Скорость движения планет по орбите


Виды движения планет

Первое представление о расположении планет на небосводе высказал Птолемей в трактате «Великое математическое построение по астрономии». Ученый предположил, что небесные тела движутся по кругу. Птолемей утверждал, что движение планет, как Солнца и Луны, происходит вокруг Земли. Даная теория просуществовала до работ Коперника и была принята, как в западном, так и в арабском мире.

1 dvizhenie planet i solnca
Источник

Коперником была создана гелиоцентрическая система. Он объяснил, что Земля – это не центр Вселенной, а движение планет происходит вокруг Солнца по орбитам. Все свои утверждения он высказал в работе «О вращении небесных сфер», которую издали в 1543 году.

2 dvizhenie planet i solnca
Источник


Последователем Коперника стал астроном Тихо Браге. На собственном острове он установил огромные бронзовые круги, на которых отмечал свои результаты наблюдения за движением небесных тел. Его результаты попали в руки математику Иоганну Кеплеру, который и установил 3 закона движения планет.

Первый закон движения планет. Кеплер работал с тем, что планеты движутся по круглой орбите. Однако его расчеты имели множество расхождений с реальными наблюдениями. И тогда ученый предположил, что орбиты имеют форму эллипса. У каждой эллипсовидной орбиты есть два фокусы, представляющие собой заданные точки. Следовательно, 1-й закон Кеплера гласит:

3 dvizhenie planet i solnca

Второй закон движения планет. Чтобы понять закон, необходимо от Солнца провести радиус-вектор к планете. Небесное Светило при этом должно находиться в одном из фокусов орбиты. За одно и тоже время этот радиус-вектор будет описывать равные площади на плоскости, в которой происходит движение планеты вокруг Солнца.

4 dvizhenie planet i solnca

Второй закон Кеплера:

5 dvizhenie planet i solnca

Третий закон движения планет. Абсолютно все орбиты планет имеют точку максимально приближенную к Солнцу (перигелий) и точку максимально отдаленную от Солнца (афелий). Отрезок между этими двумя точками именуют большой осью орбиты. Разделив данный отрезок пополам получают большую полуось, которая как раз и используется в астрономии.


6 dvizhenie planet i solnca
Источник

7 dvizhenie planet i solnca

Этот закон используется для того, чтобы вычислить продолжительность года — периода, за который планета совершает полный оборот вокруг Солнца (Т). Для того чтобы получить это значение, достаточно знать расстояние между Солнцем и планетой (а).

В современной астрономии существует несколько видов движения планет:

  • петлеобразное;
  • попятное;
  • прямое.

Перед тем как познакомиться с каждым видом движения планет в Солнечной системе более подробно, важно отметить, что все планеты условно делят на верхние и нижние, либо же внутренние и внешние. К числу нижних (внутренних) относят Меркурий и Венеру, к числу верхних (внешних) – все остальные (Марс, Юпитер, Сатурн, Уран, Нептун). Данная классификация производится по отношению к земной орбите.

У нижних планет во время видимого движения, как и у Луны, происходит смена фаз.
время своего движения Меркурий и Венера периодически располагаться между Землей и Солнцем или за Солнцем. В этот момент планеты не видны, так как они теряются в солнечных лучах. Период, когда внутренняя планета максимально приближена к Земному шару называют нижним соединением. Соответственно, верхнее соединение – это период максимального отдаления планеты. При разных положениях освещенного Солнцем полушария внутренней планеты с Земли его будет видно по-разному. Во время нижнего соединения планета поворачивается к Земному шару своей неосвещенной стороной, поэтому наблюдатель ее не видит. Отклоняясь немного в сторону от этого положения, она начинает приобретать вид серпа. Чем больше угловое расстояние между планетой и Солнцем, тем больше размер видимого серпа. В тот момент, когда угол при планете между направлениями на Землю и на Светило достигает отметки 900, наблюдателю видна ровно половина освещенной стороны внутренней планеты. Полностью освещенной стороной планета поворачивается при верхнем соединении, но из-за солнечных лучей ее не видно. Это совершенно нехарактерно для верхних планет, так как к наблюдателю с Земли они всегда будут повернуты освещенной Солнцем стороной. Предположим, что наблюдатель с Земного шара переместился в точку, которая расположена за орбитой Сатурна, то смену фаз он уже будет наблюдать и на Земле, и на Марсе, и на Юпитере, и на Сатурне. Эти планеты уже будут обращены к нему частично видимой, а частично невидимой стороной. Увидеть фазы планет с Земли в бинокль просто невозможно, для этого потребуется другое оборудование, например телескоп.

8 dvizhenie planet i solnca
Источник

 

Попятное, прямое и петлеобразное движение планет


Прямым движением планет называют движение небесных тел с запада на восток, то есть по направлению движения Солнца.

Попятное, или как его еще называют ретроградное движение планет – представляет собой перемещение небесных сфер по отношению к звездам по небосводу с востока на запад. Другими словами данное направление является противоположным движению Солнца и Луны.

