Строение солнечной системы и законы движения планет


Со времен Античности и вплоть до XV в. считалось, что Земля неподвижна и находится в центре Вселенной. Н. Коперник и Г. Галилей одними из первых в Новое время высказали идею, что наша планета вращается вокруг Солнца. Эта концепция была встречена достаточно враждебно: Галилей даже был вынужден под давлением церкви публично отказаться от нее. Большое значение для будущего открытия законов движения имели наблюдения Т. Браге, который посвятил этому всю жизнь.

Однако он не сделал каких-либо выводов из своих наблюдений. Позднее работы Т. Браге попали к И. Кеплеру, который нашел простое объяснение наблюдаемым сложным траекториям, сформулировав три закона движения планет вокруг Солнца:

• планеты двигаются по эллиптическим орбитам вокруг Солнца;
• планеты двигаются неравномерно: чем дальше планета находится от Солнца, тем она двигается медленнее, и наоборот: чем она ближе к Солнцу, тем двигается быстрее;
• периоды обращения планет вокруг Солнца зависят от их удаленности от него: более удаленные планеты двигаются медленнее, чем те, которые расположены ближе к Солнцу.

Законы Кеплера описывали наблюдаемое движение планет, но не вскрывали причин, приводящих к такому движению.


ория гравитации И. Ньютона указала причину, обусловившую движение космических тел по законам Кеплера, правильно предсказала и объяснила особенности их движения, а также позволила в одних терминах описывать явления космического и земного масштабов. Ньютон нашел правильное выражение для гравитационной силы, возникающей при взаимодействии тел, сформулировав закон всемирного тяготения: между любыми двумя телами возникает сила притяжения, пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними.

Законы Кеплера выполняются точно только в случае движения одного тела вблизи другого, обладающего значительно большей массой, и при условии сферичности этих тел. Даже при незначительных отступлениях от сферической формы орбита планеты представляет собой прецесси- рующий вокруг звезды эллипс. Скорость прецессии может быть рассчитана достаточно точно на основании законов Ньютона и оказывается максимальной для самой близкой к Солнцу планеты — Меркурия.
Согласно третьему закону Ньютона существует сила, действующая на звезду со стороны планеты. В случае, когда масса звезды значительно больше массы планеты, ускорение звезды пренебрежимо мало и ее можно считать неподвижной. Однако при наличии тел соизмеримых масс, притягивающихся друг к другу, возможно их устойчивое совместное движение вокруг общего центра масс. В случае движения планет вокруг звезды указанный эффект малозаметен, однако в космосе были обнаружены системы, совершающие описанное движение, — двойные звезды.


Основная масса Солнечной системы — около 99,8% — приходится на Солнце. Суммарная масса планет составляет только 0,13% от общей массы Солнечной системы. Из этих цифр следует, что законы Кеплера для движения планет в нашей системе должны соблюдаться очень хорошо. Существенные отклонения от эллиптических орбит могут возникать лишь в случае близкого пролета мимо одной из планет: Меркурия, Венеры, Земли, Марса, Юпитера, Сатурна, Урана или Нептуна.

Ньютоновский закон гравитации и законы Кеплера позволяют связать размеры орбит планет с периодами вращения, но не позволяют рассчитать сами орбиты. Еще в XVIII в. была предложена формула для радиусов орбит планет Солнечной системы: Rn = (0,4 + 0,3 х 2n) х Ro, где п = 0, 1, 2, 3…; Ro — радиус орбиты Земли. В отличие от законов Кеплера, это соотношение никак не следует из законов Ньютона и до сих пор не получило никакого теоретического объяснения. Не исключена возможность того, что данное соотношение представляет собой случайное совпадение. Однако орбиты известных на сегодняшний день планет удовлетворительно описываются этой формулой. Исключение составляет лишь значение п = 3, для которого на рассчитанной орбите планеты не существует. Вместо нее был обнаружен пояс астероидов — небольших по планетным масштабам тел неправильной формы.


Проблема эволюции Солнечной системы. В настоящее время не существует доказанной теории эволюции Солнечной системы. Весьма привлекательная теория совместного происхождения Солнца и планет из единого газового облака, сжавшегося под действием гравитационных сил, оказывается в противоречии с наблюдаемым неравномерным распределением вращательного момента между звездой и планетами. Обсуждаются модели происхождения планет в результате гравитационного захвата Солнцем тел, прилетающих из далекого космоса.

Известные на сегодняшний день свойства планет Солнечной системы позволяют разделить их на две группы. Первые четыре планеты земной группы характеризуются сравнительно малыми массами и большими плотностями слагающих их веществ. Они состоят из расплавленного железного ядра, окруженного силикатной оболочкой — корой. Планеты обладают газовыми атмосферами. Их температуры определяются главным образом расстоянием до Солнца и убывают с его увеличением. Начиная с Юпитера группа планет-гигантов в основном сложена из легких элементов — водорода и гелия. По мере приближения к центру планеты водород и гелий постепенно переходят из газообразного в жидкое и твердое состояния.

