Появление планеты земля


Существующие методы исследования позволили установить, что примерный возраст нашей планеты составляет 4,5 млрд лет, но о том, как появилась Земля и какие процессы поспособствовали ее формированию, есть лишь теории и гипотезы. Осталось немного геологических свидетельств данных процессов, а современные наблюдения за особенностями формирования планет в других галактиках охватывают слишком короткий период.

Ранние теории происхождения планеты

Ранние этапы формирования планеты являются наименее изученными, поэтому по мере развития науки стали появляться теории, кратко объясняющие, как создавалась Земля. Первые гипотезы формирования планеты появились еще в 17 в., но многие из них уже опровергнуты исследованиями.

Сейчас большинство ученых придерживаются мнения, что зарождение Земли произошло из пыли и газов на ранних этапах формирования Солнечной системы, но и более ранние гипотезы не могут быть полностью опровергнуты.

Концепция Лапласа

Предложенная П. С. Лапласом в 1796 г. гипотеза образования планеты на протяжении длительного времени признавалась в научном обществе, т.к. была частично обоснована математическими расчетами. Этот исследователь предположил, что формирование Солнечной системы и всех ее элементов произошло в результате вращения первичной туманности.


При сжатии центробежная сила может расти быстрее притяжения, но при их равенстве способна возникнуть ротационная неустойчивость, которая будет провоцировать сплющивание туманности и отделение плотного вещества из ее центра. Выброшенные газы и пыль сформировали плоские кольца, а затем вещества под нарастающей силой тяжести стянулись, образовав планеты.

Гипотеза Канта

Кант выдвинул первую космогоническую гипотезу, в которой предположил, что зарождение всех элементов Солнечной системы, в т.ч. Земли, произошло из пыли и газов. Поспособствовала данному процессу сила тяжести. Сначала в центре сформировалось Солнце, а затем появились планеты.

Недостаток гипотез Канта и Лапласа

Гипотезы о происхождении Земли, выдвинутые Лапласом и Кантом, имеют ряд недостатков. Многие современные астрофизики считают следующее: первичная туманность имела настолько малую плотность, что ее вращение не могло происходить так же, как твердого тела. Это ставит под сомнение возможность влияния вращения на процесс формирования центральной звезды и окружающих ее планет.

Кроме того, вещество не может отрываться скачками в экваториальной части формации. Считается, что данный процесс должен быть непрерывным, как при формировании туманности.


Некоторые исследователи отмечают, что кольцо, масса которого равна планете, не смогло бы сгуститься и впоследствии рассеялось под собственным весом. Ядро Солнца выбрасывает большое количество энергии не за счет сжатия, а благодаря термоядерному синтезу.

Теория Фесенкова

В. Г. Фесенков выдвинул несколько теорий формирования Солнца и Земли. Согласно его раннему предположению, звезда зарождается со сверхвысокой температурой, но в дальнейшем из-за остывания и высокой скорости вращения от нее отделяется газовая масса, из которой формируется планета.

Позже В. Г. Фесенков предположил, что возможно формирование планеты могло произойти из первичного холодного облака пыли и газов. Этому процессу предшествует набор избыточной скорости вращения звезды, приводящий к выбросу вещества и к уплотнению газопылевой среды. Зародыши планеты имели плотность около 10 г/см³.

Теории Мультона и Чемберлина

Геолог Т. Чемберлин и астроном Ф. Мультон предположили, что 65-70 млрд лет назад Солнце не имело спутников в виде планет. Однако в дальнейшем к нему приблизилась другая звезда.

Сила ее тяжести стала причиной формирования большой приливной волны, состоящей из веществ в жидком и газообразном состоянии. Она двигалась следом за близко подошедшей звездой.

Оторванные массы при этом стали удерживаться притяжением Солнца на некотором расстоянии от него. В дальнейшем в процессе конденсации газов элементы соединялись друг с другом.


Сформировались небольшие плотные тела, а затем планеты, спутники, метеориты и т.д.

Суждения Джинса

Д. Джинс считал, что после формирования Солнца близко к нему проходила другая звезда, из которой силой притяжения было вынуто некоторое количество материи. Эта смесь газов сгустилась до образования сначала небольших твердых тел, а затем астероидов, планет и т.д. В дальнейшем сформированные тела могли сталкиваться, пока их орбита не стабилизировалась.

Гипотеза Шмидта

О. Ю. Шмидт вдвинул теорию, что сначала сформировалось Солнце, вокруг которого вращалось облако, содержащее частички замерзшего газа и пыли. Находясь в движении, данные элементы уплотнялись, сталкивались и притягивались друг к другу. Постепенно облако уплотнялось и сплющивалось. Твердые элементы начали двигаться по круговой орбите. В дальнейшем из них формировались такие крупные объекты, как планеты.

Предположения Рудника и Соботовича

Е. Соботович и В. Рудник в 1984 г. выдвинули свою теорию зарождения Земли. Согласно их предположению, изначально на месте нашей Солнечной системы была газово-пылевая туманность. В дальнейшем произошло крупное событие, которое повлияло на нее. Велика вероятность, что им стал взрыв сверхновой звезды, располагавшейся рядом.

