Нир космические техники россии



МБОУ Шамординская общеобразовательная школа Жуковского района  

Брянской области

на областной конкурс

творческих работ

по космонавтике

« Звездные дали» .

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

по теме:

«Развитие российской космонавтики»

 

                                                                                                                     Автор работы:

Ошеров Александр Аркадьевич,

учащийся 9 класса

Адрес автора:

д.Шамордино, ул.Сельская, д.3, кв.2.

                                                                  Руководитель:

Даниличева Надежда Ивановна,

учитель физики

Адрес и телефон образовательного учреждения:


242814, Жуковский район

д.Шамордино,

 ул.Молодежная, д.32,

 (9-92-3-34)

                                                             Шамордино 2012

Содержание:

1. Введение.                                                                                      2                                                                            

2. Этап теоретической  космонавтики. К.Э Циолковский —          основоположник  космонавтики.                                               4

3. Этап практической космонавтики. Королев С.П.-  конструктор в области ракетостроения и космонавтики.    9

4.  Первый спутник Земли и полеты животных.                      11

5. Юрий Гагарин – первый человек в космосе.                       12

6. Терешкова ВВ – первая женщина космонавт.                     18

7. Леонов А.А. —   выход в открытое пространство.                 20

8. « Луна, Марс – далее везде»                                                     22

9. Международные полеты в космос.                                         23

10. Космос будущего.                                                                     24


11. Заключение.                                                                              25

12. Литература.                                                                               26

                                           

  Введение.

                       Человечеству от природы присуще стремление познать новое, ранее неизвестное. Вспомним,  например, с каким упорством еще древние ученые пытались проникнуть в сущность вещей. Как путешественники различных времен, стран и народов не могли спокойно жить в городах и селениях:  неведомая и могучая жажда познания заставляла их покидать уютные дома и пускаться в рискованные, полные волнений и лишений путешествия. Примеров этому можно было бы привести  великое множество . вопрос: что там за горизонтом? – никогда не давал человечеству покоя .Точно также не дает покоя современным физикам -микрокосмос, биологам — проблемы возникновения и развития жизни,  работникам техники и искусства – свои присущие этим отраслям знания проблемы. Чтобы получить  ответ на этот вопрос, плыли корабли Колумба, уходили в горы экспедиции Семенова  — Тянь_ Шанского,  проводили опыты с ядовитыми смесями в своих лабораториях алхимики, а знаменитый физик  Энрико Ферми сближал отверткой два бруска металлического урана в надежде вызвать цепную реакцию деления,  хотя мог при этом и погибнуть  от вспышки неведомых всепроникающих излучений.


                     Этот же вопрос : а что же там за горизонтом? —   волнует и нас, живущих в современном мире. Пытаясь решить его, человек не ищет материальной выгоды, им движет неведомая сила любознательности,  стремление к неизвестному.

                       Если экспедиция Колумба открыла огромный новый континент, названный Америкой, то космические исследования открыли для человечества в миллионы и миллиарды раз больший « континент» —  космос со всеми его планетами, звездами и другими образованиями. И это открытие было столь великим, что, по – видимому, изменит в будущем судьбы человечества.

                        Космос!  Это слово еще недавно было понятно только узкому кругу специалистов. А теперь оно вошло в нашу разговорную речь. Мы часто слышим: мы живем в век космоса. А все ли знают, что такое космос? Бесконечная пустыня с огненными шарами гигантских звезд и движущимися вокруг них большими и малыми планетами. Таким было прежнее представление о космосе. В действительности космическое пространство наполнено и пронизано различными излучениями, потоками частиц, метеорным веществом, гравитационным и магнитным полями.

                   Звезды образ образуют гигантские системы, называемые галактиками, так что наша галактика не единственная звездная система. Наблюдения и расчеты для видимой части Вселенной ( Метагалактики) показывают, что число галактик более 1010. Огромные расстояния разделяют галактики. История развития и космонавтики и ракетной техники  знает не мало славных имен, но основоположником научной космонавтики считается великий русский ученый Циолковский Константин Эдуардович.


                 Учеными космической эры по праву можно назвать Николая Егоровича Жуковского, Ивана Всеволодовича Мещерского, Фридриха Артуровича Цандера, Мстислава Всеволодовича Келдыша и многих других.

               Всех этих ученых можно назвать родными братьями хотя бы  потому, что все они были верными сыновьями России и потому, что все были одержимы и проникнуты идеей освоения космического пространства.

Цель : изучить особенности становления и развития российской космонавтики.

Задачи:

—  изучить этапы развития космонавтики;

— познакомиться с конструкторскими изобретениями ставшими решающими факторами в деле « победы» человека над космосом, принесшие славу и обеспечили приоритет в освоении космоса;

— узнать о жизни первого космонавта, о конструкторе Королеве С. П. и  об основоположнике космонавтики К.Э. Циолковском.

“Человечество не останется вечно на Земле,
но в погоне за светом и пространством сначала
робко проникнет за пределы атмосферы,
а затем завоюет себе все
околосолнечное пространство”.


К.Э. Циолковский

1. Этап теоретической космонавтики.

К.Э.Циолковский – основоположник космонавтики.

ЦИОЛКОВСКИЙ Константин Эдуардович (1857—1935) — русский советский учёный и изобретатель в области аэродинамики, ракетостроении, теории самолёта и дирижабля; основоположник современной  космонавтики. ( см. фото 1)

Константин Эдуардович родился 5 сентября старого стиля 1857 г. в селе Ижевском Рязанской губернии. От своих родителей Константин Эдуардович унаследовал живой ум, склонный к размышлениям и фантазиям, пытливость, настойчивость и любовь ко всевозможным ручным ремеслам, которые были широко развиты в их роду.

До десятилетнего возраста Константин Циолковский выделялся среди окружавших его сверстников живым характером и неистощимой энергией и фантазией.

Когда ему было около 10 лет, произошло событие, наложившее отпечаток на всю его дальнейшую жизнь. Он заболел тяжелой формой скарлатины, с трудом перенес ее и в результате осложнения после болезни оглох. Учиться дальше в обычной школе стало для Константина невозможно, и он уходит из школы. Начался трудный период жизни, который он сам называет «периодом бессознательности». Примерно в это же время умирает его мать и ребенок остается совсем одиноким и отрешенным от жизни. К концу этого периода, в возрасте 14—15 лет, отрезанный от своих сверстников, замкнутый мальчик начинает заниматься различными техническими игрушками, сам делает токарный станок и работает на нем.