Предполагается, что в центральных областях давление столь высоко, что водород существует в металлической фазе, пока не наблюдавшейся на Земле даже в лабораторных условиях. Планеты второй группы обладают большим числом спутников. У Сатурна их число столь велико, что при недостаточном увеличении планета кажется опоясанной системой непрерывных колец.


Источник: zavtrasessiya.com

Реферат

на тему: Законы движения небесных тел и строение Солнечной системы

Двумя наиболее значительными успехами классического естествознания, основанного на механике Ньютона, были практически исчерпывающее описание наблюдаемого движения небесных тел и объяснение известных из эксперимента законов идеального газа.

Законы Кеплера.

Первоначально считалось, что Земля неподвижна, а движение небесных тел казалось весьма сложным. Галилей одним из первых высказал предположение о том, что наша планета не является исключением и тоже движется вокруг Солнца. Эта концепция была встречена достаточно враждебно.


хо Браге решил не принимать участия в дискуссиях, а заняться непосредственным измерениями координат тел на небесной сфере. Он посвятил этому всю свою жизнь, но не только не сделал каких-либо выводов из своих наблюдений, но даже не опубликовал результатов. Позднее данные Тихо попали к Кеплеру, который нашел простое объяснение наблюдаемым сложным траекториям, сформулировав три законов движения планет (и Земли) вокруг Солнца (рис.6_1):

1. Планеты двигаются по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

2. Скорость движения планеты изменяется таким образом, что площади, заметаемые ее радиус-вектором за равные промежутки времени, оказываются равными.

3. Периоды обращения планет одной Солнечной системы и большие полуоси их орбит связаны соотношением:

(1) .

Сложное движение планет на “небесной сфере”, наблюдаемой с Земли, согласно Кеплеру, возникало вследствие сложения этих планет по эллиптическим орбитам с движением наблюдателя, совершающего вместе с Землей орбитальное движение вокруг солнца и суточное вращение вокруг оси планеты.


Прямым доказательством суточного вращения Земли был эксперимент, поставленный Фуко, в котором плоскость колебаний маятника поворачивалась относительно поверхности вращающейся Земли.

Закон Всемирного тяготения.

Законы Кеплера прекрасно описывали наблюдаемое движение планет, но не вскрывали причин, приводящих к такому движению (напр. вполне можно было считать, что причиной движения тел по кеплеровым орбитам являлась воля какого-либо существа или стремление самих небесных тел к гармонии). Теория гравитации Ньютона указала причину, обусловившую движение космических тел по законам Кеплера, правильно предсказала и объяснила особенности их движения в более сложных случаях, позволила в одних терминах описать многие явления космического и земного масштабов (движение звезд в галактическом скоплении и падение яблока на поверхность Земли).

Ньютон нашел правильное выражение для гравитационной силы, возникающей при взаимодействии двух точечных тел (тел, размеры которых малы по сравнению с расстоянием между ними):


(2) ,

которое совместно со вторым законом в случае, если масса планеты m много меньше массы звезды M, приводило к дифференциальному уравнению

(3) ,

допускающему аналитическое решение. Не привлекая каких-либо дополнительных физических идей, чисто математическими методами модно показать, что при соответствующих начальных условиях (достаточно малые начальные расстояние до звезды и скорость планеты) космическое тело будет совершать вращение по замкнутой, устойчивой эллиптической орбите в полном согласии с законами Кеплера (в частности второй закон Кеплера является прямым следствием закона сохранения момента импульса, выполняющегося при гравитационных взаимодействиях, поскольку момент силы (2) относительно массивного центра всегда равен нулю). При достаточно высокой начальной скорости (ее значение зависит от массы звезды и начального положения) космическое тело движется по гиперболической траектории, в конце концов уходя от звезды на бесконечно большое расстояние.


Важным свойством закона гравитации (2) является сохранение его математической формы в случае гравитационного взаимодействия неточечных тел в случае сферически-симметричного распределения их масс по объему. При этом роль R играет расстояние между центрами этих тел.

Движение небесных тел при наличии возмущений. Строго говоря, законы Кеплера выполняются точно лишь в случае движения лишь одного тела вблизи другого, обладающего значительно большей массой, при условии сферичности этих тел. При незначительных отступлениях от сферической формы (напр. из-за вращения звезды она может несколько “сплющиться”) орбита планеты перестает быть замкнутой и представляет собой прецессирующий вокруг звезды эллипс.

Другим часто встречающимся возмущением является гравитационное влияние планет одной звездной системы друг на друга. Кеплеровы орбиты являются устойчивыми относительно слабых возмущений, т.е., испытав воздействие от близко пролетающего соседа, планета стремится вернуться на исходную траекторию. При наличии сильных возмущений (пролет массивного тела на небольшом расстоянии) задача о движении существенно усложняется и не может быть решена аналитические. численные расчеты показывают, что в этом случае траектории планет перестают быть эллипсами и представляют собой незамкнутые кривые.


