, что атомы водорода стали контактировать друг с другом, причем довольно тесно. До этого они спокойно сосуществовали и свободно перемещались в облаке. Контакт между атомами водорода заставил их слиться и превратиться в гелий. Таким образом, сформировался солнечный «зародыш», который в дальнейшем стал центром (ядром) светила.

Чтобы сформироваться, светилу понадобилось около 99% космического стройматериала, который располагался вокруг него. Но 1% материи все еще оставался свободным. Именно из него родились планеты, о которых мы знаем ныне практически все.

Как формировались планеты Солнечной системы

Вселенский хаос

Несмотря на то, что на ранней стадии формирования наша планетарная система находилась в хаосе, планеты формировалась с завидной скоростью. Газообразные вещества и космическая мелкодисперсная пыль быстро собирались в «сгустки». Светило уже тогда было настолько горячим, что испаряло любой лед, находившийся рядом с ним. Постепенно рождались и приобретали свою теперешнюю форму планеты. Каменистыми стали те объекты, которые располагались ближе к светилу, а газовыми – максимально отдаленные от него.


Как формировались планеты Солнечной системы

Согласно многим теориям, в нашей планетарной системе изначально было больше составляющих. Маленькие объекты постоянно врезались в большие, после чего становились их частью. Существует даже мнение, что когда-то в нашу Землю впечатался объект, по размеру сопоставимый с планетой Марс. Почему происходила данная «космическая бомбардировка», ученые не могут понять по сей день. Возможно, причиной тому являлись «газовые гиганты», которые постоянно тревожили остальных своим присутствием. Пролетая, они сбивали с орбиты «карликов-планет», которые потом врезались в более крупные объекты.

Как формировались планеты Солнечной системы

Можно ли считать, что на сегодняшний день все планеты Солнечной системы сформировались

Так думать не следует, так как в вышесказанной планетарной системе еще имеются объекты, которые теоретически могли бы стать планетами. К примеру, астероидный пояс, расположенный между гигантом-Юпитером и Марсом. Если бы гравитация первой планеты была бы мене сильной, возможно, астероиды сформировались бы в цельный космический объект. Кроме этого, через нашу систему постоянно пролетают кометы, метеориты и прочие объекты. Астрономы называют их «космическими кирпичиками» и не зря.


Как формировались планеты Солнечной системы

Теориям, подобным вышеописанной, можно доверять, так как астрономы проверяют их несколько раз с помощью современной технологии – компьютерного моделирования. Перед тем, как предложить теорию, специалисты создают несколько компьютерных моделей. В каждой из них события развиваются по-разному. Приемлемым вариантом будут считать тот, результат которого максимально соответствует действительности.

Источник: mirkosmosa.ru

План:

Введение . 3

1. Гипотезы о происхождении солнечной системы .. 3

2. Современная теория происхождения солнечной системы .. 5

3. Солнце – центральное тело нашей планетной системы .. 7

4. Планеты земной группы .. 8

5. Планеты-гиганты .. 9

Заключение . 11

Список использованной литературы .. 12

Солнечная система состоит из центрального небесного тела — звезды Солнца, 9 больших планет, обращающихся вокруг него, их спутников, множества малых планет — астероидов, многочисленных комет и межпланетной среды. Большие планеты располагаются в порядке удаления от Солнца следующим образом: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Три последние планеты можно наблюдать с Земли только в телескопы. Остальные видны как более или менее яркие кружки и известны людям со времен глубокой древности.


Один из важных вопросов, связанных с изучением нашей планетной системы — проблема ее происхождения. Решение данной проблемы имеет естественно-научное, мировоззренческое и философское значение. На протяжении веков и даже тысячелетий ученые пытались выяснить прошлое, настоящее и будущее Вселенной, в том числе и Солнечной системы. Однако возможности планетной космологии и по сей день остаются весьма ограниченными — для эксперимента в лабораторных условиях доступны пока лишь метеориты и образцы лунных пород. Ограничены и возможности сравнительного метода исследований: строение и закономерности других планетных систем пока еще недостаточно изучены.

К настоящему времени известны многие гипотезы о происхождении Солнечной системы, в том числе предложенные независимо немецким философом И.Кантом (1724—1804) и французским математиком и физиком П.Лапласом (1749—1827). Точка зрения И. Канта заключалась в эволюционном развитии холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело — Солнце, а потом родились и планеты. П. Лаплас считал первоначальную туманность газовой и очень горячей, находящейся в состоянии быстрого вращения.
имаясь под действием силы всемирного тяготения, туманность вследствие закона сохранения момента импульса вращалась все быстрее и быстрее. Под действием больших центробежных сил, возникающих при быстром вращении в экваториальном поясе, от него последовательно отделялись кольца, превращаясь в результате охлаждения и конденсации в планеты. Таким образом, согласно теории П. Лапласа, планеты образовались раньше Солнца. Несмотря на такое различие между двумя рассматриваемыми гипотезами, обе они исходят от одной идеи — Солнечная система возникла в результате закономерного развития туманности. И поэтому такую идею иногда называют гипотезой Канта—Лапласа. Однако от этой идеи пришлось отказаться из-за множества математических противоречий, и на смену ей пришло несколько «приливных теорий».

Наиболее знаменитая теория была выдвинута сэром Джеймсом Джинсом, известным популяризатором астрономии в годы между Первой и Второй мировыми войнами. (Он также был ведущим астрофизиком, и лишь в конце своей карьеры обратился к созданию книг для начинающих.)

Каким образом происходило формирование солнечной системы

Рис. 1. Приливная теория Джинса. Звезда проходит рядом с Солнцем,

вытягивая из него вещество (рис. А и В); планеты формируются


из этого материала (рис. С)

Согласно Джинсу, планетное вещество было «вырвано» из Солнца под воздействием близко проходившей звезды, а затем распалось на отдельные части, образуя планеты. При этом наиболее крупные планеты (Сатурн и Юпитер) находятся в центре планетной системы, где некогда находилась утолщенная часть сигарообразной туманности.

Если бы дела действительно обстояли таким образом, то планетные системы были бы чрезвычайно редким явлением, так как звезды отделены друг от друга колоссальными расстояниями, и вполне возможно, что наша планетная система могла бы претендовать на роль единственной в Галактике. Но математики снова бросились в атаку, и в конце концов приливная теория присоединилась к газообразным кольцам Лапласа в мусорной корзине науки.

Согласно современным представлениям, планеты солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад. Такая точка зрения наиболее последовательно отражена в гипотезе российского ученого, академика О.Ю. Шмидта (1891—1956), который показал, что проблемы космологии можно решить согласованными усилиями астрономии и наук о Земле, прежде всего географии, геологии, геохимии. В основе гипотезы О.Ю. Шмидта лежит мысль об образовании планет путем объединения твердых тел и пылевых частиц. Возникшее около Солнца газопылевое облако сначала состояло на 98% из водорода и гелия. Остальные элементы конденсировались в пылевые частицы. Беспорядочное движение газа в облаке быстро прекратилось: оно сменилось спокойным движением облака вокруг Солнца.


Пылевые частицы сконцентрировались в центральной плоскости, образовав слой повышенной плотности. Когда плотность слоя достигла некоторого критического значения, его собственное тяготение стало «соперничать» с тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные пылевые сгустки. Сталкиваясь друг с другом, они образовали множество сплошных плотных тел. Наиболее крупные из них приобретали почти круговые орбиты и в своем росте начали обгонять другие тела, став потенциальными зародышами будущих планет. Как более массивные тела, новообразования присоединяли к себе оставшееся вещество газопылевого облака. В конце концов сформировалось девять больших планет, движение которых по орбитам остается устойчивым на протяжение миллиардов лет.

С учетом физических характеристик все планеты делятся на две группы. Одна из них состоит из сравнительно небольших планет земной группы — Меркурия, Венеры, Земли и Марса. Их вещество отличается относительно высокой плотностью: в среднем около 5,5 г/см3 , что в 5,5 раза превосходит плотность воды. Другую группу составляют планеты -гиганты: Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают огромными массами. Так, масса Урана равна 15 земным массам, а Юпитера— 318. Состоят планеты-гиганты главным образом из водорода и гелия, а средняя плотность их вещества близка к плотности воды. Судя по всему, у этих планет нет твердой поверхности, подобной поверхности планет земной группы. Особое место занимает девятая планета — Плутон, открытая в марте 1930 г. По своим размерам она ближе к планетам земной группы. Не так давно обнаружено, что Плутон — двойная планета: она состоит из центрального тела и очень большого спутника. Оба небесных тела обращаются вокруг общего центра масс.