пробует самостоятельно читать книги: арифметику, где все ему кажется как будто понятным, общеизвестный в то время учебник физики Гано и какую-то геометрию. Так начинается для Циолковского прохождение курса средней школы. Читая геометрию, он мастерит самодельную астролябию и производит с ней ряд измерений. Не выходя из дома, он определяет расстояние до пожарной каланчи, находит его равным 400 аршинам; после проверки оказывается верно. «Так я поверил теоретическому знанию»,—говорит Циолковский. Читая физику, он самостоятельно делает автомобиль, двигающийся силой реакции струи пара, отбрасываемой назад, аэростат, наполненный водородом, и ряд других занимательных игрушек.
Отец видел выдающиеся технические способности сына и поощрял его увлечения и занятия. Было решено в 1873 г. послать мальчика в Москву учиться. Однако в Москве юный Циолковский никуда не поступил и продолжал заниматься самообразованием, ведя нищенское, полуголодное существование.

Метод занятий и работы у Циолковского остался прежний: все проверять и пробовать для того, чтобы уверовать в науку. В период московской жизни вырисовывается общее направление всех будущих технических работ и стремлений Циолковского. Почти все они относятся к области техники и механики движения. Это мысли о том, нельзя ли воспользоваться теми или иными свойствами вещества для осуществления того или иного типа движущегося аппарата. Циолковского занимают мысли о тяжести и о средствах борьбы с тяжестью. Он обдумывает, нельзя ли устроить, например, такой поезд вокруг экватора, в котором парализовалось бы действие тяжести вследствие наличия большого центробежного ускорения.


У него зарождаются мысли о том, каких размеров должен быть воздушный шар с металлической оболочкой, чтобы подниматься на воздух с людьми.

Так в сознании Циолковского уже тогда возникают смутные очертания его будущих работ в области металлических дирижаблей и идеи возможности вылета человека за пределы земного тяготения, или, как он говорил впоследствии, «обворожительные мечты». Первые замыслы оказались несостоятельными, первые попытки изобретать окончились неудачей, но это не охладило энергии изобретателя, который всегда впоследствии тепло вспоминал свои московские мечтания.

К концу московской жизни 19-летнего Циолковского можно считать определившимся изобретателем.

Быстро пролетел трехлетний период пребывания в Москве; надо было жить и пробивать собственную дорогу в жизни. Отец письмом вызывает его в Вятку, где тогда жила семья, и подыскивает ему кое-какие уроки. Свободного времени оставалось много, и Константин Эдуардович с увлечением занимается созданием своей небольшой мастерской и снова бесконечными опытами. После переезда в Рязань в 1879 г. Циолковский сдает установленные экзамены для получения соответствующего диплома, дающего право преподавания в начальных школах, и через год получает должность учителя арифметики и начальной геометрии в уездном начальном училище в г. Боровске. Так началась педагогическая карьера Константина Эдуардовича, продолжавшаяся 40 лет.


                Будучи учителем, Циолковский остается верен себе и все свободное время и средства тратит на физические опыты, на изготовление различных моделей, устройств и механизмов. Понятно, что у Циолковского установились отличнейшие отношения с ребятами-учениками, обожавшими изобретательного учителя. Надо отметить, что, несмотря на его органический недостаток — потерю слуха, Циолковский был хорошим учителем. После Боровска, где Константин Эдуардович прожил 12 лет, он перевелся в г. Калугу, там безвыездно и прожил до своей смерти.

1903 г. Публикация труда "Исследование мировых пространств реактивными приборами". В этом пионерском труде Циолковский:

  1. впервые в мире описал основные элементы реактивного двигателя;
  2. пришёл к выводу, что твёрдые виды топлива не годится для космических полётов, и предложил двигатели на жидком топливе;
  3. полностью доказал невозможность выхода в космос на аэростате или с помощью артиллерийского орудия;
  4. вывел зависимость между весом топлива и весом конструкций ракеты для преодоления силы земного тяготения;
  5. высказал идею бортовой системы ориентации по Солнцу или другим небесным светилам;
  6. проанализировал поведение ракеты вне атмосферы, в среде, свободной от тяготения.

О своём смысле жизни Циолковский говорил так:

“Основной мотив моей жизни – не прожить даром, продвинуть человечество хоть немного вперёд. Вот почему я интересовался тем, что не давало мне ни хлеба, ни силы, но я надеюсь, что мои работы, может быть скоро, а может быть и в отдалённом будущем, дадут горы хлеба и бездну могущества…человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе всё околосолнечное пространство”.

Так на берегах Оки взошла заря космической эры. Правда, результат первой публикации оказался совсем не тот, какого ожидал Циолковский. Ни соотечественники, ни зарубежные ученые не оценили

2. Этап практической космонавтики . Королев С.П.- конструктор в области ракетостроения и космонавтики.

КОРОЛЕВ Сергей Павлович (1907-1966) — советский ученый и конструктор в области ракетостроения и космонавтики, главный конструктор первых ракет-носителей, ИСЗ, пилотируемых космических кораблей, основоположник практической космонавтики, академик АН СССР, член президиума АН СССР, дважды Герой Социалистического Труда…

Королев — пионер освоения космоса. С его именем связана эпоха первых замечательных достижений в этой области. Талант выдающегося ученого и организатора позволил ему на протяжении многих лет направлять работу многих НИИ и КБ на решение больших комплексных задач. Научные и технические идеи Королева нашли широкое применение в ракетной и космической технике. Под его руководством создан первый космический комплекс, многие баллистические и геофизические ракеты, запущена первая в мире межконтинентальная баллистическая ракета, ракета-носитель "Восток" и ее модификации, искусственный спутник Земли, осуществлены полеты КК "Восток" и "Восход", на которых впервые в истории совершен космический полет человека и выход человека в космическое пространство; созданы первые КА серий "Луна", "Венера", "Марс", "Зонд", ИСЗ серий "Электрон", "Молния-1" и некоторые ИСЗ серии "Космос"; разработан проект КК "Союз". Не ограничивая свою деятельность созданием РН и КА, Королев, как главный конструктор осуществлял общее техническое руководство работами по первым космическим программам и стал инициатором развития ряда прикладных научных направлений, обеспечивающих дальнейший прогресс в создании РН и КА. Королев воспитал многочисленные кадры ученых и инженеров.

Учёными космической эры по праву можно назвать Николая Егоровича Жуковского, Ивана Всеволодовича Мещерского, Фридриха Артуровича Цандера, Мстислава Всеволодовича Келдыша, и многих других.

Всех этих ученых можно считать родными братьями хотя бы потому, что все они были верными сыновьями России и потому, что все были одержимы и проникнуты идеей освоения космического пространства.

3. Первый искусственный спутник Земли и полеты животных.

04.10.1957. С космодрома Байконур осуществлен пуск ракеты-носителя "Спутник", которая вывела на околоземную орбиту Первый в мире искусственный спутник Земли. Этот старт открыл космическую эру в истории человечества.