Согласно третьему закону Ньютона существует сила, действующая на звезду со стороны планет. В случае M>>m ускорение звезды пренебрежимо мало и ее можно считать неподвижной. При наличии двух тел соизмеримых масс, притягивающихся друг к другу, возможно их устойчивое совместное движение по эллиптическим орбитам вокруг общего центра масс. Очевидно, что более массивное тело совершает движение по орбите меньшего радиуса. В случае движения планет вокруг звезды указанный эффект малозаметен. однако в космосе были обнаружены системы, совершающие описанное движение — двойные звезды. Численный расчет движения планет в системе двойной звезды показывает, что их орбиты существенно нестационарны, расстояние от планеты до звезд быстро меняется в весьма широких пределах. Неизбежные при этом быстрые изменения климата на планетах делает там весьма проблематичной возможность биологической эволюции. Еще менее вероятно возникновение технических цивилизаций на планетах систем двойных звезд, поскольку сложное непериодическое движение планет приводит к трудно расшифровываемому наблюдаемому движению тел на “небесной сфере”, существенно затрудняя формулировку законов Кеплера и, как следствие, развитие классической механики (рис. 6_2).


Строение Солнечной системы.

Хорошо известно, что основная масса Солнечной системы (около 99.8%) приходится на ее единственную звезду — Солнце. Суммарная масса планет составляет только 0.13% от общей. На остальные тела системы (кометы, спутники планет, астероиды и метеоритное вещество) приходится только 0.0003% массы. Из приведенных цифр следует, что законы Кеплера для движения планет в нашей системе должны выполняться очень хорошо. Существенные отклонения от эллиптических орбит могут возникать лишь в случае близкого (по сравнению с расстоянием до Солнца) пролета мимо одной из планет: Меркурия, Венеры, Земли, Марса, Юпитера, Сатурна, Урана, Нептуна или Плутона (особенно это касается самой массивной из планет — Юпитера). Именно наблюдения возмущения орбиты Нептуна позволили предсказать, а потом и обнаружить Плутон — самую удаленную из известных планет нашей системы.

Ньютоновский закон гравитации и законы Кеплера позволяют связать размеры орбит планет с периодами вращения, но не позволяют рассчитывать сами орбиты. Еще в 18 веке была предложена эмпирическая формула для радиусов орбит планет солнечной системы:

(4) ,

где — радиус орбиты Земли. В отличие от законов Кеплера соотношение (4) никак не следует из законов Ньютона и до сих пор не получило теоретического обоснования, хотя орбиты всех известных на сегодняшний день планет удовлетворительно описываются этой формулой. Исключение составляет лишь значение n=3, для которого на рассчитанной орбите планеты не существует. Вместо нее был обнаружен пояс астероидов — небольших по планетным масштабам тел неправильной формы. Эмпирические законы, не подтвержденные имеющейся теорией, могут играть положительную роль в исследованиях, поскольку тоже отражают объективную реальность (возможно в несовсем точном и даже в несколько искаженном виде).

Привлекательной казалась гипотеза о ранее существовавшей пятой планете — Фаэтоне, разрушенной на куски гигантским гравитационным притяжением ее массивного соседа — Юпитера, однако количественный анализ движения планеты — гиганта показал несостоятельность этого предположения. По-видимому упомянутая проблема может быть разрешена лишь на основе законченной теории возникновения и эволюции планет Солнечной системы, пока еще несуществующей. Весьма привлекательная теория совместного происхождения солнца и планет из единого газового облака, сжавшегося под действием гравитационных сил, оказывается в противоречии с наблюдаемым неравномерным распределением вращательного момента (момента импульса) между звездой и планетами. Обсуждаются модели происхождения планет в результате гравитационного захвата Солнцем тел, прилетающих из далекого космоса, эффекты, вызванные взрывом сверх-новых. В большинстве “сценариев” развития солнечной системы существование пояса астероидов так или иначе связывается с его близким соседством с самой массивной планетой системы.

Известные на сегодняшний день свойства планет Солнечной системы позволяют разделить их на две группы. Первые четыре планеты земной группы характеризуются сравнительно малыми массами и большими плотностями слагающих их веществ. Они состоят из расплавленного железного ядра, окруженного силикатной оболочкой — корой. Планеты обладают газовыми атомосферами. Их температуры главным образом определяются расстоянием до Солнца и убывают с его увеличением. Начинающаяся с Юпитера группа планет — гигантов в основном сложена из легких элементов (водорода и гелия), давление которых во внутренних слоях возрастает до огромных величин, вследствие гравитационного сжатия. В результате по пере приближения к центру газы постепенно переходят в жидкое и, возможно, в твердотельное состояния. Предполагается, что в центральных областях давления столь велико, что водород существует в металлической фазе, пока не наблюдавшейся на Замле даже в лабораторных условиях. Планеты второй группы обладают большим числом спутников. У сатурна их число столь велико, что при недостаточном увеличении планета кажется опоясанной системой непрерывных колец (рис. 6_3).