В процессе образования планет их деление на две группы обусловливается тем, что в далеких от Солнца частях облака температура была низкой и все вещества, кроме водорода и гелия, образовали твердые частицы. Среди них преобладал метан, аммиак и вода, определившие состав Урана и Нептуна. В составе самых массивных планет — Юпитера и Сатурна, кроме того, оказалось значительное количество газов. В области планет земной группы температура была значительно выше, и все летучие вещества (в том числе метан и аммиак) остались в газообразном состоянии, и, следовательно, в состав планет не вошли. Планеты этой группы сформировались в основном из силикатов и металлов.

Солнце — ближайшая к Земле звезда, представляющая собой раскаленный плазменный шар. Это гигантский источник энергии: мощность излучения его очень велика — около 3,86×1023 кВт. Ежесекундно Солнце излучает такое количество тепла, которого вполне хватило бы, чтобы растопить слой льда, окружающий земной шар, толщиной в тысячу км. Солнце играет исключительную роль в возникновении и развитии жизни на Земле. На Землю попадает ничтожная часть солнечной энергии, благодаря которой поддерживается газообразное состояние земной атмосферы, постоянно нагреваются поверхности суши и водоемов, обеспечивается жизнедеятельность животных и растений. Часть солнечной энергии запасена в недрах Земли в виде каменного угля, нефти, природного газа.


В настоящее время принято считать, что в недрах Солнца при огромнейших температурах —около 15 млн. градусов — и чудовищных давлениях протекают термоядерные реакции, которые сопровождаются выделением огромного количества энергии. Одной из таких реакций может быть синтез ядер водорода, при котором образуются ядра атома гелия. Подсчитано, что в каждую секунду в недрах Солнца 564 млн т водорода преобразуются в 560 млн т гелия, а остальные 4 млн т водорода превращаются в излучение. Термоядерная реакция будет происходить до тех пор, пока не иссякнут запасы водорода. В настоящее время они составляют около 60 % массы Солнца. Такого резерва должно хватить по меньшей мере на несколько миллиардов лет.

Почти вся энергия Солнца генерируется в его центральной области, откуда переносится излучением, а затем во внешнем слое — передается конвекцией. Эффективная температура поверхности Солнца — фотосферы — около 6000 К.

Наше Солнце — источник не только света и тепла: его поверхность излучает потоки невидимых ультрафиолетовых и рентгеновских лучей, а также элементарных частиц. Хотя количество тепла и света, посылаемого на Землю Солнцем, на протяжение многих сотен миллиардов лет остается постоянным, интенсивность его невидимых излучений значительно меняется: она зависит от уровня солнечной активности.


Наблюдаются циклы, в течение которых солнечная активность достигает максимального значения. Их периодичность составляет 11 лет. В годы наибольшей активности увеличивается число пятен и вспышек на солнечной поверхности, на Земле возникают магнитные бури, усиливается ионизация верхних слоев атмосферы и т. д.

Источник: mirznanii.com

Ни одна из большого числа различных моделей происхождения и развития Солнечной системы не удостоилась перевода в ранг общепризнанной теории.

Согласно гипотезе Канта – Лапласа система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи, находящейся во вращательном движении вокруг Солнца.

Впервые английский физик и астрофизик Дж. Х. Джинс (1877 — 1946) предположил, что когда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, превратилась в планеты. Учитывая огромное расстояние между звездами, такое столкновение кажется невероятным.

Из современных гипотез происхождения Солнечной системы наиболее известна электромагнитная гипотеза шведского астрофизика Х. Альфвена (1908 — 1995) и английского Ф. Хойла (1915 — 2001). Согласно этой теории первоначальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того, как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде – Солнцу, но его магнитное поле остановило движущийся газ на различных расстояниях – как раз там, где находятся планеты. Гравитационные и магнитные силы повлияли на концентрацию и сгущение этого газа. В результате образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав, таким образом, системы спутников.

Известна также гипотеза образования Солнечной системы из холодного газопылевого облака, окружающего Солнце, предложенная советским ученым О.Ю. Шмидтом (1891 — 1956).

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд. лет назад с гравитационного коллапса небольшой части гигантского межзвездного газопылевого облака. Это начальное облако было, вероятно, размером в несколько световых лет и являлось прародителеи для нескольких звезд.

В процессе гравитационного сжатия размеры газопылевого облака уменьшились и, в силу закона сохранения углового момента, росла скорость вращения облака. Центр, где собралась большая часть массы, становился все более и более горячим, чем окружающий диск. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного протопланетного диска с диаметром примерно 200 а.е. и горячей, плотной протозвезды в центре. Полагают, что в этой точке эволюции Солнце было звездой типа Т Тельца. Изучение таких звезд показывает, что они часто сопровождаются протопланетными дисками с массами 0,001 – 0,1 солнечной массы, с подавляющим процентом массы туманности, сосредоточенным непосредственно в звезде. Планеты сформировались аккрецией из этого диска (рис.27).

В течение 50 млн лет давление и плотность водорода в центре протозвезды стали достаточно большими для начала термоядерных реакций. Температура, скорость реакции, давление и плотность увеличились, пока не было достигнуто гидростатическое равновесие, с тепловой энергией, противостоящей силе гравитационного сжатия. На этом этапе Солнце стало полноценной звездой главной последовательности.

Каким образом происходило формирование солнечной системы

Рис.27 Эволюция Солнца

Солнечная система просуществует, пока Солнце не начнет развиваться вне главной последовательности диаграммы Герцшпрунга – Рассела, которая показывает зависимость между яркостью звезд и температурой их поверхности. Более горячие звезды являются более яркими.

Солнце сжигает запасы водородного топлива, при этом выделяющаяся энергия, имеет тенденцию к исчерпанию, заставляя Солнце сжиматься. Это увеличивает давление в его недрах и нагревает ядро, таким образом ускоряя сжигание топлива. В результате Солнце становится ярче на примерно десять процентов каждые 1,1 млрд лет.

Через приблизительно 5 — 6 млрд. лет, водород в ядре Солнца будет полностью преобразован в гелий, что завершит фазу главной последовательности. В это время внешние слои Солнца расширятся примерно в 260 раз – Солнце станет красным гигантом. Из-за чрезвычайно увеличивающейся площади поверхности, она будет гораздо более прохладной, чем при нахождении на главной последовательности (2600 К).

В конечном счете, внешние слои Солнца будут выброшены мощным взрывом в окружающее пространство, образовав планетарную туманность, в центре которой останется лишь небольшое звездное ядро – белый карлик, необычно плотный объект в половину первоначальной массы Солнца, но размером с Землю. Эта туманность возвратит часть материала, который сформировал Солнце, в межзвездную среду.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.

Отсутствие общепризнанной версии происхождения планетной системы имеет свое объяснение. Прежде всего, единственность объекта наблюдения исключает применение сравнительного анализа и заставляет решать нелегкую задачу восстановления истории на основании одних только знаний о сегодняшнем состоянии Солнечной системы. Например, представления об эволюции звезд от их рождения до гибели получены благодаря накоплению и статистической обработке наблюдаемых данных о современном состоянии множества звезд разных классов, находящихся на разных стадиях развития. Неудивительно, что о развитии далеких от нас звезд астрономия знает существенно больше, чем о происхождении и развитии места нашего обитания – Солнечной системы.

Таким образом, солнечная система – очень сложное природное образование, сочетающее разнообразие составляющих ее элементов с высочайшей устойчивостью системы как целого. При огромном числе и разнообразии составляющих систему элементов, при тех сложных взаимоотношениях, которые устанавливаются между ними, задача определения механизма ее образования, оказывается очень непростой.

В Солнечную систему входят:

· Солнце;

· 4 планеты земной группы: Меркурий, Венера, Земля, Марс и их спутники;

· пояс малых планет – астероидов, куда входит планета – карлик Церера;

· бесчисленное число метеоритных тел, движущихся как роями, так и одиночно.

· 4 планеты – гиганты: Юпитер, Сатурн, Уран, Нептун и их спутники;

· сотни комет;

· кентавры;

· транснептуновые объекты: пояс Койпера, куда входят 4 планеты – карлика: Плутон, Хаумеа, Макемаке, Эрида и рассеянный диск;

· Отдаленные области, куда входит облако Оорта и Седна;

· Пограничные области.