19.08.1960 был запущен Второй корабль-спутник типа "Восток", с собаками Белка и Стрелка, а вместе с ними 40 мышей, 2 крысы, различные мухи, растения и микроорганизмы 17 раз облетели вокруг Земли и приземлились.

Животные в космосе.

Хэм — первый шимпанзе-астронавт. 31 января 1961 года Хэм был помещён в космический корабль “Меркурий-Редстоун 2” и запущен в космос с космодрома на мысе Канаверал. Полёт Хэма был последней репетицией перед первым суборбитальным полётом американского астронавта в космос.

Белка и Стрелка – собаки , запущенные в космос на советском корабле Спутник -5,прототипе космического корабля Восток и находившиеся там с 19 по 20 августа 1960 года. Впервые в мире живые существа, побывав в Космосе, возвратились на Землю после орбитального полёта. Через несколько месяцев у Стрелки родились шесть здоровых щенков. Одного из них попросил лично Никита Сергеевич Хрущёв. Он отправил его в подарок Жаклин Кеннеди, жене президента США Джона Кеннеди.
Целью эксперимента по запуску животных в космос была проверка эффективности систем жизнеобеспечения в космосе и исследование космического излучения на живые организмы, для изучения различного рода биологических процессов, эффектов микрогравитации и других целей.

4 Юрий Гагарин – первый человек в космосе.

Мы , советские космонавты,

Проложившие первые борозды

в космической целине, всегда

 будем рады сотрудничать

с исследователями просторов Вселенной

 представителями всех стран и народов –

в интересах мира и дружбы на нашей планете.

Ю.А.Гагарин.

12.04.1961. Этот день стал днем торжества человеческого разума. Впервые в мире космический корабль с человеком на борту ворвался в просторы Вселенной. Ракета-носитель "Восток" вывела на околоземную орбиту советский космический корабль "Восток" с советским космонавтом Юрием Гагариным. После полёта на корабле “Восток” Ю. А. Гагарин ( фото 2) стал самым известным человеком на планете. О нём писали все газеты мира

Первый космонавт планеты родился 9 марта 1934 года в городе Гжатск (ныне Гагарин) Гжатского (ныне Гагаринского) района Смоленской области в семье колхозника. "Семья, в которой я родился, — писал позднее Юрий Алексеевич, — самая обыкновенная; она ничем не отличается от миллионов трудовых   семей нашей Родины".
         Первые годы своей жизни Юрий провел в деревне Клушино, где жили его родители: отец — Алексей Иванович, и мать Анна Тимофеевна. В младые годы был самым обыкновенным ребенком, ничем не отличавшимся от своих сверстников: по мере своих сил помогал родителям, был непременным участником всех детских деревенских забав, иногда шалил.
         Безоблачное детство будущего покорителя космических просторов было прервано начавшейся Великой Отечественной войной. 1 сентября маленький Юрий пошел в первый класс Клушинской неполной средней школой, а уже 12 октября занятия были прерваны — гитлеровские войска оккупировали село.
         Долгих два года пробыли немецко-фашистские войска в Клушино и два года маленький Юрий видел все ужасы, присущие войне.
                 24 мая 1945 года семья Гагариных переехала из Клушино в город Гжатск (ныне Гагарин), где Юрий продолжил свое обучение.
                С отличием окончил ремесленное училище по специальности формовщик-литейщик. Своей рабочей профессией Юрий Алексеевич гордился всю жизнь.
         Окончив училище и получив специальность, Гагарин решает продолжить учебу и уже в августе 1951 года становится студентом Саратовского индустриального техникума.
         Годы учебы летели незаметно и были до предела спрессованы разнообразными занятиями. Кроме учебы и производственной практики, много времени отнимала комсомольская работа, спорт. Именно в те годы Гагарин увлекся авиацией и 25 октября 1954 года впервые пришел в Саратовский аэроклуб.

       27 октября 1955 года Октябрьским райвоенкоматом города Саратова Юрий Алексеевич был призван в ряды Советской Армии и направлен в город Оренбург на учебу в 1-е Чкаловское военно-авиационное училище летчиков имени К.Е.Ворошилова. Едва надев военную форму, Гагарин понял, что с небом будет связана вся его жизнь. Это оказалось той стезей, к которой стремилась его душа.
         Незаметно пролетели два года в стенах училища, заполненные полетами, боевой подготовкой и краткими часами отдыха. И вот 25 октября 1957 года училище закончено.
                 В конце 1957 года Гагарин прибыл к месту своего назначения — истребительный авиационный полк Северного флота. Потекли армейские будни: полеты в условиях полярного дня и полярной ночи, боевая и политическая подготовка. Летать Гагарин любил, летал с удовольствием и, вероятно, так бы и продолжалось еще много лет, если бы не начавшийся среди молодых летчиков-истребителей набор для переучивания на новую технику. Тогда еще никто открыто не говорил о полетах в космос, поэтому космические корабли именовали "новой техникой".

         9 декабря 1959 года Гагарин написал заявление с просьбой зачислить его в группу кандидатов в космонавты. Уже через неделю его вызвали в Москву для прохождения всестороннего медицинского обследования в Центральном научно-исследовательском авиационном госпитале. В начале следующего года последовала еще одна специальная медкомиссия, которая признала старшего лейтенанта Гагарина годным для космических полетов. 3 марта 1960 года приказом Главнокомандующего ВВС К.А.Вершинина зачислен в группу кандидатов в космонавты, а с 11 марта приступил к тренировкам.
         Их было 20 молодых летчиков, которым предстояло готовиться к первому полету в космос. Гагарин был одним из них. Когда началась подготовка, никто не мог даже предположить, кому из них предстоит открыть дорогу к звездам. Это потом, когда полет стал реальностью, когда более или менее стали ясны сроки этого полета, выделилась группа из шести человек, которых стали готовить по иной, чем остальных, программе.
         А за четыре месяца до полета практически всем стало ясно, что полетит именно Гагарин. Никто из руководителей советской космической программы никогда не говорил, что Юрий Алексеевич был подготовлен лучше, чем другие. Выбор первого определялся многими факторами, причем физиологические показатели и знание техники не были доминирующими. И Сергей Павлович Королев, который внимательно следил за подготовкой, и руководители Оборонного отдела ЦК КПСС, курировавшие космические разработки, и руководители Министерства общего машиностроения и Министерства обороны прекрасно понимали, что первый космонавт должен стать лицом нашего государства, достойно представляющим Родину на международной арене. Наверное, именно эти причины и заставили сделать выбор в пользу Гагарина, доброе лицо и открытая душа которого покоряли всех, с кем ему приходилось общаться. А последнее слово оказалось за Никитой Сергеевичем Хрущевым, бывшим в ту пору Первым секретарем ЦК КПСС. Когда ему принесли фотографии первых космонавтов, он без колебаний выбрал Гагарина.
         Но чтобы это произошло, Гагарину и его товарищам пришлось пройти путь длинною в год, наполненный нескончаемыми тренировками в сурдо- и барокамерах, на центрифугах, на других тренажерах. Эксперимент шел за экспериментом, парашютные прыжки сменялись полетами на истребителях, на учебно-тренировочных самолетах, на летающей лаборатории, в которую был переоборудован Ту-104.
         Но вот все это позади и наступил день 12 апреля 1961 года. Лишь посвященные знали, что должно было произойти в этот обычный весенний день. Еще меньше людей знали, кому суждено перевернуть всю историю человечества и стремительно ворваться в чаяния и помыслы человечества, навсегда оставшись в памяти как первый человек, преодолевший земное притяжение.
         12 апреля 1961 года в 9 часов 7 минут по московскому времени с космодрома Байконур стартовал космический корабль "Восток" с пилотом-космонавтом Юрием Алексеевичем Гагариным на борту. Спустя всего 108 минут космонавт приземлился неподалеку от деревни Смеловки в Саратовской области.