Проблема существования жизни на других планетах до сих пор вызывает повышенный интерес в околонаучных сферах. В настоящее время можно с достаточной степенью достоверности можно утверждать, что в привычных для современного естествознания белковых формах жизнь на планетах Солнечной системы (разумеется, за исключением Земли) не существует. Причиной этому прежде всего является малость физико-химического диапозона условий, допускающих возможности существования органических молекул и протекания жизненно важных химических реакций с их участием (не слишком высокие и низкие температуры, узкий интервал давлений, наличие кислорода и т.д.). Единственной, помимо Земли, планетой, условия на которой явно не противоречат возможности существования белковой жизни, является Марс. Однако достаточно детальные исследования его поверхности с помощью межпланетных станций “Марс”, “Марионер” и “Викинг” показали, что жизнь на этих планетах не существует даже в виде микроорганизмов (рис. 6_4).

Что же касается вопроса о существовании небелковых форм внеземной жизни, его серьезному обсуждению должна предшествавать строгая формулировка самого обобщенного понятия жизни, но эта проблема до сих пор не получила общепризнанного удовлетворительного решения. (Создатся впечатление, что открытие форм жизни, существенно отличающихся от привычных для нашего воображения, вообще может не вызвать сколько-нибудь заметного интереса у ненаучной общественности. Не очень трудно вообразить себе создание компьютерных вирусов, способних размножаться в сетях и способных эволюционировать, гораздо труднее представить реакцию на это в обществе, отличную от досады пользователей, потерявших программы).

О природе гравитационных сил. Сформулированный Ньютоном закон всемирного тяготения относится к фундаментальным законам классического естествознания. Методологической слабостью концепции Ньютона был его отказ обсуждать механизмы, приводящие к возникновению гравитационных сил (“Я гипотез не измышляю”). После Ньютона неоднократно предпринимались попытки создания теории гравитации. Подавляющее большинство подходов связано с так называемыми гидродинамическими моделями гравитации, пытающимися объяснить возникновение сил тяготения механическими взаимодействиями массивных тел с промежуточной субстанцией, которой приписывается то или иное название: “эфир”, “поток гравитонов”, “вакуум” и т.д. Притяжение между телами возникает вследствие разряжения Среды, возникающей либо при ее поглощении массивными телами, либо при экранировке ими ее потоков. Все эти теории имеют общий существенный недостаток: правильно предсказывая зависимость силы от расстояния (2), они неизбежно приводят к еще одному ненаблюдаемому эффекту: торможению тел, движущихся относительно введенной субстанции.

Существенно новый шаг в развитии концепции гравитационного взаимодействия был сделан А. Эйнштейном, создавшим общую теорию относительности.

Источник: infourok.ru

Первый закон Кеплера

Кеплер обратил внимание, что результаты наблюдений Браге расходятся с представлениями о круговой траектории обращения планет вокруг Солнца. Особенно это касалось Марса, чья траектория движения по наблюдения датчанина никак не могла описывать идеальный круг. Браге был очень точен в своих расчетах и сомнений в их правдивости у его последователя не возникло.

Тогда немецкий математик принял орбиты за эллипсы, у каждого из которых есть два фокуса. Это условные точки, выбранные таким образом, что сумма расстояний от них до любой точки эллипса – величина постоянная.  При этом для эллиптической орбиты в одном из фокусов находится Солнце.

Форма эллипса вычисляется благодаря отношению фокального расстояния к большой полуоси орбиты. Полученное значение описывает эксцентриситет орбиты. Если он равен нулю – орбита представляет собой идеальную окружность, от нуля до единицы – эллипс различной вытянутости, больше единицы – параболу.

Второй закон Кеплера

Если орбита – это эллипс, то каким образом происходит движение небесного тела по ней? В каких отрезках орбитального пути оно ускоряется и замедляется?

Немецкий ученый обнаружил, что есть взять два любых отрезка орбитального пути, которые планета Солнечной системы проходит за одинаковые промежутки времени, провести от их концов радиус-векторы к центральной звезде, то площади полученных образований будут одинаковы.  Это упрощенная формулировка второго закона.

Для того, чтобы постоянство площадей сохранялось, тело должна двигаться в разных точках орбиты с разной скоростью. Так, например, Земля в наибольшем приближении к Солнцу движется быстрее, чем в максимальном удалении от него

Третий закон Кеплера

Третий постулат о движении небесных тел в Солнечной системе как раз касается понятий перигелия и афелия. Если провести между ними условную линию, получится большая ось траектории обращения планеты. Соответственно, половина этого отрезка – большая полуось.

Кеплер на основании наблюдений вывел, что отношение полных оборотов вокруг центральной звезды для двух любых планет системы, возведенных в квадрат, всегда равняется отношению больших полуосей орбитальных путей этих тел, возведенных в куб.