Видимое движение солнечных планет всегда изучается с учетом движения планеты, за которой наблюдаем, и самим Земным шаром по своим орбитам вокруг Светила. Исходя из закона Ньютона о всемирном тяготении, чем дальше планета расположена от Солнца, тем меньше скорость ее обращения. Из-за разной скорости движения в момент «противостояния», планета, расположившаяся ближе к Солнцу, начинает «обгонять» ту, которая находится на более удаленном расстоянии. Кроме этого, во время попятного движения, человек фиксирует, что планеты движутся по петлям, возникающим в результате наклона планетарных орбит относительно плоскости эклиптики. Другими словами, попятное движение внешних планет возникает не потому что они начинают двигаться в обратном направлении, а потому что в определенные моменты Земля обгоняет другие небесные сферы из-за своей приближенности к Солнцу и более высокой скорости вращения по своей орбите.

9 dvizhenie planet i solnca
Источник

 

Эклиптика. Движение Солнца по эклиптике


Еще древние астрономы, наблюдая за небесными светилами,зафиксировали, что в полдень, на протяжении года Солнце находится на разной высоте. Также, если в полночь летом или зимой, весной или осенью посмотреть на горизонт с южной его стороны, то отчетливо можно увидеть разные созвездия. Например: те, которые просматриваются летом, совсем не увидеть зимой. И кардинально наоборот: летние звезды в созвездиях совсем не просматриваются в зимнее время. Исходя из этих наблюдений, было установлено годичное движение Солнца относительно звезд. В науке появился термин эклиптика.

10 dvizhenie planet i solnca

Мы уже знаем, что движение Солнца понятие условное. Кажущееся движение звезды происходит в связи с движением Земли вокруг Солнца. Суточное движение Земли, то есть полный оборот вокруг своей оси,происходит за 23 часа 56 минут 4 секунды. Соответственно Солнце за сутки смещается на небе на 1°. А время, в течение которого оно проходит весь круг по небесной сфере, называется годом. Он равен 365 суткам и 6 часам. Каждый четвертый год принято считать високосным, так как за это время накапливаются лишние сутки. Поэтому в високосном году на одни сутки больше, их 366.

 

Источник: 100urokov.ru

Первая космическая скорость


Скорость движения планет по орбите

Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.

Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Формула

Скорость движения планет по орбите

где   G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения —

Скорость движения планет по орбите

Вторая космическая скорость


Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.

Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Скорость движения планет по орбите

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:

  • для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
  • для Солнца вторая космическая скорость составляет 617,7 км/с.
  • для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Формула

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .


Скорость движения планет по орбите

Третья космическая скорость

Третья космическая скорость минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы.

Скорость движения планет по орбите

Только на космических кораблях, которым доступны такие скорости, принципиально могут быть осуществлены пилотируемые межзвёздные перелёты к планетным системам других звёзд.

Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с.

Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует).  Если к тому же учесть притяжение других планет, которое может как ускорить, так и притормозить аппарат, то диапазон возможных значений 3-й космической скорости станет еще больше.


При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу.

Четвёртая и пятая космическая скорости

Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.

Скорость движения планет по орбите

Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.

Для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра.

По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.


Ещё реже в некоторых источниках встречается понятие «пятая космическая скорость». Это скорость, позволяющая добраться до иной планеты звездной системы вне зависимости от разности плоскостей эклиптики планет. Например, для Солнечной системы и, конкретно, для Земли, чтобы орбита межпланетного перелета была перпендикулярной к земной орбите, нужна скорость запуска 43,6 километра в секунду.

Видео



Источник: asteropa.ru

Что такое орбитальная скорость?

Орбитой называют траекторию, по которой конкретная планета движется вокруг Солнца. Она вовсе не представляет собой идеальную окружность, как думают некоторые люди, не разбирающиеся в астрономии. Более того, она даже не слишком напоминает овал – ведь существует большое количество факторов за исключением силы притяжения Солнца, которые могут повлиять на движение небесных тел.

Планеты Солнечной системы

Также стоит сразу развеять другой известный миф – Солнце вовсе не всегда находится ровно в центре орбиты планет, вращающихся вокруг него.

Наконец, следует отметить, что не все орбиты планет лежат в одной плоскости. Некоторые значительно выбиваются из нее – например, если изобразить стандартные орбиты Земли и Венеры на астрономической карте, то можно убедиться в том, что они имеют всего несколько точек пересечения.

Теперь, когда с орбитами более или менее разобрались, можно вернуться к определению термина орбитальной скорости планет. Именно так астрономы называют скорость, с которой планета движется по своей траектории. Она может немного изменяться – в зависимости от того, какие небесные тела проходят поблизости. Особенно это заметно на примере Марса: каждый раз, когда он проходит в сравнительной близости от Юпитера, он немного замедляется, притягиваясь гравитационным полем этого гиганта.

Ученые давно установили зависимость скорости движения планет вокруг Солнца от расстояния до него.

То есть самая ближайшая к Солнцу планета – Меркурий – движется быстрее всего, в то время как скорость Плутона является самой маленькой в Солнечной системе.

С чем это связано?

Оборот за 1 год

Дело в том, что скорость каждой планеты соответствует той силе, с которой Солнце притягивает ее на определенном расстоянии. Если скорость будет меньше, то планета будет постепенно приближаться к звезде и в результате сгорит. Если же скорость слишком большая, то планета просто улетит от центра нашей Солнечной системы.