  За свой полет Юрий Алексеевич Гагарин был удостоен званий Герой Советского Союза и "Летчик-космонавт СССР", награжден орденом Ленина.
         Спустя два дня Москва приветствовала героя космоса. На Красной площади прошел многолюдный митинг, посвященный осуществлению первого в мире космического полета. Тысячи людей хотели своими глазами увидеть Гагарина.
         Уже в конце апреля Юрий Гагарин отправился в свою первую зарубежную поездку. "Миссия мира", как иногда называют поездку первого космонавта по странам и континентам, продолжалась два года. Гагарин посетил десятки стран, встретился с тысячами людьми. Встретиться с ним считали за честь короли и президенты, политические деятели и ученые, артисты и музыканты.

         К счастью для нас Юрий Алексеевич довольно быстро переболел звездной болезнью, и все больше времени стал уделять работе в Центре подготовки космонавтов. С 23 мая 1961 года Гагарин командир отряда космонавтов. А уже осенью 1961 года он поступил в Военно-воздушную инженерную академию имени Н.Е.Жуковского, чтобы получить высшее образование.
                 20 декабря 1963 года Гагарин был назначен заместителем начальника Центра подготовки космонавтов.
         Но больше всего ему хотелось летать. К летной подготовке он вернулся в 1963 году, а к новому космическому полету стал готовиться летом 1966 года. В те годы в Советском Союзе началась реализация "лунной программы". Одним из тех, кто стал готовиться к полету на Луну, стал и Гагарин.

         1968 год стал последним в жизни Гагарина. 17 февраля он защитил диплом в Академии имени Н.Е.Жуковского. Продолжал готовиться к новым полетам в космос.
         С большим трудом добился разрешения самостоятельно пилотировать самолет. 27 марта 1968 года был первый такой полет. И последний… Самолет разбился вблизи деревни Новоселово Киржачского района Владимирской области.
         Обстоятельства той катастрофы так до конца и не выяснены. Есть много версий, начиная от ошибки пилотирования и кончая вмешательством инопланетян. Но чтобы не произошло в тот день, ясно только одно — погиб первый космонавт планеты Земля Юрий Алексеевич Гагарин.
         Спустя три дня мир простился со своим героем. Выступая на траурном митинге на Красной площади, президент Академии наук СССР М.В.Келдыш сказал:
         "Подвиг Гагарина явился громадным вкладом в науку, он открыл новую эпоху в истории человечества — начало полетов человека в космос, дорогу к межпланетным сообщениям. Весь мир оценил этот исторический подвиг как новый грандиозный вклад советского народа в дело мира и прогресса".
         Именем Гагарина назван кратер на Луне и малая планета.
         Всего 108 минут продолжался полет Гагарина, но не количество минут определяет вклад в историю освоения космоса. Он был первым и останется им навсегда.

5. Терешкова В.В.- первая женщина космонавт.

Валентина Владимировна (родилась 6 марта 1937, в Ярославской области) — советский космонавт, первая женщина-космонавт Земли, Герой Советского Союза.

Окончила Военно-воздушную инженерную академию им. Н. Е. Жуковского с отличием, стала кандидатом технических наук, профессором, автором более 50 научных работ. Имеет звание генерал-майора авиации, была депутатом Верховного Совета СССР, членом ЦК КПСС. Женщина столетия.

Одновременно с «Восток-6» в космосе находился космический корабль «Восток-5», который пилотировал космонавт Быковский, Валерий Фёдорович. В этом совместном вылете решались задачи медицинского, технического и политического характера. Изучалось как влияет космический полёт на организмы мужчины и женщины, в частности в этом полёте была окончательно решена проблема питания космонавтов. Космонавты имели 4-х разовое питание, состоящее из различных натуральных продуктов, и стало ясно, что космонавт может нормально питаться самой разной земной пищей.

Специально для полёта Терешковой была разработана конструкцию скафандра приспособленная для женского организма, так же некоторые элементы корабля были изменены под возможности женщины.

Больше всего времени заняли эксперименты по радиосвязи. Космонавты выходили на связь с Землёй на коротких и ультракоротких волнах, также вели радиообмен между собой координируя свои действия и сравнивая результаты наблюдений.

Также этот полёт использовался для пропаганды достижений социализма, во-первых, демонстрировалось, что женщины имеют в СССР те же возможности, что и мужчины, а во-вторых, полёт доказывал надёжность советской космической техники, которая символизировала надёжность всего советского строя.

 16 июня 1963 года в 12 часов 30 минут по московскому времени в Советском Союзе на орбиту спутника Земли выведен космический корабль "Восток-6" впервые в мире пилотируемый женщиной — гражданкой Советского Союза космонавтом Терешковой Валентиной Владимировной.

В этом полете будет продолжено изучение влияния различных факторов космического полета на человеческий организм, в том числе будет проведен сравнительный анализ воздействия этих факторов на организмы мужчины и женщины.

. Этот полёт доказывал надёжность советской космической техники, которая символизировала надёжность всего советского строя.

Источник: nsportal.ru

В России прошли наземные испытания системы охлаждения космической ядерной энергодвигательной установки мегаваттного класса. Это серьезный этап проекта по созданию космического транспортного комплекса нового поколения.

Когда и куда полетим на ядерном «движке»? Зачем нужен ракетный двигатель на метане и… йоде? Какие агрегаты двигателей можно «вырастить» с помощью 3D-технологий?

Об этом «РГ» беседует с генеральным директором «Центра Келдыша» доктором технических наук Владимиром Кошлаковым.