Трудность в доказательстве и принятии трех законов состояла в том, что он вывел их эмпирически. Но в конце 17 века Ньютоном был открыта классическая теория тяготения. Он и помог установить правильность суждений немецкого астронома и описал движение планет по эллипсу вокруг Солнца. Ньютон установил, что кроме массы объекта и его удаления от звезды никакие другие свойства не влияют на гравитационное притяжение.

Также Ньютон внес корректировки и в третий постулат Кеплера. Он открыл, что для соблюдения соотношения необходимо учитывать массу космического объекта. Данная трактовка третьего закона помогает установить массу планеты или спутника, зная величину его орбиты и период обращения.

Законы Иоганна Кеплера помогли установить форму планетарной траектории, вычислить период обращения планет, их скорость и ее изменения по мере приближения и удаления от Солнца. Ученый вывел Землю из ранга особенных астрономических объектов системы и установил, что она подчиняется всем трем законом, как и любая другая планета нашей звездной системы.

Источник: spaceworlds.ru

Цитата сообщения ell_BAGIRA Законы движения планет Солнечной системы

Строение солнечной системы и законы движения планет

Важную роль в формировании представлений о строении Солнечной системы сыграли также законы движения планет, которые были открыты Иоганном Кеплером (1571-1630) и стали первыми естественнонаучными законами в их современном понимании. Работы Кеплера создали возможность для обобщения знаний по механике той эпохи в виде законов динамики и закона всемирного тяготения, сформулированных позднее Исааком Ньютоном. Многие ученые вплоть до начала XVII в. считали, что движение небесных тел должно быть равномерным и происходить по «самой совершенной» кривой- окружности. Лишь Кеплеру удалось преодолеть этот предрассудок и установить действительную форму планетных орбит, а также закономерность изменения скорости движения планет при их обращении вокруг Солнца. В своих поисках Кеплер исходил из убеждения, что «в мире правит число», высказанного еще Пифагором. Он искал соотношения между различными величинами, характеризующими движение планет, — размеры орбит, период обращения, скорость. Кеплер действовал фактически вслепую, чисто эмпирически. Он пытался сопоставить характеристики движения планет с закономерностями музыкальной гаммы, длиной сторон описанных и вписанных в орбиты планет многоугольников и т.д. Кеплеру необходимо было построить орбиты планет, перейти от экваториальной системы координат, указывающих положение планеты на небесной сфере, к системе координат, указывающих ее положение в плоскости орбиты. Он воспользовался при этом собственными наблюдениями планеты Марс, а также многолетними определениями координат и конфигураций этой планеты, проведенными его учителем Тихо Браге. Орбиту Земли Кеплер считал (в первом приближении) окружностью, что не противоречило наблюдениям. Для того чтобы построить орбиту Марса, он применил способ, который показан на рисунке ниже.

ddc581ed27eff2d58e2ce38faaa7c0b4 (700x525, 63Kb)

Пусть нам известно угловое расстояние Марса от точки весеннего равноденствия во время одного из противостояний планеты — его прямое восхождение «15 которое выражается углом g(гамма)Т1М1, где T1 — положение Земли на орбите в этот момент, а M1 — положение Марса. Очевидно, что спустя 687 суток (таков звездный период обращения Марса) планета придет в ту же точку своей орбиты.

Строение солнечной системы и законы движения планет

Если определить прямое восхождение Марса на эту дату, то, как видно из рисунка, можно указать положение планеты в пространстве, точнее, в плоскости ее орбиты. Земля в этот момент находится в точке Т2, и, следовательно, угол gT2M1 есть не что иное, как прямое восхождение Марса — a2. Повторив подобные операции для нескольких других противостояний Марса, Кеплер получил еще целый ряд точек и, проведя по ним плавную кривую, построил орбиту этой планеты. Изучив расположение полученных точек, он обнаружил, что скорость движения планеты по орбите меняется, но при этом радиус-вектор планеты за равные промежутки времени описывает равные площади. Впоследствии эта закономерность получила название второго закона Кеплера.

Строение солнечной системы и законы движения планет

Радиусом-вектором называют в данном случае переменный по своей величине отрезок, соединяющий Солнце и ту точку орбиты, в которой находится планета. АА1, ВВ1 и CC1 — дуги, которые проходит планета за равные промежутки времени. Площади заштрихованных фигур равны между собой. Согласно закону сохранения энергии, полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остается неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергий планеты, которая движется вокруг Солнца, неизменна во всех точках орбиты и равна полной энергии. По мере приближения планеты к Солнцу возрастает ее скорость, увеличивается кинетическая энергия, но вследствие уменьшения расстояния до Солнца уменьшается энергия потенциальная. Установив закономерность изменения скорости движения планет, Кеплер задался целью определить, по какой кривой происходит их обращение вокруг Солнца. Он был поставлен перед необходимостью сделать выбор одного из двух возможных решений: 1) считать, что орбита Марса представляет собой окружность, и допустить, что на некоторых участках орбиты вычисленные координаты планеты расходятся с наблюдениями (из-за ошибок наблюдений) на 8′; 2) считать, что наблюдения таких ошибок не содержат, а орбита не является окружностью. Будучи уверенным в точности наблюдений Тихо Браге, Кеплер выбрал второе решение и установил, что наилучшим образом положения Марса на орбите совпадают с кривой, которая называется эллипсом, при этом Солнце не располагается в центре эллипса. В результате был сформулирован закон, который называется первым законом Кеплера. Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