Каждый астроном, даже начинающий, прекрасно знает, что сила притяжения уменьшается по мере удаления от Солнца. Именно поэтому, чтобы сохранить свое место в Солнечной системе, Меркурий вынужден носиться с бешеной скоростью, Марс может двигаться помедленнее, а Плутон и вовсе едва перемещается.

Элементы орбиты

У каждой орбиты имеется свой набор параметров. К тому же, именно он задаёт её форму, размер и расположение в пространстве. В астрономии принято использовать кеплеровы элементы орбиты. К ним относятся:

  • большая полуось — геометрическая характеристика объектов. Образуется коническим сечением, то есть пересечением плоскости с поверхности кругового конуса.
  • эксцентриситет — это параметр конического сечения, выраженный в числах. Он указывает его отклонение от окружности.
  • наклонение — угол между плоскость и орбитой.
  • аргумент перицентра — угол между направлениями из центра на восходящий узел орбиты. Сам перицентр определяют как ближнюю точку орбиты к притягивающему центру.
  • долгота восходящего узла — математическое описание линии плоскости орбиты в отношении к базовой плоскости.
  • средняя аномалия — это произведение среднего движения тела и интервала времени от перицентра. Имеет стабильную угловую скорость.

Меркурий

Самая близкая к Солнцу планета – Меркурий. Вот с него и начнем изучение скорости планет Солнечной системы.

Он может похвастать не только самым малым радиусом орбиты, но и небольшими размерами. В нашей системе это самая маленькая полноценная планета. Расстояние от Меркурия до Солнца – менее 58 миллионов километров, благодаря чему температура на его экваторе жарким днем может дорасти до 400 градусов по Цельсию и даже больше.

Кроме того, чтобы удержаться на своей орбите при такой близости Солнца, планете приходится двигаться с огромной скоростью – около 47 километров в секунду. Так как протяженность орбиты из-за малого радиуса совсем невелика, то полный оборот вокруг звезды он совершает всего за 88 суток. То есть Новый год там можно встречать значительно чаще, чем на Земле. А вот скорость вращения планеты вокруг собственной оси очень небольшая – полный оборот Меркурий делает почти за 59 земных суток. Так, сутки здесь не намного короче года.

Почему Земля вращается вокруг своей оси быстрей других планет?

Ученые предполагают, что огромный объект, примерно размером с Марс, врезался в нашу планету и отделил от нее тем самым огромный клочок, который стал впоследствии Луной. Это столкновение заставило Землю вращаться с большей скоростью, чем другие планеты. Но гравитация Луны влияет на вращение Земли — она его замедляет!

Интересный факт: Земля постоянно замедляет свое вращение. Ученые предполагают, что в момент образования планеты день шел всего 6 часов. А сейчас существуют чрезвычайно точные технологии, которые дают возможность просчитать дальнейшее замедление — через сто лет день станет короче на 2 миллисекунды.

Венера

Следующая планета в нашей системе – Венера. Единственная, на которой Солнце встает на западе и садится на востоке. Расстояние до центра системы – 108 миллионов километров. Благодаря этому скорость движения планеты по орбите значительно меньше, чем у Меркурия (всего 35 километров в секунду). Причем это единственная планета, у которой орбита действительно представляет собой практически идеальную окружность – погрешность (или, как говорят эксперты, эксцентриситет) крайне мала.

Орбиты Земли и Венеры

Правда, протяженность орбиты (по сравнению с Меркурием) у нее значительно больше, из-за чего полный путь Венера проделывает только за 225 дней. Кстати, еще один интересный факт, отличающий Венеру от всех других планет Солнечной системы: период вращения вокруг оси (одни сутки) здесь составляет 243 земных дня. Следовательно, год здесь длится меньше, чем сутки.

От Птолемея до Ньютона

Представления о том, как расположены планеты на небосводе первым в своем трактате «Великое математическое построение по астрономии», высказал древнегреческий астроном Птолемей. Он первым предположил, что они совершают свои движения по кругу. Но Птолемей ошибочно считал, что все планеты, а также Луна и Солнце движутся вокруг Земли. Долгое время его трактат считался общепринятым как в арабском, так и западном мире.

Скорость движения планет по орбите

Точку в этом спорном для человечества факте поставил Николай Коперник. Польский астроном создал свою гелиоцентрическую систему, в которой убедительно доказал, что Земля не является центром Вселенной, а все планеты, по его твердому убеждению, вращаются по орбитам вокруг Солнца. Работа польского ученого «О вращении небесных сфер», была издана в немецком Нюрнберге в 1543 году.

После смерти Коперника его труды продолжил датчанин Тихо Браге. Астроном, являющийся весьма состоятельным человеком, оборудовал принадлежащий ему остров, внушительными бронзовыми кругами, на которые наносил результаты наблюдения за небесными телами. Результаты, полученные Браге, помогли в исследовании математику Иоганну Кеплеру,который вывел три своих знаменитых закона движения планет.