Нир космические техники россии
Владимир Кошлаков: Когда ставишь высокие планки, то прорывные результаты обязательно будут
Фото: Александр Корольков/ РГ

Владимир Владимирович, как вы прокомментируете испытания?

Владимир Кошлаков: Прошли успешно. Создан хороший задел, чтобы двигаться дальше.

Какие возможности открывает ядерный двигатель? Он нужен для полетов к Марсу?

Владимир Кошлаков: Не только. Сегодня космические аппараты летают либо на двигателях, работающих на химическом топливе, либо на маломощных электроракетных двигателях, питаемых от солнечных батарей. Но с помощью таких систем к тому же Марсу лететь очень долго.

Для пилотируемых полетов это плохо: человек не должен находиться в космическом пространстве больше, чем год-два. А ядерные энергодвигательные системы позволят долететь достаточно быстро. И, что самое главное, вернуться назад.

Эти системы особенно перспективны для межорбитальных, межпланетных перелетов, освоения дальних планет.

Говорят, на ядерном движке до Марса можно долететь едва ли не пулей — за полтора месяца?

Владимир Кошлаков: Это преувеличение. Несколько дней до Луны — да, а до Марса полет займет 7-8 месяцев.

Ваш прогноз: когда это все-таки может осуществиться?

Владимир Кошлаков: Технически это осуществимо в ближайшее время, однако полет на Марс не самоцель. Создаваемые энергодвигательные системы могут быть основой для целого ряда миссий в космосе, которые сейчас кажутся фантастическими.

Читайте также: В «Роскосмосе» показали облик космического аппарата с ядерным двигателем (ВИДЕО)

А когда начнутся летные испытания? Была информация, что чуть ли не в конце этого года?

Владимир Кошлаков: До этого еще далеко. Мы ведем проект с 2009 года. Он уникальный, уникальные технологии.

Требовалось решить огромное количество научно-технических и технологических задач, которые не решил еще никто в мире. Это создание высокотемпературных систем сброса тепла в космическом пространстве, систем преобразования энергии, электроплазменных двигателей больших мощностей, высокотемпературных элементов и материалов…

На сегодняшний момент сделано многое. Самое принципиальное: мы показали, когда ставишь такие высокие планки, то результаты обязательно будут. И, поверьте, они превысят современный уровень развития науки и техники.

Испытания проходят на базе Центра?

Владимир Кошлаков: Да. У нас создана стендовая база, аналогов которой нет в России. Она позволяет проводить отработку всех ключевых элементов энергодвигательных систем и космических аппаратов в целом.

Что называется, на пальцах можете объяснить, из чего состоит ядерный двигатель?

Владимир Кошлаков: Прежде всего из источника энергии — это ядерный реактор, который нагревает рабочее тело. Нагретое рабочее тело поступает на турбину, на одном валу с которой находится электрогенератор.

Вращая турбину, мы генерируем электрический ток, который необходим для обеспечения работы космического аппарата в целом и электроплазменных двигателей в частности.

Тяга электроплазменного двигателя — это движущая сила космического аппарата как транспортной системы.

А что за уникальный теплоноситель используется?

Владимир Кошлаков: Гелий-ксеноновая смесь. Его основное преимущество — химическая нейтральность по отношению к материалам. Ведь аппарат должен длительное время работать при запредельно высоких и низких температурах.

Плюс ряд других теплофизических характеристик, которые позволяют создавать оптимально эффективный контур, снизить массу и габариты реактора, теплообменных агрегатов.

Какими еще перспективными ракетными двигателями занимаются конструкторы?

Владимир Кошлаков:

У нас ведутся научно-исследовательские, поисковые работы по созданию перспективных ракетных двигателей всех типов. Не только жидкостных, но и электроплазменных, гиперзвуковых и других.

Например, много говорят о кислородно-метановом двигателе или просто метановом. Эти работы также зарождались в нашем институте. Проведен большой комплекс экспериментальных исследований различных физических процессов.

И на сегодняшний момент Россия близка к созданию метанового двигателя.

А зачем он нужен?

Владимир Кошлаков: Метановый двигатель перспективен с нескольких точек зрения. Прежде всего в отличие от керосина он содержит в себе меньше связанных углеродсодержащих веществ. То есть практически не выделяет сажи. Если мы говорим про многоразовые системы, то это очень важно: двигатель не нужно перед каждым циклом включения очищать, промывать.

Еще одно преимущество — температура криогенного метана и криогенного кислорода примерно одинакова. Поэтому можем упрощать конструкцию ракет, создавая совмещенные баки, когда между двумя компонентами всего одна стенка.

В кислород-керосинной ракете две стенки, поскольку температура керосина примерно плюс 20 градусов Цельсия, а жидкого кислорода — минус 170. Поэтому ее конструкция и тяжелее, и сложнее. Кроме того, метан — достаточно дешевое топливо. Тоже большой плюс.

На каких ракетах будет устанавливаться этот ракетный двигатель?

Владимир Кошлаков: На новых, перспективных ракетах, проработки которых еще только ведутся.

А на ракете «Союз-5», которая должна быть создана к 2022 году? На «сверхтяже», первый запуск которой планируется в 2028 году?

Владимир Кошлаков: Нет. На ракете «Союз-5» и «сверхтяже», в котором будут использованы элементы и технологии «Союза-5», планируется устанавливать двигатели, которые уже есть либо имеют значительный задел по основным элементам.

Когда реально может появиться метановый двигатель?

Владимир Кошлаков: Опытно-конструкторские работы должны завершиться в течение пяти лет. Они сейчас ведутся в воронежском КБ химавтоматики.

А что за первый в мире электроракетный двигатель с замкнутым дрейфом электронов, известный также как холловский двигатель, на 800 вольт разработан в «Центре Келдыша»?

Владимир Кошлаков: Электроплазменными двигателями мы занимаемся давно. Не только разрабатываем, но и производим. Они летают и на отечественных, и на зарубежных космических аппаратах.

Так вот исследования показали: повышение напряжения в электроракетном двигателе с традиционных 300 вольт до 500 и 800 позволяет существенно улучшить его энергетические характеристики.

И мы сейчас проводим работы по созданию двигателей, работающих при больших напряжениях. Фактически электроракетные двигатели холловского типа с таким напряжением приближаются к ионным.

Насколько я знаю, интерес к плазменным двигателям огромный во всем мире?

Владимир Кошлаков: Они наилучшим образом отвечают современным задачам в космосе.

Читайте также: Для создания нового оружия: в России разрабатывают суперкомпьютер

Интересно, а у каких из альтернативных ракетных топлив наиболее «светлое» будущее?

Владимир Кошлаков: Альтернативы электрическим двигателям для космических аппаратов, наверное, все-таки нет. Сегодня, кроме ксенона, рассматриваются различные топлива.