Строение солнечной системы и законы движения планет

Как известно, эллипсом называется кривая, у которой сумма расстояний от любой точки Р до его фокусов есть величина постоянная. На рисунке обозначены: О — центр эллипса; S и S1 — фокусы эллипса; АВ — его большая ось. Половина этой величины (а), которую обычно называют большой полуосью, характеризует размер орбиты планеты. Ближайшая к Солнцу точка А называется перигелий, а наиболее удаленная от него точка В — афелий. Отличие эллипса от окружности характеризуется величиной его эксцентриситета: е = OS/OA. В том случае, когда эксцентриситет равен О, фокусы и центр сливаются в одну точку — эллипс превращается в окружность.

Строение солнечной системы и законы движения планет

Примечательно, что книга, в которой в 1609 г. Кеплер опубликовал первые два открытых им закона, называлась «Новая астрономия, или Физика небес, изложенная в исследованиях движения планеты Марс…». Оба этих закона, опубликованные в 1609 г., раскрывают характер движения каждой планеты в отдельности, что не удовлетворило Кеплера. Он продолжил поиски «гармонии» в движении всех планет, и спустя 10 лет ему удалось сформулировать третий закон Кеплера:

Т1^2 / T2^2 = a1^3 / a2^3

Квадраты звездных периодов обращения планет относятся между собой, как кубы больших полуосей их орбит. Вот что писал Кеплер после открытия этого закона: «То, что 16 лет тому назад я решил искать, <… > наконец найдено, и это открытие превзошло все мои самые смелые ожидания… » Действительно, третий закон заслуживает самой высокой оценки. Ведь он позволяет вычислить относительные расстояния планет от Солнца, используя при этом уже известные периоды их обращения вокруг Солнца. Не нужно определять расстояние от Солнца каждой из них, достаточно измерить расстояние от Солнца хотя бы одной планеты. Величина большой полуоси земной орбиты — астрономическая единица (а. е.) — стала основой для вычисления всех остальных расстояний в Солнечной системе. Вскоре был открыт закон всемирного тяготения. Все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:

F = G m1m2/r2

где m1 и m2 — массы тел; r — расстояние между ними; G — гравитационная постоянная

Открытию закона всемирного тяготения во многом способствовали законы движения планет, сформулированные Кеплером, и другие достижения астрономии XVII в. Так, знание расстояния до Луны позволило Исааку Ньютону (1643 — 1727) доказать тождественность силы, удерживающей Луну при ее движении вокруг Земли, и силы, вызывающей падение тел на Землю. Ведь если сила тяжести меняется обратно пропорционально квадрату расстояния, как это следует из закона всемирного тяготения, то Луна, находящаяся от Земли на расстоянии примерно 60 ее радиусов, должна испытывать ускорение в 3600 раз меньшее, чем ускорение силы тяжести на поверхности Земли, равное 9,8 м/с. Следовательно, ускорение Луны должно составлять 0,0027 м/с2.

5b (700x700, 54Kb)

Сила, удерживающая Луну на орбите, есть сила земного притяжения, ослабленная в 3600 раз по сравнению с действующей на поверхности Земли. Можно убедиться и в том, что при движении планет, в соответствии с третьим законом Кеплера, их ускорение и действующая на них сила притяжения Солнца обратно пропорциональны квадрату расстояния, как это следует из закона всемирного тяготения. Действительно, согласно третьему закону Кеплера отношение кубов больших полуосей орбит d и квадратов периодов обращения T есть величина постоянная: Ускорение планеты равно:

a= u2/d =(2pid/T)2/d=4pi2d/T2

Из третьего закона Кеплера следует:

D/T2=const/d2

поэтому ускорение планеты равно:

a = 4pi2•const/d2

Итак, сила взаимодействия планет и Солнца удовлетворяет закону всемирного тяготения и имеются возмущения в движении тел Солнечной системы. Законы Кеплера строго выполняются, если рассматривается движение двух изолированных тел (Солнце и планета) под действием их взаимного притяжения. Однако в Солнечной системе планет много, все они взаимодействуют не только с Солнцем, но и между собой. Поэтому движение планет и других тел не в точности подчиняется законам Кеплера. Отклонения тел от движения по эллипсам называют возмущениями. Возмущения эти невелики, так как масса Солнца гораздо больше массы не только отдельной планеты, но и всех планет в целом. Наибольшие возмущения в движении тел Солнечной системы вызывает Юпитер, масса которого в 300 раз превышает массу Земли.