Скорость движения планет по орбите

Англичанин Исаак Ньютон, открыв закон всемирного тяготения, существенно продвинул представления человечества об эллиптических орбитах небесных тел. Его объяснения, что приливы и отливы на Земле происходят под влиянием Луны, оказались убедительными для научного мира.

Земля

Теперь можно рассмотреть и планету, которая стала домом для человечества – Землю. Среднее расстояние до Солнца – почти 150 миллионов километров. Именно это расстояние принято называть одной астрономической единицей – их используют при подсчете небольших (по меркам Вселенной) расстояний в космосе.

Сложно поверить, но пока вы читаете эту статью, вы движетесь вместе с Землей на скорости почти 30 километров в секунду. Но даже при столь внушительной скорости, чтобы сделать полный оборот вокруг Солнца, планета тратит на это больше 365 суток или 1 год. Зато вокруг своей оси вращается довольно быстро – всего за 24 часа. Впрочем, эти и многие другие факты о Земле очевидны всем, поэтому подробно рассматривать нашу родную планету не станем. Перейдем сразу к следующей.

Гравитация и масса тела

На силу гравитации влияет также масса тел, то есть количество вещества в них. Земля и Солнце взаимно притягивают друг друга, но поскольку масса Солнца намного больше, то оно притягивает Землю сильнее. Ученые считают, что гравитация формирует пространство, которое искривляется вокруг сгустков материи. Чем массивнее сгусток, тем больше искривляется пространство. Каким образом это происходит? Вместе с приятелем туго растяните на весу простыню. Положите на простыню тяжелый металлический шар. Простыня прогнется под тяжестью шара и примет его форму.

Интересный факт: ученые убеждены, что сила гравитации искривляет пространство, придавая ему форму.

Если положить на простыню меньшие шары, то они скатятся к большому. По мнению ученых, нечто подобное происходит и со звездами. Они искривляют пространство, как шары простыню в вашем опыте, и заставляют другие объекты «скатываться» по направлению к ним.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Марс

Эта планета названа в честь грозного бога войны. По всем показателям Марс максимально приближен к Земле. Например, скорость планеты по орбите составляет 24 километра в секунду. Расстояние до Солнца – около 228 миллионов километров, из-за чего на поверхности большую часть времени довольно прохладно – только днем она прогревается до -5 градусов по Цельсию, а ночью здесь холодает до -87 градусов.

Красная планета

Зато сутки здесь практически равны земным – 24 часа и 40 минут. Для упрощения даже был придуман новый термин, обозначающий марсианские сутки – сол.

Так как расстояние до Солнца довольно большое, а траектория движения значительно длиннее, чем у Земли, год здесь длится довольно долго – целых 687 дней.

Эксцентриситет у планеты не слишком большой – около 0,09, поэтому орбиту можно считать условно круглой с Солнцем, расположенным почти в центре описываемой окружности.

Юпитер

Свое название Юпитер получил в честь самого могущественного древнеримского бога. Неудивительно, именно эта планета может похвастать самыми большими размерами в Солнечной системе – его радиус составляет почти 70 тысяч квадратных километров (у Земли, например, всего 6 371 километр).

Удаленность от Солнца позволяет Юпитеру вращаться довольно медленно – всего 13 километров в секунду. Из-за этого на то, чтобы сделать полный круг, у планеты уходит почти 12 земных лет!

Зато сутки здесь самые короткие в нашей системе – 9 часов и 50 минут. Наклон оси вращения здесь крайне мал – лишь 3 градуса. Для сравнения — у нашей планеты этот показатель составляет 23 градуса. Из-за этого на Юпитере совершенно не бывает смен времен года. Всегда стоит одинаковая температура, изменяющаяся лишь в течение коротких суток.

Эксцентриситет у Юпитера довольно маленький – меньше 0,05. Поэтому он равномерно наматывает круги строго вокруг Солнца.

Сатурн

Эта планета не слишком уступает Юпитеру по размерам, являясь вторым по размеру космическим телом в нашей солнечной системе. Его радиус – 58 тысяч километров.

Скорость планеты по орбите, как уже говорилось выше, продолжает падать. Для Сатурна этот показатель составляет всего 9,7 километра в секунду. А пройти со столь малой скоростью приходится действительно большое расстояние – дистанция до Солнца равна почти 9,6 астрономических единицы. Всего на этот путь уходит 29,5 лет. Зато сутки одни из самых коротких в системе – всего 10,5 часов.

Эксцентриситет планеты почти такой же, как у Юпитера – 0,056. Поэтому окружность получается довольно ровной – перигелий и афелий различаются всего на 162 миллиона километров. Если учитывать огромное расстояние до Солнца, то разница совсем небольшая.

Орбиты планет Солнечной системы

Интересно, что кольца Сатурна тоже вращаются вокруг планеты. Причем скорость внешних слоев значительно меньше, чем внутренних.

Как открыли земную орбиту

В античные времена Птолемей, Аристотель и их последователи считали модель построения Вселенной геоцентрической. Согласно ей, в центре располагалась Земля, а все космические тела вращались вокруг планеты. Впервые сомневаться в этом начал древнегреческий ученый Аристарх Самосский. Наблюдая в III в. до н. э. лунное затмение, он сделал вывод, что Луна не является самостоятельным светилом, а только отражает солнечный свет, и она меньше Солнца по диаметру во много раз. И будет странным, что такой большой небесный объект, как наша звезда, вращается вокруг маленькой Земли.