Конечно, аргон — как наиболее простой и дешевый. Криптон, который по своим характеристикам лучше ксенона, но тоже не дешевый. Ведутся проработки по использованию в качестве ракетного топлива йода.

Здесь преимущество в том, что йод можно хранить в твердом состоянии. Это компактнее — меньше масса. Но эти работы также находятся в стадии научно-исследовательских работ для создания задела.

Проектов много. Повторюсь, на острие — ядерная тематика. Это самое перспективное направление. И мы здесь не на последних ролях.

Кто главные наши конкуренты: Blue Origin, SpaceX?..

Владимир Кошлаков: Пожалуй, только США. Если говорить про жидкостные ракетные двигатели, то, конечно, большой задел в США, Китае. Хотя те же США покупают эти двигатели у нас.

РД-180 разработки «НПО Энергомаш», на мой взгляд, лучшие в мире: линейка этих двигателей покрывает весь рынок таких двигателей по своим характеристикам и цене.

Но мир на месте не стоит. Новые материалы, технологии и конструкторские решения появляются и за рубежом. Конкуренция растет. Поэтому у нас ведутся проработки по созданию дешевых коммерческих носителей, которые бы по своей стоимости и надежности не уступали западным. Это одна из основных задач, поставленных перед нами руководством «Роскосмоса».

Нир космические техники россии
Инфографика «РГ»/ Антон Переплетчиков/ Юрий Медведев

Вопрос ребром

Новые российские двигатели изначально разрабатываются как многоразовые?

Владимир Кошлаков: Многоразовость ставится во главу угла. Однако требуется рациональный подход. Двигатели должны быть ремонтопригодными, иметь большое количество включений без вмешательства человека.

Фактически, создав двигатель, мы могли бы «прокатать» его столько, сколько надо, на экспериментальном стенде. Подтвердить его надежность. И все.

Двигатель консервируют: больше доступа человека к нему не должно быть. Это одно из требований, которое мы рассматриваем при создании новых двигателей.

Сколько включений самое оптимальное?

Владимир Кошлаков: Вопрос открытый. На днях у нас прошла конференция по актуальным проблемам ракетного двигателестроения. Выступал генеральный директор S7 Space г-н Сопов.

Он сказал: мне нужны двигатели, которые могли бы включаться 100 раз. При этом межполетный интервал — каждые десять включений. То есть десять раз отработал — специалисты посмотрели, провели регламент, пошли дальше. А время между двумя включениями не должно быть больше 48 часов.

То есть ракета улетела, вернулась — и через 48 часов ее можно заново пускать с тем же двигателем. Вот те планки, которые ставит перед нами рынок.

Они достижимы?

Владимир Кошлаков: Они реализуемы. Надо работать.

Знаю, что у вас в институте функционирует Центр по применению нанотехнологий в энергетике и электроснабжении космических систем. Что делается для повышения надежности космической техники?

Владимир Кошлаков: У наших ученых есть возможность достаточно глубоко заглянуть в физические процессы, которые протекают в двигателях. Приведу пример: при нанесении покрытия на огневую стенку камеры сгорания произошло отслоение покрытия. Запас работоспособности двигателя при этом, естественно, снижается.

Оказалось, был секундный перебой с электроэнергией, и процесс образования защитной пленки прекратился. Электричество включилось, но внутри покрытия образовалась граница раздела. Она-то и стала причиной отслоения. Исследование объектов размерами с нанометр, определение структурного и фазового состояния материала, анализ межкристаллитных процессов — далеко не полный перечень возможностей оборудования.

Лазерное зажигание — еще одно из направлений повышения надежности. Кроме того, мы активно развиваем программно-методическое обеспечение, которое могло бы смоделировать работу двигателя и найти узкие места еще до постановки в ракету.

Насколько снижает вес мотора применение композитов?

Владимир Кошлаков: Очень серьезно. Чтобы было понятно: плотность углеродных материалов — 1,2-1,4 грамма на кубический сантиметр. Плотность алюминия — 2,7, а стали — 7,8. Считайте. Меньше плотность — соответственно, меньше вес.

Дело еще в том, что при высоких температурах прочностные характеристики металлов снижаются, поэтому мы вынуждены дополнительно утолщать стенки, что тоже ведет к повышению веса. А у углеродных материалов с повышением прочности физико-механические характеристики только становятся лучше.

Много говорят об аддитивных технологиях. Скажите, где их применение актуально?

Владимир Кошлаков: Практически в любых изделиях. Например, изготовление форсуночной головки двигателя с помощью аддитивных технологий позволяет сделать целиком одну деталь. А традиционные методы включают более 200 элементов! И все надо отдельно изготовить, спаять, сварить, собрать. Что тоже ограничивает пределы работоспособности двигателя.

Правда, к аддитивным технологиям надо относиться аккуратно. Об этом говорят исследования: мы заглянули внутрь как самих изделий, так и каждой «порошинки». Иногда «порошинки» между собой не свариваются, не сплавляются — надо подбирать правильный режим работы, будь то лазерный пучок или электронный луч в этих станках.

Но вообще аддитивные технологии очень перспективны: способствуют цифровизации производства, ускоряют процесс, устраняют человеческий фактор.

Сколько времени уходит на создание «звездного мотора»?

Владимир Кошлаков: В среднем на создание опытного образца — 5-7 лет.

У американских частников дело быстрее идет?

Владимир Кошлаков: Если вы имеете в виду Илона Маска, то он создал свою ракету на базе старых, давно разработанных и использованных двигателей.

Он поступил как коммерсант: взял готовое отработанное решение и успешно его применил. При этом хотел бы отметить, что без поддержки государства не обошлось.

P. S. «Центру Келдыша» исполнилось 85 лет. Это одно из ведущих предприятий «Роскосмоса», работающее в области ракетного и спутникового двигателестроения, космической энергетики. Поздравляем!

Читайте также: На территории выгоревшего арсенала ВСУ обнаружен беспилотник (ФОТО)

Наталия Ячменникова

Источник: rusvesna.su

Федеральная космическая программа России на 2016 – 2025 годы (далее – Программа) утверждена постановлением Правительства РФ от 23 марта 2016 г. № 230.

 

 

Обеспечение государственной политики в области космической деятельности на основе формирования и поддержания необходимого состава орбитальной группировки космических аппаратов, обеспечивающих предоставление услуг в интересах социально-экономической сферы, науки и международного сотрудничества, в том числе в целях защиты населения и территорий от чрезвычайных ситуаций природного и техногенного характера, а также реализации пилотируемой программы, создания средств выведения и технических средств, создание научно-технического задела для перспективных космических комплексов и систем.

