Большой адронный коллайдер в россии


Коллайдер позволит ускорять и сталкивать тяжелые ядра, вплоть до золота, с рекордными параметрами в требуемом диапазоне энергий, обеспечит столкновения поляризованных ядер. Комплекс состоит из трех крупных блоков — ускорительного, научно-исследовательского, инновационного.

Ускорительный блок включает уже функционирующие источники ядер, в том числе поляризованных, линейный ускоритель и кольцевой ускоритель Нуклотрон, запущенный в 1993 году. Последний основан на криогенных технологиях, разработанных в Дубне, и является вторым по мощности сверхпроводящим ускорителем в Европе после Большого адронного коллайдера.


В научно-исследовательском блоке предусматривается развитие существующей экспериментальной базы на пучках Нуклотрона — установка [email protected], и создание детекторов для коллайдера NICA — многоцелевой детектор MPD и детектор для экспериментов с поляризованными ядрами SPD. При создании ускорительных и детекторных элементов используется опыт, накопленный при подготовке экспериментов на Большом адронном коллайдере в Европейском центре ядерных исследований, а также в научно-исследовательских лабораториях США, Европы и Японии, следует из пресс-релиза.

Инновационный блок включает существующие зоны, которые будут развиты и дополнены новыми для проведения прикладных исследований в различных областях, в том числе альтернативной ядерной энергетики, углеродной лучевой терапии, тестирования на пучках ионов высоких энергий электронных компонентов и биологических объектов в рамках космических программ. Для проведения этих работ привлекаются высокотехнологичные отрасли промышленности России.


Большой адронный коллайдер в россии

«Нуклотрон»

Большой адронный коллайдер в россии
Площадка, на которой был заложен первый камень коллайдера NICA

По современным теоретическим представлениям материя может находиться в нескольких состояниях: адронном, кварк-глюонном и так называемой смешанной фазе, состоящей из композиции первых двух состояний.


Кварк-глюонная материя и ее переход в привычный для нас мир частиц могут быть воссозданы в экспериментах на ускорителях путем столкновения тяжелых ионов.

Для этого нужны не очень высокие по современным понятиям энергии столкновения — всего лишь порядка 10 ГэВ. Это гораздо меньше, чем энергии Большого адронного коллайдера и релятивистского коллайдера тяжелых ядер (RHIC) из Брукхейвенской национальной лаборатории, расположенной близ Нью-Йорка (США). Для сравнения: на БАК сейчас проходят столкновения протонных пучков с энергией 8 ТэВ.


Большой адронный коллайдер в россии

Ионный ускоритель

Авторы называют проект NICA «Вселенной в лаборатории». «Главная задача проекта NICA — изучение плотной барионной материи в той области энергий, где она достигает максимальной плотности, — рассказывает директор лаборатории физики высоких энергий (ЛФВЭ) ОИЯИ Владимир Кекелидзе. — Вторая задача — изучение спиновой структуры нуклонов.

Мы хотим воссоздать „мини-большой взрыв“ в лаборатории. В первые миллисекунды после Большого взрыва произошло формирование нашего мира.


То, что было в самом начале, — это кварк-глюонная плазма, кирпичики мироздания, которые изучают в ЦЕРН. Как из этих кирпичиков мироздания родился тот мир, в котором мы живем, как возникли протоны и нейтроны, мы хотим воссоздать в нашей лаборатории, сталкивая атомы золота». Лауреат Нобелевской премии по физике 2004 года Дэвид Гросс, присутствовавший на церемонии начала строительства, также отметил, что впечатлен масштабом предстоящих исследований: «Будет интересно понять, как вели себя кварки в условиях ранней Вселенной», — отметил ученый.

Это не единственный в мире проект по изучению барионной материи. В США уже введен в строй ионный коллайдер RHIC. Однако он не позволяет достичь нужной барионной плотности, подобной веществу нейтронной звезды.