Скорость движения планет по орбите
Геоцентрическая система мира Птолемея. В предложенной системе мира шарообразная Земля покоится в центре Вселенной. Credit: infourok.ru.

Окончательно геоцентрическая теория была развенчана в 1534 г. польским астрономом Н. Коперником, автором гелиоцентрического учения, доказавшим, что Солнце обращаться вокруг Земли не может.

Первым, кто доказал эллиптическую форму орбиты нашей планеты, был немецкий ученый И. Кеплер. Наблюдая за движением Земли и Марса, он понял, что планеты периодически замедляются, а затем снова ускоряются, что было бы невозможно, будь орбита круговой.

Уран

Еще один гигант Солнечной системы. Только Юпитер и Сатурн превосходят его по размерам. Правда, по весу его обходит еще и Нептун, но это благодаря высокой плотности ядра. Среднее расстояние до Солнца действительно огромно – целых 19 астрономических единиц. Движется он довольно медленно – вполне может позволить себе это при столь большом расстоянии. Скорость движения планеты по орбите не превышает 7 километров в секунду. Из-за такой неспешности на то, чтобы пройти огромное расстояние вокруг Солнца, у Урана уходит целых 84 земных года! Весьма приличный срок.

А вот вокруг своей оси он вращается удивительно быстро – полный оборот совершается всего за 18 часов!

Удивительной особенностью планеты является то, что вращается она вокруг себя не вертикально, а горизонтально. Другими словами, все другие планеты Солнечной системы делают оборот «стоя» на полюсе, а Уран просто «катится» по своей орбите, будто лежа на боку. Ученые объясняют это тем, что во времена формирования планета столкнулась с каким-то крупным космическим телом, из-за чего просто завалилась на бок. Поэтому, хотя в общепринятом смысле сутки здесь очень короткие, на полюсах день длится 42 года, а потом столько же лет стоит ночь.

Гравитация – сила тяготения

Если же смотреть глубже, то станет ясно, что не было бы гравитации, не было бы и самих планет. Сила тяготения — притяжение материи к материи — это та сила, которая собрала вещество в планеты и придала им круглую форму.

Скорость движения планет по орбите
Гравитация

Силы тяготения Солнца вполне хватает на то, что бы удерживать девять планет, десятки их спутников и тысячи астероидов и комет. Вся эта компания роем вращается вокруг Солнца, как мотыльки вокруг освещенного балкона. Если бы не было силы тяготения, эти планеты, спутники и кометы полетели бы каждый своим путем по прямой линии. Вместо этого они вращаются вокруг Солнца по своим орбитам, потому что Солнце силой своего притяжения постоянно искривляет их прямолинейную траекторию, притягивая к себе планеты, луны и кометы с астероидами.

Нептун

Свое гордое название Нептуну подарил древнеримский повелитель морей и океанов. Недаром даже символом планеты стал его трезубец. По размерам Нептун является четвертой планетой в Солнечной системе, лишь совсем немного уступая Урану – его средний радиус составляет 24 600 км против 25 400.

От Солнца он держится на расстоянии в среднем 4,5 миллиарда километров или 30 астрономических единиц. Поэтому путь, который он проделывает, проходя орбиту, действительно огромен. А если учесть, что круговая скорость планеты составляет всего 5,4 километра в секунду, то нет ничего удивительного в том, что один год здесь приравнивается к 165 земным.

Интересный факт: здесь имеется довольно плотная атмосфера (правда, состоит она преимущественно из метана), и иногда бывают ветра удивительной силы. Их скорость может достигать 2100 километров в час – на Земле даже одиночный порыв такой мощи моментально разрушил бы любой город, не оставив там камня на камне.

Что это означает для нас

Мы не замечаем движения нашей планеты, но, если бы Земля внезапно остановилась, это имело бы плачевные последствия. Наша орбита установилась под влиянием солнечного притяжения и собственного движения планеты. Увеличение в несколько раз первого параметра и/или уменьшение второго приведет к тому, что Земля упадет на Солнце. Обратная ситуация, где солнечная гравитация исчезнет или существенно уменьшится, а планета начнет двигаться сильнее — опасна тем, что мы по касательной улетим в открытое космическое пространство.

А беспокойство о скором столкновении галактик являются преждевременными. Скорость движения Млечного Пути является относительно небольшой. На расстояние равное собственному диаметру он смещается не менее, чем за 200-300 млн лет.

Источник: maginarius.ru

Планеты солнечной системыМожет ли быть колесо, у которого втулка вращается быстрее, чем обод? Посмотрите как вращается автомобильное колесо. Вы увидите, что все точки, расположенные по одному радиусу (на разных расстояниях от оси), поворачиваются на одинаковый угол и делают одно и то же число оборотов. У всего колеса, как говорят, одинаковая угловая скорость. Что же касается линейной скорости каждой точки, то вы ясно увидите, что чем дальше от оси, тем с большей скоростью движется она по своей окружности.