Солнце

Солнце относится к рядовым звездам нашей Галактики и представляет собой раскаленный газовый (плазменный) шар преимущественно гелиево- водородного состава, который разбавлен примесью (около 1%) остальных химических элементов, соотношение которых изменяется от поверхности к ядру. В верхних слоях Солнца водорода содержится около 90 %, а гелия – 10 %. В ядре содержится лишь 37 % водорода. Соотношение между водородом и гелием с течением времени изменяется в пользу гелия, поскольку уже в течение 4,5 млрд. лет на Солнце протекают термоядерные реакции, превращающие ядра водорода в ядра гелия. Ежесекундно около 600 млн. т водорода превращаются в гелий при температуре около 15 млн. 0 С. При этом 4,3 млн. т переходит в лучистую энергию (рис.28).

 
  Каким образом происходило формирование солнечной системы

Рис.28 Солнце

Энергия солнечного излучения – определяющий фактор многих геохимических процессов. Температура излучения разных частей поверхности Солнца и другие параметры таковы:

— среднее расстояние от Земли составляет 140 504 тыс. км;

— радиус Солнца равен 6,96∙1011 см;

— масса Солнца составляет 1,99∙1033 г (в 333 тыс. раз больше Земли);

— средняя плотность вещества в Солнце равна 1,41 г/см3 ;

— ускорение свободного падения на уровне видимой поверхности Солнца – 2,74∙104 см/с2 (в 27,9 раза больше земного);◦

— в Солнце сосредоточено 99,866% всей массы Солнечной системы;

— критическая скорость освобождения тел на поверхности Солнца равна 619,4 км/с;

— вращение Солнца имеет дифференцированный характер. Экваториальная зона вращается быстрее (14,4◦ за сутки), чем высокоширотные зоны (около 10◦ за сутки у полюсов);

— период обращения Солнца в Млечном пути – 225 миллионов км;

— средний период вращения 25,38 суток, а скорость вращения точки на экваторе – 2 км/с;

— эффективная температура поверхности Солнца равна 5780◦К;

— в центре Солнца вероятная температура достигает 1,6∙106◦ К, а плотность достигает 160 г/см2 .

Наряду со светом, Солнце излучает непрерывный поток заряженных частиц (плазмы), известный как солнечный ветер. Этот поток частиц распространяется со скоростью примерно 1,5 млн. км в час, наполняя околосолнечную область и создавая у Солнца некий аналог планетарной атмосферы (гелиосферу). Магнитное поле Земли мешает солнечному ветру сорвать атмосферу Земли. Венера и Марс не имеют магнитного поля и в результате, солнечный ветер постепенно сдувает их атмосферы в космос. Корональные выбросы массы и подобные явления изменяют магнитное поле и выносят огромное количество вещества с поверхности Солнца – порядка 109 – 1010 тонн в час. Взаимодействуя с магнитным полем Земли это вещество попадает преимущественно в верхние приполярные слои атмосферы Земли, где от такого взаимодействия возникают полярные сияния, наиболее часто наблюдаемые около магнитных полюсов.

Структура Солнца

Верхний слой Солнца – корона. Самый разряженный слой простирается на миллионы километров. Потоки плазмы солнечной короны, называемые солнечным ветром, заполняют Солнечную систему на расстояние 100 астрономических единиц. Плотность частиц солнечного ветра около Земли достигает 6 млн. в 1 м3 , а скорость – 300 км/с.

Под короной находится цветной слой – хромосфера. Простирается до 10 – 14 тыс. км. Во время солнечной активности, которая проявляет себя каждые 11 лет, с поверхности Солнца поднимаются потоки газа – протуберанцы. Они выбрасываются на высоту до миллиона километров. И существуют от нескольких недель до нескольких месяцев. В некоторых случаях они возвращаются к поверхности Солнца, в других– рассеивается в космическом пространстве.

Еще ниже находится ослепительно яркий, непрозрачный слой – фотосфера. Она простирается на расстояние 300 – 400 км. Она излучает всю солнечную энергию. Ее яркость больше яркости хромосферы во много раз. Движение слоев Солнца относительно друг друга и движение потоков электронов создают сильнейшее магнитное поле, которое удерживает солнечное вещество в пределах звезды. В местах выхода магнитного поля на поверхность Солнца появляются темные пятна. Солнечное пятно – это холодная темная зона, температура темных пятен примерно на 1500 градусов холоднее окружающих участков фотосферы, а их диаметр может достигать от 1500 до десятков тысяч километров. Оно может существовать от одних суток до нескольких месяцев. Когда внутри Солнечного пятна взрывается огромная масса газа, происходит солнечная вспышка. Вместе с протуберанцами, факелами и вспышками темные пятна свидетельствуют о суммарной солнечной активности, изменение которой оказывает сильное воздействие на физико – химические и биологические процессы на Земле.

Далее идет зона конвекции. В этой зоне энергия переносится от слоя к слою самим веществом в результате перемешивания.

Ниже находится лучистая зона – энергия передается наружу от слоя к слою в результате поглощения и излучения квантов.

Ядро Солнца. Внутри ядра Солнца происходят мощные термоядерные реакции с выделением огромного количества энергии. Земля получает от Солнца лишь 1/2000000 миллиардную долю солнечного излучения.

Планеты Солнечной системы

Планета – любое тело на орбите вокруг Солнца, оказавшееся достаточно массивным, чтобы приобрести сферическую форму, но недостаточно массивным для начала термоядерного синтеза, и сумевшее очистить окрестности своей орбиты от планетоземалий.

Солнечная система состоит из 8 крупных планет и 3 планет – карликов. Планеты земной группы: Меркурий, Венера, Земля, Марс. Планеты – гиганты: Юпитер, Сатурн, Уран, Нептун. Планеты – карлики: Плутон, Церера, Эрида.

Основные атрибуты планеты следующие:

— не звезда;

— обращается вокруг звезды (например, Солнца);

— достаточно массивно, чтобы под действием собственного тяготения стать шарообразным;

— достаточно массивно, чтобы своим тяготением расчистить пространство вблизи своей орбиты от других небесных тел.

Основные параметры планеты это:

— расстояние от Солнца;

— период обращения вокруг Солнца;

— период обращения вокруг своей оси;

— средняя плотность (г/см3);

— диаметр экватора в км;

— относительная масса;

— температура поверхности;

— число спутников;

— преобладание газа в атмосфере.

Планеты земной группы

Эти планеты имеют малые размеры, высокую плотность, твердую поверхность, медленно вращаются вокруг своей оси, имеют малое количество спутников (3), малые по размерам атмосферы (на Меркурии атмосферы практически нет), у них отсутствуют кольца. Четыре внутренние планеты состоят из тяжелых элементов, в значительной степени из тугоплавких минералов, которые формируют у них мантию и кору; и металлов, таких как железо и никель, которые формируют у них ядро. У всех имеются ударные кратеры и тектонические черты поверхности, такие как рифтовые впадины и вулканы.

Меркурий

Ближайшая к Солнцу планета. Среднее расстояние от Меркурия до Солнца меньше 58 млн.км. Это самая маленькая из планет земной группы, ее радиус составляет всего 2439,7 км (рис.29). Она быстрее остальных двигается по самой близкой к Солнцу сильно вытянутой эллиптической орбите. Полный оборот она совершает за 88 суток. Меркурий очень медленно вращается вокруг своей оси, средняя скорость движения планеты по орбите 48 км/с. В 1965 г. благодаря применению радиолокации был измерен период вращения Меркурия вокруг оси, оказавшийся равным 58 сут.16 час. Отражательная способность поверхности планеты очень мала и составляет 0,07. Температура освещенной Солнцем стороны равна + 400◦С, а ночного полушария – 170◦С. Причина низкого альбедо поверхности связана с наличием пород типа лунного реголита.

Поверхность планеты сильно изрезана метеоритными кратерами разных размеров в поперечнике и очень похожи на лунные. Имеются овальные равнины, получившие название бассейнов. Наибольший из них – Калорис имеет диаметр 1300 км. Наличие темного вещества в бассейнах и заполненных лавой кратерах свидетельствует о том, что в начальный период своей истории планета испытывала внутренний разогрев, за которым последовали несколько эпох развития интенсивного вулканизма.

 
  Каким образом происходило формирование солнечной системы

Рис.29 Меркурий

Верхними слоями Меркурия является кора и мантия, относительно тонкие, состоящие из силикатов. Средняя плотность планеты очень высока и составляет 5,43 г/см3, т. е почти равна средней плотности Земли.