Строение солнечной системы и законы движения планет

Особенно заметны отклонения астероидов и комет при их прохождении вблизи Юпитера. В настоящее время возмущения учитываются при вычислении положения планет, их спутников и других тел Солнечной системы, а также траекторий космических аппаратов, запускаемых для их исследования. Но еще в XIX в. расчет возмущений позволил сделать одно из самых известных в науке открытий «на кончике пера» — открытие планеты Нептун. Проводя очередной обзор неба в поиске неизвестных объектов, Вильям Гершель в 1781 г. открыл планету, названную впоследствии Ураном. Спустя примерно полвека стало очевидно, что наблюдаемое движение Урана не согласуется с расчетным даже при учете возмущений со стороны всех известных планет. На основе предположения о наличии еще одной «заурановой» планеты были сделаны вычисления ее орбиты и положения на небе. Независимо друг от друга эту задачу решили Джон Адамс в Англии и Урбен Леверье во Франции. На основе расчетов Леверье немецкий астроном Иоганн Галле 23 сентября 1846 г. обнаружил в созвездии Водолея неизвестную ранее планету — Нептун. Это открытие стало триумфом гелиоцентрической системы, важнейшим подтверждением справедливости закона всемирного тяготения. В дальнейшем в движении Урана и Нептуна были замечены возмущения, которые стали основанием для предположения о существовании в Солнечной системе еще одной планеты. Ее поиски увенчались успехом лишь в 1930 г., когда после просмотра большого количества фотографий звездного неба был открыт Плутон.

Источник: http://www.astrogalaxy.ru/index.html

Источник: www.liveinternet.ru

Тема урока: Законы движения планет.

Цели урока:

  • Образовательная: ввести формулировки и границы применимости трёх законов движения планет (законов Кеплера).
  • Развивающая: развивать логическое мышление, правильную речь, использовать соответствующую терминологию.
  • Воспитательная: достигать высокой активности класса, внимания, сосредоточенности учащихся на уроке.

Оборудование:

  • 2 булавки,
  • нитка,
  • карандаш.

Эксперимент: чертёж эллипса.

ХОД УРОКА

I. Актуализация знаний

– Здравствуйте, ребята! Садитесь! Сегодня мы с вами продолжим изучать познание неба и на уроке познакомимся с тремя законами движения планет и искусственных тел Солнечной системы. А сейчас проверим, как вы усвоили материал прошлых занятий.

II. Проверка домашнего задания

(Каждому ученику по вариантам раздаются карточки с заданиями)

III. Объяснение нового теоретического материала

Заслуга открытия законов движения планет принадлежит выдающемуся немецкому учёному, астроному и математику, Иоганну Кеплеру (1571 – 1630 гг.) (Приложение 3) – человеку большого мужества и необыкновенной любви к науке. Он проявил себя ревностным сторонником системы мира Коперника и задался целью уточнить строение Солнечной системы. Тогда это означало: познать законы движения планет, или, как он выразился, «проследить замысел Бога при cотворении мира» [1]. В начале XVII в. Кеплер, изучая обращение Марса вокруг Солнца, установил три закона движения планет.

Первый закон Кеплера

Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

или

Под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений – кругу, эллипсу, параболе или гиперболе. [2 ]

<Рисунок 1>.

Эллипсом (<Рисунок 2>) называется плоская замкнутая кривая, имеющая такое свойство, что сумма расстояний каждой её точки от двух точек, называемых фокусами, остаётся постоянной. Эта сумма расстояний равна длине большой оси эллипса. Точка О – центр эллипса, F1 и F2 – фокусы. Солнце находится в данном случае в фокусе F1.
Ближайшая к Солнцу точка орбиты называется перигелием, самая далёкая – афелием. Линия, соединяющая какую-либо точку эллипса с фокусом, называется радиус-вектором. Отношение расстояния между фокусами к большой оси (к наибольшему диаметру) называется эксцентриситетом е. эллипс тем сильнее вытянут, чем больше его эксцентриситет. Большая полуось эллипса а – среднее расстояние планеты до Солнца.
По эллиптическим орбитам движутся и кометы и астероиды. У окружности е = 0, у эллипса 0 < е < 1, у параболы е = 1, у гиперболы е > 1. <Рисунок 1>.
Орбиты планет – эллипсы, мало отличаются от окружностей; их эксцентриситеты малы. Например, эксцентриситет орбиты Земли е = 0,017.

Второй закон Кеплера

Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади (определяет скорость движения планеты по орбите).