Да иначе и быть не может – ведь за то же время (за каждый оборот) точки пробегают пути по меньшей или по большей окружности. И, казалось бы, не имеет смысла думать, будто втулка колеса может вращаться быстрее, чем его обод, — таких колес, конечно, не бывает. (Добавим, однако, — твердых, сплошных колес.)

  • О скорости движения Солнца в Галактике и Галактики во Вселенной читаем в статье: Скорость движения Солнца и Галактики во Вселенной.

И все-таки подобные «колеса» нашлись – правда, не сплошные и не твердые. Чье внимание не привлекали интересные кольца Сатурна, окружающие огромную необыкновенную планету? Кольца Сатурна громадны – общая ширина их 65 000 км – в пять раз больше поперечника земного шара. Правда, толщина колец очень невелика – всего каких-нибудь 15-20 км. При этом кольца «висят» в пространстве, не прикасаясь к поверхности планеты, — они вращаются вокруг нее от действия огромной силы ее притяжения (по закону тяготения).

Кольца СатурнаУченых давно интересовал вопрос: какова природа колец Сатурна? Долго шли споры о том, что это: сплошное твердое кольцо или поток отдельных кусков, камней? Гениальная русская женщина-математик Софья Ковалевская теоретически доказала, что кольца Сатурна состоят из отдельных небольших тел и что они не могут быть сплошным твердым кольцом. Иначе такое кольцо разорвалось бы на части от неодинакового действия силы притяжения, которая на внутреннем крае колец (ближе к планете) гораздо больше, чем на внешнем крае (дальше от нее). Чтобы уравновесить это различие в притяжении, внутренний край колец должен вращаться быстрее, чем внешний, а это может быть только в том случае, если кольца не сплошные, а состоят из отдельных кусков – камней или глыб. Каждый из этих кусков самостоятельно движется вокруг планеты по законам небесной механики, как крошечное небесное тело.

Другой выдающийся русский ученый – А. А. Белопольский сложными наблюдениями открыл, что внутренний край колец действительно вращается быстрее, чем внешний. Скорость внутреннего края 20 км/сек, а скорость внешнего – всего 15 км/сек. Значит, перед нами действительно «колесо», у которого «втулка» вращается быстрее, чем «обод».

И таких странных колес во Вселенной оказалось очень много. Еще «законодатель неба» Кеплер открыл, что гигантским «колесом» такого рода является вся наша солнечная система. Посмотрите на ее схему. Получается любопытная картина:

чем ближе к Солнцу находится планета, тем с большей скоростью она движется и делает свой оборот за меньшее время;

чем дальше от Солнца, тем меньше скорость планеты и дольше время ее обращения вокруг Солнца.

Какой-то непреложный закон природы с железной необходимостью управляет движениями этих гигантских космических тел. «Втулкой» этого замечательного «колеса» служит Меркурий, который мчится со скоростью почти 50 км/сек, а «ободом» — Плутон, который в сравнении с ним медленно плывет со скоростью всего 4 км/сек (в 12 с лишним раз медленнее!).

Планеты солнечной системы. Скорость движения.

Чем дальше планеты от Солнца, тем за большее время обращаются они вокруг него: Меркурий – за 88 наших дней, Венера – за 224,7 дня, Земля – за 365,25 дня, Марс – за 687 земных дней, Юпитер – почти за 12 наших лет, Сатурн – за 29 лет, а самый дальний от Солнца Плутон – за два с половиной столетия.

Кстати. Сколько бы вам было лет на разных планетах, если на Земле вам, скажем, 12? На Меркурии – около …50, на Венере – 20, на Марсе – лишь 6-7 лет, на Юпитере – 1 год. Ну, а на Плутоне – всего 1/20 года… Конечно, организм ваш развивался бы независимо от того, сколько раз облетели вы вокруг Солнца вместе с той или другой планетой.

Но вернемся к «планетному колесу» и посмотрим, чем объяснить ту строгую правильность, что чем ближе к Солнцу, тем больше скорость планет, а чем дальше, тем она меньше. Разгадку и здесь надо искать в действии притяжения Солнца. Скорость движения каждой планеты по определенной орбите должна строго соответствовать силе притяжения Солнца (на данном расстоянии). Ведь при недостаточной скорости планета будет приближаться к Солнцу и упадет на него, а при слишком большой скорости – улетит от него вдаль.

Вы, конечно, помните, что чем ближе к Солнцу, тем с большей силой оно притягивает. С увеличением же расстояния сила притяжения быстро убывает. Значит, для уравновешенного движения каждой планеты по своей орбите ближе к Солнцу необходима большая скорость, а дальше от него – достаточна скорость меньшая. Вот почему так быстро мчится Меркурий и в 12 раз медленнее «плывет» далекий Плутон.

 

  • О скорости движения Солнца в Галактике и Галактики во Вселенной читаем в статье: Скорость движения Солнца и Галактики во Вселенной.

 

Это была статья о том, с какой скоростью движутся планеты солнечной системы. Далее читаем: Планета Юпитер — сила гиганта!