В Германии разрабатывается проект FAIR. FAIR — это коллайдер с фиксированной мишенью, в нем пучок частиц ударяется по мишени, при этом часть энергии тратится на движение системы, что приводит к потерям энергии. В коллайдере NICA два пучка сталкиваются между собой, что энергетически выгодно, однако сложно точно совместить пучки для достижения большой светимости — высокой интенсивности сигнала распада.

На вопрос корреспондента отдела науки о том, поможет ли проект NICA пролить свет на загадки темной энергии и темной материи, Кекелидзе ответил:

«Напрямую проект NICA не связан с этими понятиями, но поскольку мы будем проводить эксперименты с высокой барионной плотностью, возможно, мы найдем что-то проливающее свет на эти вопросы. Речь идет о темной материи, а не о темной энергии».


По словам вице-директора ОИЯИ Рихарда Ледницки, стоимость проекта NICA составляет более $500 млн. 80% бюджета оплачивает Россия. Проект NICA международный. Оборудование и программное обеспечение разрабатывают специалисты из Украины, Германии, Италии и других стран. В 2010 году был подписан договор с ЦЕРН о взаимовыгодном сотрудничестве.

В то же время многие компоненты изготавливаются в России. В ОИЯИ действует завод по изготовлению сверхпроводящих магнитов, в том числе для NICA.

Большой адронный коллайдер в россии


Завод по изготовлению сверхпроводящих магнитов

Проект имеет множество инновационных приложений, помимо фундаментальной науки. Установки ОИЯИ позволяют исследовать влияние ионных пучков на организм живых существ. Развивается адронная терапия, направленная на лечение рака.

via

Источник: cycyron.livejournal.com

Ускорители частиц. Большой андронный коллаидер. Творцы вселенных.

Большой адронный коллайдер, работающий в Швейцарии – самый известный ускоритель в мире. Этому немало способствовала шумиха, поднятая мировой общественностью и журналистами вокруг опасности этого научного проекта. Многие полагают, что это единственный коллайдер в мире, но это далеко не так. Кроме закрытого в США теватрона, на данный момент в мире существует пять работающих коллайдеров.


В Америке, в Брукхейвенской лаборатории работает ускоритель РКТИ (релятивистский коллайдер тяжелых ионов), начавший работу в 2000 году. Для его ввода в строй потребовалось вложение 2 миллиардов $. Кроме чисто теоретических экспериментов, физики, работающие на РКТИ (RHIC), разрабатываю вполне практические проекты. Среди них:

  • устройство для диагностирования и лечения рака (используются направленные ускоренные протоны);
  • использование лучей тяжелых ионов для создания фильтров на молекулярном уровне;
  • разработка все более эффективных устройств для аккумулирования энергии, что открывает новые перспективы в использовании солнечной энергии.

Подобный этому, ускоритель тяжелых ионов, строится в России в Дубне. На этом коллайдере NICA российские физики намерены исследовать кварк-глюонную плазму.

Сейчас российские ученые проводят исследования в ИЯФ, где расположены сразу два коллайдера – ВЭПП-4М и ВЭПП-2000. Их бюджет составляет 0,19 млрд. $ — для первого и 0,1 – для второго. Первые испытания на ВЭПП-4М начались еще в 1994 году. Здесь разработана методика измерения массы наблюдаемых элементарных частиц с самой высокой точностью во всем мире. Кроме того, ИЯФ единственный в мире институт, зарабатывающий на фундаментальные исследования в области физики собственными силами. Ученые этого института разрабатывают и продают оборудование для ускорителей другим государствам, желающим иметь свои экспериментальные установки, но не имеющих таких наработок.


В 1999 году был запущен коллайдер Дафне в лаборатории Фраскатти (Италия), стоимость его была примерно 1/5 млрд. дол., а максимальная мощность – 0, 51 ТэВ. Это был один из первых ускорителей высоких энергий, с помощью только одного эксперимента на нем было получено более ста тысяч гиперионов (частиц атома). За это Дафне окрестили фабрикой частиц или ф-фабрикой.