Обнаружено слабое магнитное поле, напряженность которого в 100 раз меньше, чем у Земли, но больше чем у Марса. Астрономы считают, что около 70% массы Меркурия приходится на огромное железистое ядро, диаметр которого равен почти трем четвертям диаметра планеты. Это могло бы объяснить наличие магнитного поля, хотя еще недостаточно ясен настоящий механизм его образования.

Атмосфера практически отсутствует и очень разряжена. По данным американской станции «Маринер-10», ее плотность не превосходит плотности земной атмосферы на высоте 620 км. В составе атмосферы обнаруживаются следы натрия, гелия и кислорода и других элементов.

У Меркурия нет спутников, не существует времен года. Предположительно это происходит из-за того, что ось вращения планеты находится под прямым углом по отношению к плоскости орбиты.

Венера

Это вторая от Солнца и ближайшая к Земле планета, и самое яркое светило на небосводе после Солнца и Луны, с периодом обращения в 224,7 земных суток (рис.30). Среднее расстояние Венеры от Солнца 108 млн.км. Период вращения Венеры долго не удавалось определить из-за плотной и непрозрачной атмосферы. Только с помощью радиолокации было установлено, что он равен 243,02 суток, причем Венера вращается в обратную сторону по сравнению с Землей и другими планетами.

Каким образом происходило формирование солнечной системы По размерам Венера довольно близка к Земле. Радиус планеты равен 6051,8 км (95 % земного), масса 4,87·1024кг (81,5 % земной), средняя плотность – 5,24 г/см3.

Рис.30 Венера

Существование атмосферы на Венеры было обнаружено в 1761г. М.В. Ломоносовым при наблюдении прохождения ее по диску Солнца. В XX в. установлено, что атмосфера Венеры самая плотная среди прочих землеподобных планет, состоит в основном из углекислого газа (97%), 3,5 % азота, 0,015 % диоксида серы, 0,007% аргона, 0,002 % водяного пара,0,0017 % угарного газа, 0,0012 % гелия, 0,0007 % неона, незначительного количества кислорода, окиси углерода, хлороводорода, фтороводорода. Углекислый газ и пары воды создают в атмосфере Венеры парниковый эффект, приводящий к сильному разогреву поверхности планеты – до температуры почти 4700С.

Облачный покров Венеры расположен на высотах 30-60 км. По плотности напоминает легкий туман. Облака состоят из капелек водного раствора серной кислоты.

Практически вся атмосфера Венеры вовлечена в один гигантский ураган: она вращается вокруг планеты со скоростью, достигающей 120 – 140 метров в секунду у верхней границы облаков. Пока не понятно, как это происходит, и что поддерживает это мощнейшее движение. В атмосфере Венеры молнии бьют в два раза чаще, чем в земной. Это явление получило название «электрический дракон Венеры». Природа такой электрической активности пока неизвестна.

Освещенность поверхности Венеры подобна земной в пасмурный день. Давление атмосферы на поверхности планеты 60-95 земных атмосфер, или 9,5 Мпа. Плотность газа в 70 раз больше плотности в земной атмосфере.

Поверхность Венеры преимущественно равнинная. Перепад высот 1-2 км. 8% территории – горные страны. Наиболее крупная – Земля Иштар с горой Максвелл (высотой до 12 км) в северном полушарии и Земля Афродиты вблизи экватора. Детальное картографирование поверхности Венеры проводилось в течение последних 22 лет. Поверхность Венеры носит на себе яркие черты вулканической деятельности, а атмосфера содержит большое количество серы. Некоторые эксперты полагают, что вулканическая деятельность на Венере продолжается и сейчас. 90% планеты покрыто застывшей базальтовой лавой. Удивительно низкое число ударных кратеров говорит в пользу того, что поверхность Венеры относительно молода, и ей приблизительно 500 миллионов лет. Никаких следов тектонического движения плит на Венере не обнаружено, возможно, потому что кора планеты без воды, придающей ей большей вязкости, не обладает должной подвижностью.

На Венере имеются три оболочки. Первая – кора – толщина примерно 16 км. Далее – мантия, силикатная оболочка, простирающаяся на глубину порядка 3300 км до границы с железным ядром, масса которого составляет около четверти всей массы планеты.

Поскольку собственное магнитное поле планеты отсутствует, то следует считать, что в железном ядре нет перемещения заряженных частиц – электрического тока, вызывающего магнитное поле, следовательно, движения вещества в ядре не происходит, то есть оно находится в твердом состоянии. Плотность в центре планеты достигает 14 г/см3.

Венера наряду с Меркурием считается планетой, не имеющей естественных спутников.

Венера – кандидат на терраформирование. По одному из планов предполагалось распылить в атмосфере Венеры генетически модифицированные сине-зеленые водоросли, которые, перерабатывая углекислый газ в кислород, значительно уменьшили бы парниковый эффект и понизили бы температуру на планете.

Однако для фотосинтеза необходимо наличие воды, которой на Венере нет (даже в виде паров в атмосфере). Поэтому для реализации такого проекта необходимо в первую очередь доставить на Венеру воду – например, посредством бомбардировки ее водно-аммиачными астероидами или иным путем. Следует отметить, что на высоте 50 – 100 км в атмосфере Венеры существуют условия, при которых могут существовать некоторые земные бактерии.

Земля

Каким образом происходило формирование солнечной системы Земля является наибольшей и самой плотной из внутренних планет (рис.31). У Земли наблюдается тектоника плит. Вопрос о наличии жизни где – либо, кроме Земли, остается открытым. Однако среди планет земной группы Земля является уникальной (прежде всего гидросферой). Атмосфера Земли радикально отличается от атмосфер других планет – она содержит свободный кислород. У Земли есть один естественный спутник – Луна, единственный большой спутник планет земной группы Солнечной системы (подробнее стр.222).

Спутник Земли

Рис.31 Земля

Луна — ближайшее к Земле небесное тело (рис.32). Обращается на расстоянии около 400 тыс. км. Диаметр Луны всего в 4 раза меньше земного. В этой связи некоторые ученые склонны считать систему Луна-Земля двойной планетной системой.

Средняя плотность Луны равна 3,34 г/см3. Сила тяжести на ней в 6 раз ниже, чем на Земле. Поэтому американским астронавтам пришлось осваивать передвижение по ее поверхности, используя «стиль кенгуру». Луна имеет небольшое ядро из железа и серы, окруженное полурасплавленной астеносферой. Над астеносферой расположена литосфера – твердая каменная оболочка и над ней – кора из минералов, богатых кальцием и алюминием. Время оборота Луны вокруг своей оси строго соответствует обороту Земли, поэтому Луна обращена к Земле всегда одной стороной. На один оборот вокруг Земли Луна затрачивает 27,3 суток. Первая карта обратной стороны Луны была составлена благодаря советской межпланетной автоматической станции «Луна-3». «Зонд-3» в 1965 г. завершил составление карты обратной стороны Луны.

Каким образом происходило формирование солнечной системы

Рис.32 Луна

Ее поверхность состоит не только из многочисленных кратеров, но и пониженных участков — лунных морей и океанов, представляющих собой плато излившихся в прошлом (на рубеже 3,5 млрд. лет) базальтов. То есть в те времена Луна представляла собой арену активного вулканизма, который порождался как внутренним разогревом планеты, так и мощнейшими ударами крупных метеоритов. Постоянная бомбардировка поверхности Луны крошечными метеоритами сформировала на несколько метров вглубь особый слой — лунный реголит, представленный спекшимися обломками раздробленного вещества пород, в основном базальтов. Реголит служит прекрасным теплоизоляционным материалом. Температурные колебания на поверхности спутника Земли варьируют от +1З0◦С на дневной до —170◦С на ночной сторонах. Очень резкие колебания температуры не проникают глубже первых десятков сантиметров за счет теплоизоляционных свойств лунного реголита. Вследствие притока тепла из недр Луны температура в глубь ее тела медленно возрастает. Космические полеты к Луне отечественных автоматических станций иамериканских космических кораблей стали важнейшим событием в ее изучении. 20 июля 1969 г. на поверхность Луны ступила нога человека. Исследования лунной поверхности позволили установить близость возраста Луны и Земли на уровне 4,6 млрд. лет. На поверхности Луны полностью отсутствуют вода и атмосфера. Однако последними данными установлена возможность наличия льда в глубинных частях кратеров, куда не проникают лучи Солнца.

Во внутреннем строении Луны выделяют различные по свойствам ядро, мантию и кору. В мантии Луны залегают очаги лунотрясений, частота которых регулярно изменяется в зависимости от положения Луны на орбите по отношению к Земле. В отдельных местах лунной поверхности наблюдаются кратковременные истечения вулканических газов. Отражение Луной солнечного света оказывает влияние на все живое на Земле.