 

Источник: wonderful-planet.ru

Цитата сообщения ell_BAGIRA Законы движения планет Солнечной системы

Скорость движения планет по орбите

Важную роль в формировании представлений о строении Солнечной системы сыграли также законы движения планет, которые были открыты Иоганном Кеплером (1571-1630) и стали первыми естественнонаучными законами в их современном понимании. Работы Кеплера создали возможность для обобщения знаний по механике той эпохи в виде законов динамики и закона всемирного тяготения, сформулированных позднее Исааком Ньютоном. Многие ученые вплоть до начала XVII в. считали, что движение небесных тел должно быть равномерным и происходить по «самой совершенной» кривой- окружности. Лишь Кеплеру удалось преодолеть этот предрассудок и установить действительную форму планетных орбит, а также закономерность изменения скорости движения планет при их обращении вокруг Солнца. В своих поисках Кеплер исходил из убеждения, что «в мире правит число», высказанного еще Пифагором. Он искал соотношения между различными величинами, характеризующими движение планет, — размеры орбит, период обращения, скорость. Кеплер действовал фактически вслепую, чисто эмпирически. Он пытался сопоставить характеристики движения планет с закономерностями музыкальной гаммы, длиной сторон описанных и вписанных в орбиты планет многоугольников и т.д. Кеплеру необходимо было построить орбиты планет, перейти от экваториальной системы координат, указывающих положение планеты на небесной сфере, к системе координат, указывающих ее положение в плоскости орбиты. Он воспользовался при этом собственными наблюдениями планеты Марс, а также многолетними определениями координат и конфигураций этой планеты, проведенными его учителем Тихо Браге. Орбиту Земли Кеплер считал (в первом приближении) окружностью, что не противоречило наблюдениям. Для того чтобы построить орбиту Марса, он применил способ, который показан на рисунке ниже.

ddc581ed27eff2d58e2ce38faaa7c0b4 (700x525, 63Kb)

Пусть нам известно угловое расстояние Марса от точки весеннего равноденствия во время одного из противостояний планеты — его прямое восхождение «15 которое выражается углом g(гамма)Т1М1, где T1 — положение Земли на орбите в этот момент, а M1 — положение Марса. Очевидно, что спустя 687 суток (таков звездный период обращения Марса) планета придет в ту же точку своей орбиты.

Скорость движения планет по орбите

Если определить прямое восхождение Марса на эту дату, то, как видно из рисунка, можно указать положение планеты в пространстве, точнее, в плоскости ее орбиты. Земля в этот момент находится в точке Т2, и, следовательно, угол gT2M1 есть не что иное, как прямое восхождение Марса — a2. Повторив подобные операции для нескольких других противостояний Марса, Кеплер получил еще целый ряд точек и, проведя по ним плавную кривую, построил орбиту этой планеты. Изучив расположение полученных точек, он обнаружил, что скорость движения планеты по орбите меняется, но при этом радиус-вектор планеты за равные промежутки времени описывает равные площади. Впоследствии эта закономерность получила название второго закона Кеплера.

Скорость движения планет по орбите

Радиусом-вектором называют в данном случае переменный по своей величине отрезок, соединяющий Солнце и ту точку орбиты, в которой находится планета. АА1, ВВ1 и CC1 — дуги, которые проходит планета за равные промежутки времени. Площади заштрихованных фигур равны между собой. Согласно закону сохранения энергии, полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остается неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергий планеты, которая движется вокруг Солнца, неизменна во всех точках орбиты и равна полной энергии. По мере приближения планеты к Солнцу возрастает ее скорость, увеличивается кинетическая энергия, но вследствие уменьшения расстояния до Солнца уменьшается энергия потенциальная. Установив закономерность изменения скорости движения планет, Кеплер задался целью определить, по какой кривой происходит их обращение вокруг Солнца. Он был поставлен перед необходимостью сделать выбор одного из двух возможных решений: 1) считать, что орбита Марса представляет собой окружность, и допустить, что на некоторых участках орбиты вычисленные координаты планеты расходятся с наблюдениями (из-за ошибок наблюдений) на 8′; 2) считать, что наблюдения таких ошибок не содержат, а орбита не является окружностью. Будучи уверенным в точности наблюдений Тихо Браге, Кеплер выбрал второе решение и установил, что наилучшим образом положения Марса на орбите совпадают с кривой, которая называется эллипсом, при этом Солнце не располагается в центре эллипса. В результате был сформулирован закон, который называется первым законом Кеплера. Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

Скорость движения планет по орбите

Как известно, эллипсом называется кривая, у которой сумма расстояний от любой точки Р до его фокусов есть величина постоянная. На рисунке обозначены: О — центр эллипса; S и S1 — фокусы эллипса; АВ — его большая ось. Половина этой величины (а), которую обычно называют большой полуосью, характеризует размер орбиты планеты. Ближайшая к Солнцу точка А называется перигелий, а наиболее удаленная от него точка В — афелий. Отличие эллипса от окружности характеризуется величиной его эксцентриситета: е = OS/OA. В том случае, когда эксцентриситет равен О, фокусы и центр сливаются в одну точку — эллипс превращается в окружность.