За два года до запуска БАК, в 2006 году Китай запустил собственный коллайдер ВЕРС II, с мощностью 2,5 ТэВ. Стоимость этого строительства была рекордно низкой и составила 0,08 млрд. дол. Но для бюджета этой развивающейся страны такая сума была немалой; правительство Китая выделило эти средства, понимая, что без развития фундаментальных отраслей науки невозможно развитие современной промышленности. Тем более актуально вложение средств в эту область экспериментальной физики в свете истощения природных ресурсов и увеличивающейся потребности в энергоносителях.

Источник: ss-op.ru

Как выглядит Большой адронный коллайдер

Это гигантский замкнутый туннель, построенный под землей. Он имеет длину 27 километров и уходит на глубину от 50 до 175 метров.

Находится коллайдер на границе Франции и Швейцарии, недалеко от города Женева.

Как работает Большой адронный коллайдер

Слово «коллайдер» в этом случае можно перевести как «сталкиватель». А сталкивает он адроны — класс частиц, состоящих из нескольких кварков, которые удерживаются сильной субатомной связью. Протоны и нейтроны являются примерами адрона.

БАК в основном использует столкновение протонов в своих экспериментах. Протоны — это части атомов с положительным зарядом. Коллайдер ускоряет эти протоны в тоннеле, пока они не достигнут почти скорости света. Различные протоны направлены через туннель в противоположных направлениях. Когда они сталкиваются, то можно зафиксировать условия, подобные ранней Вселенной.

Откуда берутся протоны в для столкновения?

Для этого ионизируются атомы водорода. Атом водорода состоит из одного протона и одного электрона. Во время ионизации удаляется электрон и остаётся нужный для эксперимента протон.

БАК состоит из трёх основных частей:

  1. Ускоритель частиц. Разгоняет и сталкивает протоны с помощью системы мощных электромагнитов, расположенных вдоль всего тоннеля.
  2. Детекторы. Результаты столкновения нельзя наблюдать напрямую, поэтому мощные детекторы улавливают максимум данных и направляют их на обработку.
  3. Грид. С детекторов поступают петабайты данных. Для их интерпретации используется грид-инфраструктура — сеть из компьютеров в 36 странах, которые совместно образуют один суперкомпьютер. Но даже этого хватает только на обработку 1% данных.

Зачем нужен Большой адронный коллайдер

С помощью БАК можно изучить элементарные частицы и способы их взаимодействия. Он уже многому научил нас в области квантовой физики, и исследователи надеются узнать больше о структуре пространства и времени. Наблюдения, которые делают учёные, помогают понять, какой могла быть Вселенная в течение миллисекунд после Большого взрыва.

Читайте также: Что если изобретут телепортацию

Какие открытия совершили на БАК

На данный момент самое большое открытие — это бозон Хиггса. Это одно из важнейших открытий 21 века, объясняющее существование массы частиц во Вселенной. Это подтверждает Стандартную модель, с помощью которой сегодня физики описывают взаимодействие элементарных частиц. Именно на этом взаимодействии основано устройство всей Вселенной.

Суть работы бозона Хиггса в том, что благодаря ему другие элементарные частицы могут иметь и передавать свою массу. Но это очень и очень упрощённое понимание, и если Вам интересно, почитайте научную литературу.

С полным списком всех открытий на Большом адронном коллайдере можно ознакомиться на Википедии.

Может ли коллайер уничтожить Землю

С момента запуска БАК стал объектом разнообразных домыслов. Самый известный — в ходе экспериментов может образоваться чёрная дыра и поглотить планету.

Есть две причины, чтобы не волноваться.

  1. На БАК не происходит ничего такого, чего не делают космические лучи, которые ежедневно попадают на Землю, и эти лучи не создают чёрных дыр.
  2. Даже если Большой адронный коллайдер действительно создаст чёрную дыру, то она будет крошечной. Чем меньше чёрная дыра, тем короче ее жизнь. Такая чёрная дыра превратится в энергию, прежде чем сможет причинить вред людям.

Надеемся, Вам было интересно, как и нам во время работы над этим материалом!

Источник: topor.info


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.