Марс

Это четвертая от Солнца планета. Среднее расстояние от Марса до Солнца составляет 228 млн. км, период обращения вокруг Солнца равен 687 земным суткам (рис.33). На звездном небе выглядит красноватой точкой. Периодически подходит к Земле на расстояние 57 млн. км, значительно ближе, чем любая из больших, планет кроме Венеры. По диаметру он почти вдвое меньше Земли, его экваториальный радиус равен 3396,9 км (53,2 % земного). Площадь поверхности Марса примерно равна площади суши на Земле. Достаточно быстрое вращение планеты приводит к заметному полярному сжатию – полярный радиус Марса примерно на 21 км меньше экваториального. Масса планеты – 6,418·1023 кг (11 % массы Земли).

 
  Каким образом происходило формирование солнечной системы

Рис.33 Марс

Особенностями поверхностного рельефа Марса можно считать ударные кратеры наподобие лунных и вулканы, долины, пустыни и полярные ледниковые шапки наподобие земных. Марсианский потухший вулкан Олимп – самая высокая гора в Солнечной системе, а Долина Маринера – самый крупный каньон. В настоящее время есть доказательства существования в северном полушарии Марса самого крупного известного ударного кратера в Солнечной системе. Его длина 10 600 км, а ширина 8500 км. Красный цвет поверхности Марса вызван большим количеством оксида железа в его грунте.

Планета имеет сильно разреженную газовую оболочку (атмосферу), которая имеет малую плотность даже в глубоких впадинах. Тем не менее в атмосфере Марса наблюдаются облака и постоянно присутствует дымка из мелких частиц пыли и кристалликов льда. Как показали американские снимки с посадочных модулей «Викинг- 2», марсианское небо в ясную погоду имеет розовый цвет, что объясняется рассеянием солнечного света на пылинках и подсветкой дымки оранжевой поверхностью планеты. По своему составу марсианская атмосфера близка к атмосфере Венеры и в корне отличается от земной высоким уровнем содержания углекислого газа (95 %), низкой концентрацией азота (2,7 %), аргона (1,6 %), кислорода (0,13 %), водяного пара (0,1 %), угарного газа (0,07 %). По результатам наблюдений с Земли и данных космического аппарата «Марс Экспресс» в атмосфере Марса обнаружен метан. В условиях Марса этот газ довольно быстро разлагается, поэтому должен существовать постоянный источник его пополнения. Таким источником может быть либо геологическая активность (но действующие вулканы на Марсе не обнаружены), либо жизнедеятельность бактерий.

Значительный наклон экватора к плоскости орбиты (240 56′) приводит к тому, что на одних участках орбиты освещаются и обогреваются Солнцем преимущественно северные широты Марса, а на других — южные, т.е. происходит смена времен года. При этом вытянутость орбиты приводит к большим различиям их продолжительности. Температурные условия на Марсе суровы, и в наиболее теплое время на экваторе температура достигает 280—2900К, а в наиболее холодное — 150°К. Поэтому на полярных шапках происходит вымораживание не только паров воды, но и углекислого газа.

Весеннее таяние полярных шапок приводит к резкому повышению давления атмосферы и перемещению больших масс газа в противоположное полушарие. Скорость дующих при этом ветров составляет 10 – 40 м/с, иногда до 100 м/с. Ветер поднимает с поверхности большое количество пыли, что приводит к пылевым бурям. Сильные пылевые бури практически полностью скрывают поверхность планеты. Пылевые бури оказывают заметное воздействие на распределение температуры в атмосфере Марса.

Из-за низкого давления вода не может существовать в жидком состоянии на поверхности Марса, но вполне вероятно, что в прошлом условия были иными, и поэтому наличие примитивной жизни на планете исключать нельзя. 31 июля 2008 года вода в состоянии льда была обнаружена на Марсе космическим аппаратом НАСА «Феникс». Ледник толщиной в сотни метров, занимающий площадь в тысячи квадратных километров, обнаружен под каменистыми осыпями у подножья гор.

У Марса есть магнитное поле, но оно слабо и крайне неустойчиво, в различных точках планеты его напряженность может отличаться от 1,5 до 2 раз, а магнитные полюса не совпадают с физическими. Вследствие слабости магнитного поля солнечный ветер практически беспрепятственно проникает в атмосферу Марса и многие из фотохимических реакций под действием солнечной радиации, которые на Земле происходят в ионосфере и выше, на Марсе могут наблюдаться практически у самой его поверхности. У планеты есть два спутника – Фобос и Деймос.

Спутники Марса

Каким образом происходило формирование солнечной системы Фобос и Деймос. располагаются близко к планете и характеризуются весьма быстрым движением (рис.34). В течение марсианских суток (24 ч 39 мин и 35 с) Фобос дважды восходит и дважды заходит. Деймос перемещается по небосводу медленнее; с момента его восхода и захода проходит более двух с половиной марсианских суток. Спутники движутся почти в плоскости экватора. Имеют неправильную форму. К планете повернуты всегда одной стороной. Размеры Фобоса составляют 27 км, а Деймоса — около 15 км. Поверхность спутников состоит из материала с низким альбедо и покрыта многочисленными кратерами. Один из них на Фобосе в поперечнике достигает более 5 км.

Каким образом происходило формирование солнечной системы

Рис. 34

Спутники Марса

Предполагается, что оба спутника Марса являются захваченными астероидами.

Источник: studopedia.ru

Формирование

Гипотеза об образовании Солнечной системы из газопылевого облака — небулярная гипотеза — первоначально была предложена в XVIII веке Эммануилом Сведенборгом, Иммануилом Кантом и Пьером-Симоном Лапласом. В дальнейшем её развитие происходило с участием множества научных дисциплин, в том числе астрономии, физики, геологии и планетологии. С началом космической эры в 1950-х годах, а также с открытием в 1990-х годах планет за пределами Солнечной системы (экзопланет), эта модель подверглась многократным проверкам и улучшениям для объяснения новых данных и наблюдений.

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. В общих чертах, этот процесс можно описать следующим образом:

  • Спусковым механизмом гравитационного коллапса стало небольшое (спонтанное) уплотнение вещества газопылевого облака (возможными причинами чего могли стать как естественная динамика облака, так и прохождение сквозь вещество облака ударной волны от взрыва сверхновой, и др.), которое стало центром гравитационного притяжения для окружающего вещества — центром гравитационного коллапса. Облако уже содержало не только первичные водород и гелий, но и многочисленные тяжёлые элементы (Металличность), оставшиеся после звёзд предыдущих поколений. Кроме того, коллапсирующее облако обладало некоторым начальным угловым моментом.
  • В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного диска.
  • Как следствие сжатия росла плотность и интенсивность столкновений друг с другом частиц вещества, в результате чего температура вещества непрерывно возрастала по мере сжатия. Наиболее сильно нагревались центральные области диска.
  • При достижении температуры в несколько тысяч кельвинов, центральная область диска начала светиться — сформировалась протозвезда. Вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре. Внешние же области диска оставались относительно холодными. За счёт гидродинамических неустойчивостей, в них стали развиваться отдельные уплотнения, ставшие локальными гравитационными центрами формирования планет из вещества протопланетного диска.
  • Когда температура в центре протозвезды достигла миллионов кельвинов, в центральной области началась реакция термоядерного синтеза гелия из водорода. Протозвезда превратилась в обычную звезду главной последовательности. Во внешней области диска крупные сгущения образовали планеты, вращающиеся вокруг центрального светила примерно в одной плоскости и в одном направлении.

Последующая эволюция

Раньше считалось, что все планеты сформировались приблизительно на тех орбитах, где находятся сейчас, однако в конце XX — начале XXI века эта точка зрения радикально изменилась. Сейчас считается, что на заре своего существования Солнечная система выглядела совсем не так, как она выглядит сейчас. По современным представлениям, внешняя Солнечная Система была гораздо компактнее по размеру чем сейчас, пояс Койпера был гораздо ближе к Солнцу, а во внутренней Солнечной системе помимо доживших до настоящего времени небесных тел существовали и другие объекты, по размеру не меньшие чем Меркурий.

Планеты земного типа

В конце эпохи формирования планет внутренняя Солнечная система была населена 50-100 протопланетами с размерами, варьирующимися от лунного до марсианского. Дальнейший рост размеров небесных тел был обусловлен столкновениями и слияниями этих протопланет между собой. Так, например, в результате одного из столкновений Меркурий лишился большей части своей мантии, в то время как в результате другого т.н. гигантского столкновения (возможно, с гипотетической планетой Тейя) был рождён спутник Земли Луна. Эта фаза столкновений продолжалась около 100 миллионов лет до тех пор, пока на орбитах не осталось 4 массивных небесных тела, известных сейчас.