 

 

На первом этапе (2016 — 2020 годы) осуществляются наращивание орбитальной группировки космических аппаратов социально-экономического и научного назначения до минимально необходимого состава преимущественно космическими аппаратами, созданными в предшествующий программный период, опережающее создание ключевых технологий, элементов и целевых приборов для космических комплексов, создание которых планируется в соответствии с Программой, модернизация и техническое перевооружение  в минимально необходимом объеме производственно-технологической и экспериментальной баз ракетно-космической отрасли, позволяющих создавать ракетно-космическую технику мирового уровня.

 

На втором этапе (2021 — 2025 годы) осуществляется поддержание минимально необходимого состава орбитальной группировки космических аппаратов, частичное переоснащение ее космическими аппаратами нового поколения с характеристиками, соответствующими или превышающими характеристики лучших мировых аналогов, опережающее создание отдельных ключевых технологий, элементов и целевых приборов для наиболее приоритетных космических комплексов, разработка которых ожидается после 2025 года.

 

Нир космические техники россии

  • развертывание до необходимого состава и обеспечение непрерывного и устойчивого управления российскими орбитальными группировками автоматических и пилотируемых космических аппаратов на околоземных орбитах, а также объектами на траекториях полета к Луне и Марсу;
  • создание многофункциональной космической системы ретрансляции, обеспечивающей обслуживание космических аппаратов в режиме индивидуального доступа;

  • создание космических комплексов для контроля солнечной активности, космической погоды и исследования процессов в магнитосфере Земли;

  • создание системы подвижной персональной спутниковой связи, обеспечивающей обслуживание до 160 тыс. абонентов и среднее время ожидания связи для абонентов Российской Федерации не более 12 минут;

  • обеспечение импортозамещения изделий иностранного производства, используемых при создании и производстве ракетно-космической техники;

  • создание не менее 5 космических аппаратов для проведения углубленных исследований Луны с окололунной орбиты и на ее поверхности автоматическими космическими аппаратами, а также для доставки образцов лунного грунта на Землю;

  • предоставление данных дистанционного зондирования Земли из космоса, получаемых с космических аппаратов гидрометеорологического, океанографического и гелиогеофизического назначения, отвечающих необходимым потребностям гидрометеорологической службы;

  • выполнение международных обязательств по Международной спутниковой системе поиска и спасения «КОСПАС-САРСАТ» и по участию не менее чем в 2 миссиях в рамках международной кооперации по исследованию Марса, Венеры, Меркурия и Солнца, в осуществлении полетов автоматических космических аппаратов к планетам и телам земной группы, доставке грунта с Фобоса;

  • создание на космодроме «Восточный» космического ракетного комплекса тяжелого класса для выведения автоматических космических аппаратов, а также развертывание работ, связанных с ракетой-носителем тяжелого класса для выведения тяжелых автоматических космических аппаратов, пилотируемых кораблей и орбитальных модулей на траектории полета к Луне, облета Луны и лунных орбит;

  • проведение научно-исследовательских работ, создание перспективных базовых изделий и освоение критических технологий, обеспечивающих создание изделий ракетно-космической техники с характеристиками, соответствующими или превышающими характеристики лучших мировых аналогов,  созданных по перспективным производственным технологиям, с использованием систем цифрового проектирования и моделирования, аддитивные технологий и новых композиционных материалов, элементной базы нового поколения, а также перспективных коммуникационных систем, приборов и устройств на основе технологий фотоники и квантовых эффектов;

  • создание не менее двух отечественных космических обсерваторий и разработка до уровня наземной экспериментальной отработки комплекса научной аппаратуры не менее 2 космических обсерваторий для проведения исследований астрофизических объектов;

  • завершение развертывания российского сегмента Международной космической станции в составе 7 модулей и продолжение ее эксплуатации до 2024 года с обеспечением технической возможности создания российской орбитальной станции на базе 3 российских модулей Международной космической станции после завершения ее эксплуатации;

  • создание космического комплекса и выполнение научной программы по исследованию факторов, воздействующих на живые организмы в ходе полетов космических аппаратов на околоземных орбитах;

  • создание пилотируемого транспортного корабля нового поколения и проведение его летной отработки (не менее 3 запусков), разработка ключевых элементов космических ракетных комплексов сверхтяжелого и среднего  классов;

  • обеспечение сокращения длительности опытно-конструкторских работ;

  • обеспечение готовности организаций ракетно-космической  отрасли к выполнению мероприятий Программы.

Нир космические техники россии

 

К 2025 году РОСКОСМОС планирует увеличить орбитальную группировку с 32 космических аппаратов (КА) в 2015 году до 41 КА. При этом только 17 КА изготавливаются за счет бюджетных средств. Что позволит к 2025 году обеспечить:

  • на 100% подвижную президентскую и правительственную связь, распределение программ телерадиовещания на территории РФ;
  • передачу сообщений, голосовую и документальную связь, контроль и управление состоянием особо опасных и критически важных объектов в интересах федеральных органов исполнительной власти;
  • глобальное и непрерывное телекоммуникационное обслуживание низкоорбитальных космических аппаратов наблюдения, контроль и управление международной космической станцией (МКС), передачу телеметрической информации с ракет-носителей (РН) и разгонных блоков (РБ) при запусках.

Более чем в 2,5 раза возрастут возможности спутниковых систем связи по предоставлению услуг непосредственного телевизионного вещания, телевизионного вещания высокой четкости, широкополосного доступа в Интернет, передачи данных, видеоконференцсвязи, ведомственных и корпоративных сетей связи. Развертыванием спутников связи и вещания на высокоэллиптической орбите будет решена проблема телекоммуникационного обеспечения арктического региона.

 

Нир космические техники россии

 

К 2025 году планируется увеличить орбитальную группировку с 8 КА (в 2015 году) до 23 КА. Орбитальная группировка средств ДЗЗ позволит значительно снизить зависимость РФ от использования зарубежной космической информации и одновременно выполнить международные обязательства в области глобального гидрометеорологического наблюдения.

 

Примеры результатов расширения возможностей орбитальной группировки ДЗЗ, представляющих интерес для самого широкого круга потребителей (обычных граждан): повышение достоверности краткосрочных прогнозов погоды в регионе и повышение периодичности получаемых данных о состоянии застроек окрестных площадей дачных участков и сельских поселений, строительстве дорог, состоянии близлежащих лесных массивов (гари, вырубки и т.д.).

Кроме того, космические комплексы ДЗЗ способны обеспечивать создание кадастров природных ресурсов, определение мест и масштабов чрезвычайных ситуаций, контроль ледовой обстановки в Арктике.

 

На космические аппараты гидрометеорологического обеспечения «Метеор-М» запланирована установка целевой аппаратуры КОСПАС-САРСАТ.

 

КОСПАС-САРСАТ – это международная спутниковая поисково-спасательная система, разработанная для оповещения о бедствии и местоположении персональных радиобуев и радиобуев, установленных на судах и самолетах в случае аварийных ситуаций.