Скорость планеты тем больше, чем она ближе к Солнцу. [1] <Рисунок 3>.
Планета проходит путь от точки А до А1 и от В до В1 (<Рисунок 3>) за одно и то же время. Другими словами, планета движется быстрее всего в перигелии, а медленнее всего – когда находится на наибольшем удалении (в афелии). Так, скорость кометы Галлея в перигелии равна 55 км/с, а в афелии 0,9 км/с.
Самый близкий к Солнцу Меркурий обегает вокруг светила за 88 дней. За ним движется Венера, и год на ней длится 225 земных суток. Земля обращается вокруг Солнца за 365 суток, то есть ровно за один год. Марсианский год почти в два раза продолжительнее земного. Юпитерский год равен почти 12 земным годам, а далёкий Сатурн обходит свою орбиту за 29,5 лет! Словом, чем дальше планета от Солнца, тем продолжительнее на планете год. И Кеплер пытался найти зависимость между размерами орбит различных планет и временем их обращения вокруг Солнца.
15 мая 1618 года после множества неудачных попыток Кеплер установил наконец очень важное соотношение, известное как

Третий закон Кеплера

Квадраты периодов обращения планет вокруг Солнца относятся как кубы их средних расстояний от Солнца. [1]

Если периоды обращения любых двух планет, например Земли и Марса, обозначить через Тз и Тм , а их средние расстояния от Солнца – аз и ам, то третий закон Кеплера можно записать в виде равенства:

Т2м / Т2з = а3м / а3з.

Но ведь период обращения Земли вокруг Солнца равен одному году (Тз = 1), а среднее расстояние Земля – Солнце принято за одну астрономическую единицу (аз = 1 а.е.). Тогда данное равенство примет более простой вид:

Т2м – а3м

Период обращения планеты (в нашем примере Марса) можно определить из наблюдений. Он составляет 687 земных суток, или 1,881 года. Зная это, нетрудно вычислить среднее расстояние планеты от Солнца в астрономических единицах:

Строение солнечной системы и законы движения планет

Т.е. Марс находится в среднем в 1,524 раза дальше от Солнца, чем наша Земля. Следовательно, если известно время обращения какой-нибудь планеты, то по нему можно найти её среднее расстояние от Солнца. Таким путём Кеплеру удалось определить расстояния всех известных в ту пору планет:

Меркурий – 0,39,
Венера – 0,72,
Земля – 1,00
Марс – 1,52,
Юпитер – 5,20,
Сатурн – 9,54.

Только это были относительные расстояния – числа, показывающие, во сколько раз та или иная планета дальше от Солнца или ближе к Солнцу, чем Земля. Истинные значения этих расстояний, выраженные в земных мерах (в км), оставались неизвестными, ибо ещё не была известна длина астрономической единицы – среднего расстояния Земли от Солнца.
Третий закон Кеплера связал в единую стройную систему всё солнечное семейство. На поиски ушло девять трудных лет. Победило упорство учёного!

Вывод: законы Кеплера теоретически развивали гелиоцентрическое учение и тем самым укрепляли позиции новой астрономии. Астрономия Коперника – самое мудрое из всех произведений человеческого ума. [1]

Последующие наблюдения показали, что законы Кеплера применимы не только для планет Солнечной системы и их спутников, но и для звёзд, физически связанных между собой и обращающихся вокруг общего центра масс. Они легли в основу практической космонавтики, ибо по законам Кеплера движутся все искусственные небесные тела, начиная с первого советского спутника и кончая современными космическими аппаратами. Не случайно в истории астрономии Иоганна Кеплера называют «законодателем неба».

IV. Эксперимент

Взять лист плотной белой бумаги и воткнуть в него две булавки. Теперь между булавками нужно натянуть с помощью карандаша нитку со связанными концами и вести карандаш по бумаге – он вычертит эллипс. <Рисунок 4>. Внутри эллипса есть две точки (отверстия, проколотые булавками), обладающие замечательным свойством: сумма двух линий, соединяющих эти точки с любой точкой эллипса, всегда одинакова и равна длине большой оси (т.е. наибольшему диаметру) эллипса. Эти две точки называются фокусами эллипса, а всякая прямая линия, соединяющая фокус с любой точкой эллипса, есть радиус-вектор. Если мы разделим расстояние между фокусами на длину большой оси, получим отношение, которое называется эксцентриситетом данного эллипса. Эксцентриситет характеризует вытянутость эллипса. Чем большим эксцентриситетом обладает эллипс, т.е. чем больше расстояние между фокусами при одной и той же длине большой оси, тем более он вытянут. При эксцентриситетом, равном единице, т.е. по абсолютной величине равном длине большой оси эллипса, последний превращается в разомкнутую кривую – параболу. С уменьшением эксцентриситета вытянутость эллипса, наоборот, уменьшается, и когда эксцентриситет становится равным нулю, эллипс превращается в круг.

V. Итог урока

Повторение формулировок первого, второго и третьего законов Кеплера.

VI. Домашнее задание

§ 117  учебника [2], вопросы после параграфа,  формулировки и формулы трёх законов Кеплера, повторить выполнение эксперимента урока дома.

Список литературы:

  1. Коротцев О.Н. Астрономия: Популярная энциклопедия. – СПб.: Азбука-классика, 2003.
  2. Мякишев Г.Я., Буховцев Б.Б. Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни. – М.: Просвещение, 2008. (Чаругин В.М. Раздел «Астрономия», § 117)

Источник: urok.1sept.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.