Одной из нерешённых проблем данной модели является тот факт, что она не может объяснить, как начальные орбиты протопланетных объектов, которые должны были обладать высоким эксцентриситетом, чтобы сталкиваться между собой, смогли в результате породить стабильные и близкие к круговым орбиты оставшихся четырёх планет. По одной из гипотез, эти планеты были сформированы в то время, когда межпланетное пространство ещё содержало значительное количество газо-пылевого материала, который за счёт трения снизил энергию планет и сделал их орбиты более гладкими. Однако этот же самый газ должен был предотвратить возникновение большой вытянутости в первоначальных орбитах протопланет. Другая гипотеза предполагает, что коррекция орбит внутренних планет произошла не за счёт взаимодействия с газом, а за счёт взаимодействия с оставшимися более мелкими телами системы. По мере прохождения крупных тел сквозь облако мелких объектов последние из-за гравитационного влияния стягивались в регионы с более высокой плотностью, и создавали таким образом «гравитационные гребни» на пути прохождения крупных планет. Увеличивающееся гравитационное влияние этих «гребней», согласно этой гипотезе, заставляло планеты замедляться и выходить на более округлую орбиту.

Пояс астероидов

Внешняя граница внутренней Солнечной системы располагается между 2 и 4 а.е. от Солнца и представляет собой пояс астероидов. Выдвигались, но в итоге не были подтверждены гипотезы о существовании планеты между Марсом и Юпитером (например, гипотетической планеты Фаэтон), которая на ранних этапах формирования Солнечной системы разрушилась так, что её осколками стали астероиды, сформировавшие пояс астероидов. Согласно современным воззрениям, единой протопланеты-источника астероидов не было. Изначально астероидный пояс содержал достаточное количество материи, чтобы сформировать 2-3 планеты размером с Землю. Эта область содержала большое количество планетозималей, которые слипались между собой, образуя всё более крупные объекты. В результате этих слияний в поясе астероидов сформировалось около 20-30 протопланет с размерами от лунного до марсианского. Однако начиная с того времени, когда в относительной близости от пояса сформировалась планета Юпитер, эволюция этой области пошла по другому пути. Мощные орбитальные резонансы с Юпитером и Сатурном, а также гравитационные взаимодействия с более массивными протопланетами этой области разрушали уже сформированные планетозимали. Попадая в область действия резонанса при прохождении поблизости планеты-гиганта планетозимали получали дополнительное ускорение, врезались в соседние небесные тела и дробились вместо того чтобы плавно сливаться.

По мере миграции Юпитера к центру системы возникающие возмущения имели всё более выраженный характер. В результате этих резонансов планетозимали меняли эксцентриситет и наклонение своих орбит и даже выбрасывались за пределы астероидного пояса. Некоторые из массивных протопланет также были выброшены Юпитером за пределы пояса астероидов, в то время как другие протопланеты, вероятно, мигрировали во внутреннюю Солнечную систему, где сыграли финальную роль в увеличении массы нескольких оставшихся планет земного типа. В течение этого периода истощения влияние планет-гигантов и массивных протопланет заставило астероидный пояс «похудеть» до всего лишь 1 % от Земной массы, которую составляли в основном маленькие планетозимали. Эта величина, однако, в 10-20 раз больше современного значения массы астероидного пояса, которая теперь составляет 1/2000 массы Земли. Считается, что второй период истощения, который и привёл массу астероидного пояса к текущим значениям, наступил, когда Юпитер и Сатурн вошли в орбитальный резонанс 2:1.

Вполне вероятно, что период гигантских столкновений в истории внутренней Солнечной системы сыграл важную роль в получении Землёй её запасов воды (~6·1021 кг). Дело в том, что вода — слишком летучее вещество, чтобы возникнуть естественным образом во время формирования Земли. Скорее всего она была занесена на Землю из внешних, более холодных областей Солнечной системы. Возможно, именно протопланеты и планетозимали, выброшенные Юпитером за пределы астероидного пояса, занесли воду на Землю. Другими кандидатами на роль главных доставщиков воды являются также кометы главного пояса астероидов, обнаруженные в 2006 году, в то время как кометы из пояса Койпера и из других отдалённых областей предположительно занесли на Землю не более 6 % воды.

Планетная миграция

В соответствии с небулярной гипотезой, две внешние планеты Солнечной системы находятся в «неправильном» месте. Уран и Нептун, «ледяные гиганты» Солнечной системы, располагаются в области, где пониженная плотность вещества туманности и длительные орбитальные периоды делали формирование таких планет весьма маловероятным событием. Считается, что эти две планеты изначально сформировались на орбитах вблизи Юпитера и Сатурна, где имелось гораздо больше строительного материала, и только спустя сотни миллионов лет мигрировали на свои современные позиции.

Планетная миграция в состоянии объяснить существование и свойства внешних регионов Солнечной системы. За Нептуном Солнечная система содержит пояс Койпера, Рассеянный диск и облако Оорта, представляющие собой рассеянные скопления маленьких ледяных тел и дающие начало большинству наблюдаемых в Солнечной системе комет. Сейчас пояс Койпера располагается на расстоянии 30-55 а.е. от Солнца, рассеянный диск начинается в 100 а.е. от Солнца, а облако Оорта — в 50 000 а.е. от центрального светила. Однако в прошлом пояс Койпера был гораздо плотнее и ближе к Солнцу. Его внешний край находился примерно в 30 а.е. от Солнца, в то время как его внутренний край располагался непосредственно за орбитами Урана и Нептуна, которые в свою очередь были также ближе к Солнцу (приблизительно 15-20 а.е.) и, кроме того, располагались в противоположном порядке: Уран был дальше от Солнца чем Нептун.

После формирования Солнечной системы орбиты всех планет-гигантов продолжали медленно изменяться под влиянием взаимодействий с большим количеством оставшихся планетозималей. Спустя 500—600 миллионов лет (4 миллиарда лет назад) Юпитер и Сатурн вошли в орбитальный резонанс 2:1; Сатурн совершал один оборот вокруг Солнца в точности за то время, за которое Юпитер совершал 2 оборота. Этот резонанс создал гравитационное давление на внешние планеты, вследствие чего Нептун вырвался за пределы орбиты Урана и врезался в древний пояс Койпера. По этой же причине планеты стали отбрасывать окружающие их ледяные планетозимали вовнутрь Солнечной системы, в то время как сами стали отдаляться вовне. Этот процесс продолжался аналогичным образом: под действием резонанса планетозимали выбрасывались вовнутрь системы каждой последующей планетой, которую они встречали на своём пути, а орбиты самих планет отдалялись все дальше. Этот процесс продолжался до тех пор, пока планетозимали не вошли в зону непосредственного влияния Юпитера, после чего огромная гравитация этой планеты отправила их на высокоэллиптические орбиты или даже выбросила их за пределы Солнечной системы. Эта работа в свою очередь слегка сдвинула орбиту Юпитера вовнутрь. Объекты, выброшенные Юпитером на высокоэллиптические орбиты, сформировали облако Оорта, а тела, выброшенные мигрирующим Нептуном, сформировали современный пояс Койпера и рассеянный диск. Данный сценарий объясняет, почему рассеянный диск и пояс Койпера имеют малую массу. Некоторые из катапультированных объектов, включая Плутон, со временем вошли в гравитационный резонанс с орбитой Нептуна. Постепенно трение с рассеянным диском сделало орбиты Нептуна и Урана вновь гладкими.

Существует также гипотеза о пятом газовом гиганте, претерпевшем радикальную миграцию и вытолкнутом при формировании современного облика Солнечной системы на её далёкие окраины (ставшим гипотетической планетой Тюхе или другой «Планетой X») или даже за её пределы (ставшим планетой-сиротой).

Подтверждение теории о массивной планете за орбитой Нептуна нашли Констанин Батыгин и Майкл Браун 20 января 2016 года на основе орбит шести транснептуновых объектов. Её масса, использующаяся в расчётах составляла примерно 10 земных масс, а оборот вокруг Солнца предположительно занимал от 10.000 до 20.000 земных лет.

Считается, что в отличие от внешних планет внутренние тела системы не претерпевали значительных миграций, поскольку после периода гигантских столкновений их орбиты оставались стабильными.