Скорость движения планет по орбите

Примечательно, что книга, в которой в 1609 г. Кеплер опубликовал первые два открытых им закона, называлась «Новая астрономия, или Физика небес, изложенная в исследованиях движения планеты Марс…». Оба этих закона, опубликованные в 1609 г., раскрывают характер движения каждой планеты в отдельности, что не удовлетворило Кеплера. Он продолжил поиски «гармонии» в движении всех планет, и спустя 10 лет ему удалось сформулировать третий закон Кеплера:

Т1^2 / T2^2 = a1^3 / a2^3

Квадраты звездных периодов обращения планет относятся между собой, как кубы больших полуосей их орбит. Вот что писал Кеплер после открытия этого закона: «То, что 16 лет тому назад я решил искать, <… > наконец найдено, и это открытие превзошло все мои самые смелые ожидания… » Действительно, третий закон заслуживает самой высокой оценки. Ведь он позволяет вычислить относительные расстояния планет от Солнца, используя при этом уже известные периоды их обращения вокруг Солнца. Не нужно определять расстояние от Солнца каждой из них, достаточно измерить расстояние от Солнца хотя бы одной планеты. Величина большой полуоси земной орбиты — астрономическая единица (а. е.) — стала основой для вычисления всех остальных расстояний в Солнечной системе. Вскоре был открыт закон всемирного тяготения. Все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:

F = G m1m2/r2

где m1 и m2 — массы тел; r — расстояние между ними; G — гравитационная постоянная

Открытию закона всемирного тяготения во многом способствовали законы движения планет, сформулированные Кеплером, и другие достижения астрономии XVII в. Так, знание расстояния до Луны позволило Исааку Ньютону (1643 — 1727) доказать тождественность силы, удерживающей Луну при ее движении вокруг Земли, и силы, вызывающей падение тел на Землю. Ведь если сила тяжести меняется обратно пропорционально квадрату расстояния, как это следует из закона всемирного тяготения, то Луна, находящаяся от Земли на расстоянии примерно 60 ее радиусов, должна испытывать ускорение в 3600 раз меньшее, чем ускорение силы тяжести на поверхности Земли, равное 9,8 м/с. Следовательно, ускорение Луны должно составлять 0,0027 м/с2.

5b (700x700, 54Kb)

Сила, удерживающая Луну на орбите, есть сила земного притяжения, ослабленная в 3600 раз по сравнению с действующей на поверхности Земли. Можно убедиться и в том, что при движении планет, в соответствии с третьим законом Кеплера, их ускорение и действующая на них сила притяжения Солнца обратно пропорциональны квадрату расстояния, как это следует из закона всемирного тяготения. Действительно, согласно третьему закону Кеплера отношение кубов больших полуосей орбит d и квадратов периодов обращения T есть величина постоянная: Ускорение планеты равно:

a= u2/d =(2pid/T)2/d=4pi2d/T2

Из третьего закона Кеплера следует:

D/T2=const/d2

поэтому ускорение планеты равно:

a = 4pi2•const/d2

Итак, сила взаимодействия планет и Солнца удовлетворяет закону всемирного тяготения и имеются возмущения в движении тел Солнечной системы. Законы Кеплера строго выполняются, если рассматривается движение двух изолированных тел (Солнце и планета) под действием их взаимного притяжения. Однако в Солнечной системе планет много, все они взаимодействуют не только с Солнцем, но и между собой. Поэтому движение планет и других тел не в точности подчиняется законам Кеплера. Отклонения тел от движения по эллипсам называют возмущениями. Возмущения эти невелики, так как масса Солнца гораздо больше массы не только отдельной планеты, но и всех планет в целом. Наибольшие возмущения в движении тел Солнечной системы вызывает Юпитер, масса которого в 300 раз превышает массу Земли.

Скорость движения планет по орбите

Особенно заметны отклонения астероидов и комет при их прохождении вблизи Юпитера. В настоящее время возмущения учитываются при вычислении положения планет, их спутников и других тел Солнечной системы, а также траекторий космических аппаратов, запускаемых для их исследования. Но еще в XIX в. расчет возмущений позволил сделать одно из самых известных в науке открытий «на кончике пера» — открытие планеты Нептун. Проводя очередной обзор неба в поиске неизвестных объектов, Вильям Гершель в 1781 г. открыл планету, названную впоследствии Ураном. Спустя примерно полвека стало очевидно, что наблюдаемое движение Урана не согласуется с расчетным даже при учете возмущений со стороны всех известных планет. На основе предположения о наличии еще одной «заурановой» планеты были сделаны вычисления ее орбиты и положения на небе. Независимо друг от друга эту задачу решили Джон Адамс в Англии и Урбен Леверье во Франции. На основе расчетов Леверье немецкий астроном Иоганн Галле 23 сентября 1846 г. обнаружил в созвездии Водолея неизвестную ранее планету — Нептун. Это открытие стало триумфом гелиоцентрической системы, важнейшим подтверждением справедливости закона всемирного тяготения. В дальнейшем в движении Урана и Нептуна были замечены возмущения, которые стали основанием для предположения о существовании в Солнечной системе еще одной планеты. Ее поиски увенчались успехом лишь в 1930 г., когда после просмотра большого количества фотографий звездного неба был открыт Плутон.

Источник: http://www.astrogalaxy.ru/index.html

Источник: www.liveinternet.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.