 

Основные характеристики создаваемых в рамках Программы КА будут значительно превышать характеристики КА, созданных в предыдущий программный период и не будут уступать аналогичным показателям зарубежных КА.

 

Нир космические техники россии

 

В 2016 – 2025 гг планируется осуществить запуски 15 КА и увеличить при этом состав орбитальной группировки с 1 КА в 2015 году до 4 КА в 2025 году.

 

Основные мероприятия: международный проект по исследованию Марса «ЭкзоМарс», реализация научных программ исследований астрофизических объектов (КА «Спектр-РГ», «Спектр-УФ») и реализация первого этапа лунной программы, предусматривающего запуск 5 автоматических КА («Луна-Глоб», «Луна-Ресурс» (орбитальный аппарат, посадочные аппараты (включая резервный) «Луна-Грунт»).

 

В 2016 – 2025 гг планируется осуществить запуски следующих КА:

  • для реализации научных программ исследований астрофизических объектов – 2 КА («Спектр-РГ», «Спектр-УФ»);
  • для изучения комбинированных эффектов невесомости и ионизирующей радиации на различные организмы в ходе полета – 2 КА («Бион» № 2, 3);
  • для исследования Луны, Марса и планет Солнечной системы – 8 КА («Луна-Глоб», «Луна-Ресурс» (орбитальный аппарат, посадочные аппараты (включая резервный), «ЭкзоМарс» № 1, 2, «Луна-Грунт», «Экспедиция-М»);
  • для глобального стереообзора Солнца, контроля солнечной активности и космической погоды – 3 КА («Арка», «Резонанс», «Ломоносов»).

Нир космические техники россии

 

До 2024 года будет продолжена эксплуатация Международной космической станции (МКС). В это время предлагается оснастить российский сегмент МКС модулями, которые уже находятся в производстве, дополнив их системами, обеспечивающими автономность полета после 2024 года, для обеспечения возможности создания на их основе российской орбитальной станции.

 

Эксплуатация МКС до 2024 года позволит проводить эксперименты не только в интересах социально-экономической сферы, но обеспечить отработку ряда перспективных технологий и космических систем (комплексов), необходимых для реализации программ освоения Луны и дальнего космоса.

 

Кроме того, в рамках реализации второго этапа лунной программы (пилотируемого) планируется в 2021 году начать в беспилотном варианте летные испытания пилотируемого космического корабля нового поколения, а в 2023 году – провести первый пуск с экипажем к МКС.

 

Также Программа предусматривает создание необходимого задела для полномасштабного исследования Луны после 2025 года и осуществление к 2030 году высадки человека на Луну.

 

Нир космические техники россии

 

Особое значение для обеспечения перспективы развития отечественной космической техники и ракетно-космической отрасли имеет развитие базовых элементов и перспективных технологий.

 

Программа предусматривает выполнение работ, в результате которых будет обеспечено создание:

  • целевой аппаратуры КА ДЗЗ для наблюдения со сверхвысоким разрешением на основе новых технологий, а также для связи и ретрансляции на основе отечественных комплектующих;
  • параметрических рядов двигательных установок средств выведения и КА на экологическом топливе, ядерных энергетических установок, систем управления для средств выведения;
  • общеотраслевых технологий космического машиностроения, приборостроения, материаловедения в интересах доведения надежности космических средств до мирового уровня.

Реализация в полном объеме планируемых в рамках Программы мероприятий позволит создавать новые поколения КА не «с нуля», а на базе отработанных конструкций, что удешевит и ускорит процессы их разработки, а также нарастить постоянно действующую отечественную орбитальную группировку социально-экономического, научного назначения с 49 КА на начало 2016 года до 73 КА в 2025 году.

 

Будет обеспечено требуемое качество и безопасность ракетно-космической техники, включая развитие методов и средств наземной отработки космических автоматических и пилотируемых аппаратов, создание отечественной компонентной базы космического применения, развитие системы контроля околоземного космического пространства и предупреждения об опасных сближениях.

 

Таким образом, реализация Программы позволит придать импульс для развития имеющегося космического потенциала, который позволит решать стратегические задачи совершенствования и развития ракетно-космической техники в интересах обороноспособности, безопасности, социально-экономического развития страны, науки и международного сотрудничества, обеспечения гарантированного доступа и необходимого присутствия России в космическом пространстве.

 

 

Основными принципами осуществления Программы в целях решения задач государственной политики в области космической деятельности в интересах социально-экономической сферы, науки, техники и международного сотрудничества в 2016 – 2025 годах являются:

  • соответствие целей и задач Программы целям и задачам государственной политики в области космической деятельности;
  • техническая реализуемость, учитывающая при формировании Программы существующий научно-технический и научно-технологический потенциал организаций ракетно-космической отрасли, а также прогнозируемые мероприятия по их техническому и технологическому переоснащению;
  • последовательное замещение импортной электронной компонентной базы отечественного производства;
  • всесторонняя обоснованность направлений развития ракетно-космической техники, предусматривающая опережающее проведение системных исследований, а также комплексное обоснование проектных обликов и требований к техническим характеристикам космических систем и комплексов, совершенствование организации, повышение научной и прикладной значимости научно-исследовательских работ;
  • инновационное развитие, предусматривающее приоритетное включение в Программу инновационных проектов и технологий, обеспечивающих мировой уровень технических (технологических) и эксплуатационных характеристик создаваемой ракетно-космической техники;
  • оптимизация бюджетных расходов, формируемых в соответствии с экономическим потенциалом страны и с привлечением внебюджетных средств для достижения целей Программы;
  • концентрация ресурсов на приоритетных направлениях, (в соответствии с Основами государственной политики), передача в сферу ответственности бизнеса изделий космической техники в интересах удовлетворения потребностей социально-экономической сферы;
  • рациональная преемственность, предусматривающая включение в Программу лишь тех мероприятий Федеральной космической программы России на 2006 — 2015 годы, для которых подтверждена актуальность и реализуемость принятых технических решений.

 

Для достижения главных целей государственной политики в области космической деятельности Основами государственной политики установлены следующие приоритеты космической деятельности:

  • деятельность, связанная с обеспечением гарантированного доступа Российской Федерации в космос со своей территории, с развитием и использованием космической техники, технологий, работ и услуг в интересах социально-экономической сферы Российской Федерации, в целях обороны страны и безопасности государства, а также с развитием ракетно-космической отрасли и выполнением международных обязательств;
  • деятельность, связанная с созданием изделий ракетно-космической техники в интересах науки;
  • деятельность, связанная с осуществлением пилотируемых полетов, включая создание научно-технического задела для осуществления проектов в рамках международной кооперации.

Источник: www.roscosmos.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.