Поздняя тяжёлая бомбардировка

Гравитационное разрушение древнего астероидного пояса, вероятно, положило начало периоду тяжёлой бомбардировки, происходившему около 4 миллиардов лет назад, через 500—600 миллионов лет после формирования Солнечной системы. Этот период длился несколько сотен миллионов лет и его последствия видны до сих пор на поверхности геологически неактивных тел Солнечной системы, таких как Луна или Меркурий, в виде многочисленных кратеров ударного происхождения. А самое древнее свидетельство жизни на Земле датируется 3,8 миллиардами лет назад — почти сразу после окончания периода поздней тяжёлой бомбардировки.

Гигантские столкновения являются нормальной (хоть и редкой в последнее время) частью эволюции Солнечной системы. Доказательствами этого служат столкновение кометы Шумейкера—Леви с Юпитером в 1994, падение на Юпитер небесного тела в 2009 и метеоритный кратер в Аризоне. Это говорит о том, что процесс аккреции в Солнечной системе ещё не закончен, и, следовательно, представляет опасность для жизни на Земле.

Формирование спутников

Естественные спутники образовались у большинства планет Солнечной системы, а также у многих других тел. Различают три основных механизма их формирования:

  • формирование из около-планетного диска (в случае газовых гигантов)
  • формирование из осколков столкновения (в случае достаточно крупного столкновения под малым углом)
  • захват пролетающего объекта

Юпитер и Сатурн имеют много спутников, таких как Ио, Европа, Ганимед и Титан, которые, вероятно, сформировались из дисков вокруг этих планет-гигантов по тому же принципу, как и сами эти планеты сформировались из диска вокруг молодого Солнца. На это указывают их большие размеры и близость к планете. Эти свойства невозможны для спутников, приобретённых путём захвата, а газообразная структура планет делает невозможной и гипотезу формирования лун путём столкновения планеты с другим телом.

Будущее

По оценкам астрономов Солнечная система не будет претерпевать экстремальных изменений до тех пор, пока Солнце не израсходует запасы водородного топлива. Этот рубеж положит начало переходу Солнца с главной последовательности диаграммы Герцшпрунга — Рассела в фазу красного гиганта. Однако и в фазе главной последовательности звезды Солнечная система продолжает эволюционировать.

Долговременная устойчивость

Солнечная система является хаотичной системой, в которой орбиты планет непредсказуемы на очень длинном отрезке времени. Одним из примеров такой непредсказуемости является система Нептун-Плутон, находящаяся в орбитальном резонансе 3:2. Несмотря на то, что сам по себе резонанс будет оставаться стабильным, невозможно предсказать хоть с каким-нибудь приближением положение Плутона на орбите более чем на 10-20 миллионов лет (время Ляпунова). Другим примером может служить наклон оси вращения Земли, который по причине трения внутри Земной мантии, вызванного приливными взаимодействиями с Луной, невозможно высчитать начиная с некоторого момента между 1.5 и 4.5 миллиардами лет в будущем.

Орбиты внешних планет хаотичны на больших временных масштабах: их время Ляпунова составляет 2-230 миллионов лет. Это не только означает, что позицию планеты на орбите начиная с этого момента в будущем невозможно определить хоть с каким-нибудь приближением, но и орбиты сами по себе могут экстремально измениться. Наиболее сильно хаос системы может проявиться в изменении эксцентриситета орбиты, при котором орбиты планет становятся более или менее эллиптическими.

Солнечная система является устойчивой в том смысле, что никакая из планет не может столкнуться с другой или быть выброшенной за пределы системы в ближайшие несколько миллиардов лет. Однако за этими временными рамками, например, в течение 5 миллиардов лет, эксцентриситет орбиты Марса может вырасти до значения 0,2, что приведёт к пересечению орбит Марса и Земли, а значит, и к реальной угрозе столкновения. В этот же период времени эксцентриситет орбиты Меркурия может увеличиться ещё больше, и впоследствии близкое прохождение около Венеры может выбросить Меркурий за пределы Солнечной системы, или вывести на курс столкновения с самой Венерой или с Землёй.

Спутники и кольца планет

Эволюция лунных систем планет определяется приливными взаимодействиями между телами системы. Из-за разности силы гравитации, воздействующей на планету со стороны спутника, в разных её областях (более удалённые области притягиваются слабее, в то время как более близкие — сильнее), форма планеты изменяется — она как бы слегка вытягивается в направлении спутника. Если направление обращения спутника вокруг планеты совпадает с направлением вращения планеты, и при этом планета вращается быстрее чем спутник, то этот «приливный бугор» планеты будет постоянно «убегать» вперёд по отношению к спутнику. В этой ситуации угловой момент вращения планеты будет передаваться спутнику. Это приведёт к тому, что спутник будет получать энергию и постепенно удаляться от планеты, в то время как планета будет терять энергию и вращаться все медленнее и медленнее.

Земля и Луна являются примером такой конфигурации. Вращение Луны приливно-закреплено по отношению к Земле: период обращения Луны вокруг Земли (в настоящее время примерно 29 дней) совпадает с периодом вращения Луны вокруг своей оси, и поэтому Луна всегда повёрнута к Земле одной и той же стороной. Луна постепенно отдаляется от Земли, в то время как вращение Земли постепенно замедляется. Через 50 миллиардов лет, если они переживут расширение Солнца, Земля и Луна станут приливно-закреплены по отношению друг к другу. Они войдут в так называемый спин-орбитальный резонанс, при котором Луна будет обращаться вокруг Земли за 47 дней, период вращения обоих тел вокруг своей оси будет одинаков, и каждое из небесных тел будет всегда видимо только с одной стороны для своего партнёра.

Другими примерами такой конфигурации являются системы Галилеевых спутников Юпитера, а также большинство крупных лун Сатурна.

Иной сценарий ожидает системы, в которых спутник движется вокруг планеты быстрее, чем она вращается вокруг себя, или в которых спутник движется в направлении противоположном направлению вращения планеты. В таких случаях приливная деформация планеты постоянно отстаёт от позиции спутника. Это меняет направление переноса углового момента между телами на противоположное. что в свою очередь приведёт к ускорению вращения планеты и сокращению орбиты спутника. С течением времени спутник будет приближаться по спирали к планете, пока в какой-то момент либо не упадёт на поверхность или в атмосферу планеты, либо не будет разорван приливными силами на части, породив таким образом планетарное кольцо. Такая судьба ожидает спутник Марса Фобос (через 30—50 миллионов лет), спутник Нептуна Тритон (через 3,6 миллиарда лет), Метиду и Адрастею Юпитера, и, как минимум, 16 мелких лун Урана и Нептуна. Спутник Урана Дездемона при этом может быть даже столкнётся с луной-соседкой.

Ну и, наконец, в третьем типе конфигурации планета и спутник приливно-закреплены по отношению друг к другу. В этом случае «приливный бугор» расположен всегда точно под спутником, передача углового момента отсутствует, и, как следствие, орбитальный период не меняется. Примером такой конфигурации является Плутон и Харон.

До экспедиции космического аппарата “Кассини — Гюйгенс” в 2004 году считалось, что кольца Сатурна намного моложе Солнечной системы, и что они просуществуют не более чем 300 миллионов лет. Предполагалось, что гравитационные взаимодействия с лунами Сатурна будут постепенно передвигать внешний край колец ближе к планете, в то время как гравитация Сатурна и бомбардирующие метеориты закончат начатое, полностью расчистив пространство вокруг Сатурна. Однако данные с миссии “Кассини” заставили учёных пересмотреть эту точку зрения. Наблюдения зарегистрировали ледяные глыбы материала до 10 км в диаметре, находящиеся в постоянном процессе дробления и переформирования, которые постоянно обновляют кольца. Эти кольца намного более массивные чем кольца других газовых гигантов. Считается, что именно эта большая масса сохранила кольца в течение 4,5 миллиардов лет, начиная с момента когда сформировался Сатурн, и, вероятно, сохранит их в течение последующих миллиардов лет.

Солнце и планеты

В далёком будущем самые большие изменения в Солнечной системе будут связаны с изменением состояния Солнца вследствие его старения. По мере сжигания Солнцем запасов водородного топлива оно будет становиться всё горячее, и, как следствие, будет расходовать запасы водорода всё быстрее. В результате этого светимость Солнца возрастает на 10 % каждые 1,1 миллиардов лет. Спустя 1 миллиард лет из-за увеличения солнечного излучения околозвёздная обитаемая зона Солнечной системы будет смещена за пределы современной земной орбиты. Поверхность Земли постепенно разогреется так сильно, что на ней станет невозможным присутствие воды в жидком состоянии. Испарение океанов создаст парниковый эффект, который приведёт к ещё более интенсивному разогреву Земли. На этом этапе существования Земли существование жизни на земной поверхности станет невозможным. Однако представляется вероятным, что в этот период начнёт постепенно повышаться температура поверхности Марса. Вода и углекислый газ, замороженные в недрах планеты, начнут высвобождаться в атмосферу, и это приведёт к созданию парникового эффекта, ещё более увеличивающему скорость разогрева поверхности. В результате атмосфера Марса достигнет условий схожих с земными, и таким образом Марс вполне может стать потенциальным убежищем для жизни в будущем.

По прошествии примерно 3,5 миллиардов лет от настоящего времени условия на поверхности Земли будут похожи на современные условия планеты Венеры: океаны в значительной степени испарятся, вся жизнь постепенно вымрет.

Приблизительно через 7,7 миллиардов лет от настоящего времени ядро Солнца станет настолько горячим, что запустит процесс горения водорода в окружающей его оболочке. Это повлечёт за собой сильное расширение внешних слоёв звезды, и таким образом Солнце войдёт в новую фазу своей эволюции, превратившись в красный гигант. В этой фазе радиус Солнца составит 1,2 а.е., что в 256 раз больше его современного радиуса. Многократное увеличение площади поверхности звезды приведёт к снижению температуры поверхности (около 2600 К) и к увеличению светимости (в 2700 раз больше современного значения). Поверхностные массы газов будут довольно быстро рассеиваться из-за влияния солнечного ветра, в результате чего будет унесено в окружающее пространство около 33 % его массы. Вполне вероятно, что в течение данного периода спутник Сатурна Титан достигнет условий, приемлемых для поддержания жизни.

По мере своего расширения Солнце полностью поглотит планеты Меркурий и, вероятно, Венеру. Судьба Земли в настоящее время недостаточно изучена. Несмотря на то, что радиус Солнца будет включать современную земную орбиту, потеря звездой массы и, как следствие, уменьшение силы притяжения приведут к перемещению планетных орбит на более дальние расстояния. Возможно, что это позволит Земле и Венере перейти на более высокую орбиту, избежав поглощения материнской звездой, однако исследования 2008 года показывают, что Земля скорее всего всё-таки будет поглощена Солнцем вследствие приливных взаимодействий с его внешней оболочкой.

Постепенное сгорание водорода в областях вокруг солнечного ядра будет приводить к увеличению его массы до тех пор пока не достигнет значения 45 % от массы звезды. В этот момент его плотность и температура станут такими высокими, что произойдёт гелиевая вспышка и начнётся процесс термоядерного синтеза гелия в углерод. Во время этой фазы Солнце уменьшится в размере от предыдущих 250 до 11 радиусов. Его светимость упадёт с 3000- до 54-кратного уровня современного Солнца, а температура поверхности увеличится до 4770 К. Фаза синтеза гелия в углерод будет иметь стабильный характер, но продлится всего около 100 миллионов лет. Постепенно, как и в фазе горения водорода, в реакцию будут захватываться запасы гелия из областей, окружающих ядро, что приведёт к повторному расширению звезды, и она снова станет красным гигантом. Данная фаза переведёт Солнце в асимптотическую ветвь гигантов диаграммы Герцшпрунга-Расселла. В этой стадии светимость Солнца увеличится в 2090 раз по сравнению с современной, а температура поверхности упадёт до 3500 К. Эта фаза существования Солнца продлится около 30 миллионов лет. В дальнейшем начнёт усиливаться солнечный ветер (рассеяние частиц звёздной оболочки) и оставшиеся внешние слои Солнца будут сброшены в открытый космос в виде мощных струй звёздного вещества. Отбрасываемая материя образует гало, именуемое планетарной туманностью, которое будет состоять из продуктов горения последних фаз — гелия и углерода. Эта материя будет участвовать в обогащении межзвёздного пространства тяжёлыми элементами, необходимыми для образования космических тел следующих поколений.

Процесс сброса Солнцем внешних слоев является относительно спокойным явлением по сравнению, например, со взрывом сверхновой. Он представляет собой значительное увеличение силы солнечного ветра, недостаточное для разрушения им близлежащих планет. Однако значительная потеря звездой своей массы заставит планеты сместиться со своих орбит, повергнув Солнечную систему в хаос. Некоторые из планет могут столкнуться между собой, некоторые могут покинуть Солнечную систему, некоторые — остаться на отдалённом расстоянии. Примерно через 75 000 лет от красного гиганта останется лишь его маленькое центральное ядро — белый карлик, небольшой, но очень плотный космический объект. Остаток массы составит примерно 50 % от той, что Солнце имеет сегодня, а его плотность достигнет двух миллионов тонн на каждый кубический сантиметр. Размеры этой звезды будут сравнимы с размерами Земли. Изначально этот белый карлик может иметь светимость в 100 раз превышающую современную светимость Солнца. Он будет полностью состоять из вырожденного углерода и кислорода, но никогда не сможет достичь температур, достаточных для начала синтеза этих элементов. Таким образом, белый карлик Солнце будет постепенно остывать, становясь всё тусклее и холоднее.

По мере умирания Солнца его гравитационное влияние на обращающиеся вокруг тела (планеты, кометы, астероиды) будет ослабевать из-за потери звездой массы. В этот период будет достигнута заключительная конфигурация объектов Солнечной системы. Орбиты всех сохранившихся планет переместятся на более дальние расстояния: Меркурий прекратит своё существование, если Венера, Земля и Марс будут всё ещё существовать, их орбиты будут лежать приблизительно в 1,4 а.е (210 000 000 км), 1,9 а.е. (280 000 000 км), и 2,8 а.е. (420 000 000 км). Эти и все оставшиеся планеты будут представлять собой холодные, тёмные миры, лишённые каких-либо форм жизни. Они продолжат обращаться по орбитам вокруг их мёртвой звезды, а их скорость значительно ослабеет по причине увеличения расстояния от Солнца и уменьшения гравитационного притяжения. 2 миллиарда лет спустя, когда Солнце охладится до 6000-8000 К, углерод и кислород в ядре Солнца затвердеют, 90 % массы ядра примет кристаллическую структуру. В конечном итоге, после еще многих миллиардов лет как белый карлик, Солнце полностью прекратит излучать в окружающее пространство видимый свет, радиоволны и инфракрасное излучение, превратившись в чёрный карлик. Вся история Солнца от его рождения до смерти займёт примерно 12,4 млрд лет.

Галактическое взаимодействие

Солнечная Система движется сквозь галактику Млечный Путь по круговой орбите на расстоянии примерно 30 000 световых лет от галактического центра со скоростью 220 км/с. Период обращения вокруг центра галактики, так называемый галактический год, составляет для Солнечной Системы примерно 220—250 миллионов лет. С начала своего формирования Солнечная система совершила как минимум 20 оборотов вокруг центра галактики.

Многие учёные считают, что прохождение Солнечной системы сквозь галактику влияет на периодичность массовых вымираний животного мира в прошлом. Согласно одной из гипотез, вертикальные осцилляции Солнца на его орбите вокруг галактического центра, приводящие к регулярному пересечению Солнцем галактической плоскости, изменяют мощность воздействия приливных сил галактики на Солнечную систему. Когда Солнце находится вне галактического диска, влияние галактических приливных сил меньше; когда оно возвращается в галактический диск — а это происходит каждые 20-25 миллионов лет — то попадает под влияние гораздо более мощных приливных сил. Это, согласно математическим моделям, увеличивает на 4 порядка частоту комет, прибывающих из Облака Оорта в Солнечную систему, а значит, сильно увеличивает и вероятность глобальных катастроф в результате падения комет на Землю.

Однако многие оспаривают эту гипотезу, приводя аргумент, что Солнце уже находится вблизи галактической плоскости, однако последнее массовое вымирание было 15 миллионов лет назад. Следовательно, вертикальное расположение Солнечной системы относительно галактической плоскости само по себе не может объяснить периодичность массовых вымираний на Земле, однако выдвигается предположение, что эти вымирания могут быть связаны с прохождением Солнца сквозь спиральные рукава галактики. Спиральные рукава содержат не только большие скопления молекулярных облаков, гравитация которых может деформировать облако Оорта, но и большое количество ярких голубых гигантов, которые живут относительно недолгое время, и умирают, взрываясь сверхновыми, опасными для всего живого поблизости.

Источник: aboutspacejornal.net


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.