Выброс большого количества энергии спровоцировал сжатие туманности и начало формирования центрального сгустка — Солнца. Вокруг центра под действием данного процесса образовались кольца, состоящие из пыли, твердых камней и газов. Сжатие и сила тяжести поспособствовали образованию Земли и других планет.

Взрыв вселенского масштаба


Некоторые исследователи придерживаются теории, что Вселенная зародилась в результате большого взрыва. Существовавшая изначально материя или плазма, отличавшаяся крайне высокой температурой, по какой-то причине взорвалась. Вырвавшаяся раскаленная материя и частицы получили большое ускорение. В разные стороны они разлетались неравномерно.

При этом длительное время температура Вселенной была крайне высокой, поэтому разбросанные частицы не могли соединяться. При снижении температуры до 4000°C были сформированы атомы гелия и водорода, отличающиеся малой массой. По мере охлаждения Вселенной появились более тяжелые химические элементы.

После остывания атомы сформировали первичные туманности, состоящие из газа и пыли, а затем тела разных размеров. Данному процессу поспособствовала гравитация. Считается, что формирование галактик произошло примерно через 1-2 млрд лет после большого взрыва. Из туманности сначала сформировалось Солнце, а затем и планеты.

Появление Земли от газа к твердому телу

Сначала сформировавшееся Солнце окружали газы и мелкие частички пыли. Они двигались хаотично, сталкивались и соединялись. При этом на них продолжало оказывать действие притяжение Солнца, а также выделенные из него тела и атомы. Уплотнение газов и пыли поспособствовало формированию сначала камней, метеоров и астероидов, а затем и таких крупных твердых тел, как планеты.

Формирование планеты

Земля — это не твердый камень, а многослойная структура. После того как объем планеты стал достаточно большим, произошло уплотнение ее ядра.

В молодой планете присутствовало много радиоактивных веществ, в т.ч.:


  • иридий;
  • уран;
  • рений;
  • торий;
  • самарий;
  • люцетий и т.д.

Ядерная реакция, протекающая в ядре, и распад изотопов стали причиной расплавления планеты. На раннем этапе формирования почти вся ее поверхность была покрыта расплавленным океаном лавы.

На протяжении миллионов лет наблюдалась повышенная вулканическая активность. При этом на поверхность расплавленной Земли падало большое количество астероидов, комет и метеоров, которые приносили ряд химических веществ.

Постепенно поверхность Земли начала остывать, что создало условия для формирования коры. Однако примерно через 30 млн лет после завершения формирования Земли произошло ее столкновение с другой планетой — Теей. Это стало причиной высвобождения большого количества энергии.

Две планеты слились и снова вернулись в жидкое состояние. При этом большое количество обломков были выброшены в космос, а затем под действием силы притяжения они сформировали кольцо, из которого в дальнейшем образовалась Луна.

Процесс радиоактивного распада длительное время поддерживал Землю в расплавленном состоянии, но постепенно вулканическая активность снизилась, поверхность остыла и сформировалась кора. На ней начала скапливаться вода, что привело к формированию первичного мирового океана. На его поверхности присутствовало большое количество вулканических островов, но они быстро разрушались под действием морской стихии.


Усиление вулканической активности стало причиной разломов в коре, просачивания в них воды и появления нового типа горных пород, таких как гранит. Этот материал стал основой для формирования современных континентов.

Дрейф материков

Первые материки были сформированы из гранита 3,5 млрд лет назад. Данный материал был устойчивым к воздействию воды и при этом достаточно легким и менее плотным, чем базальт, из которого была сформирована океаническая кора.

Из-за разницы в плотности и весе гранитные материки могли дрейфовать по мантии.

На протяжении всего периода развития Земли они неоднократно соединялись, формируя суперконтиненты, а затем снова раскалывались из-за влияния на них внутреннего тепла планеты.

Возникновение жизни

Считается, что жизнь зародилась в период формирования первых материков. Под водой протекали активные вулканические процессы. «Черные курильщики» выбрасывали горячую воду, насыщенную разными микроэлементами. Кроме того, в океан с метеоритами и астероидами попадали аминокислоты и другие соединения.

Особые условия спровоцировали случайное возникновение первых одноклеточных микроорганизмов, которые питались за счет энергии подводных вулканов.


Изменяющиеся условия стали причиной подъема некоторых видов бактерий к поверхности и развития способности получать пищу путем фотосинтеза. На мелководье возле сформировавшихся материков возникли обширные колонии строматолитов. Эти водоросли вырабатывали большое количество кислорода. Увеличение его количества в воде и атмосфере подтолкнуло формирование многоклеточных организмов.

Источник: o-kosmose.ru

Появление планеты земля

Появление и развитие жизни на Земле — это уникальное явление во всей Солнечной системе. Но оно не случайно, а было подготовлено сочетанием ряда благоприятных условий. Прежде всего для зарождения жизни должен был сформироваться сложный комплекс активно взаимодействующих природных компонентов, которые в течение чрезвычайно длительного времени в относительно стабильных гидротермальных условиях испытали строго направленную эволюцию.

Эволюция Земли делится на раннюю историю и геологическую историю. Под ранней историей подразумевается катархей. Под геологической же историей понимается все остальное время, от архея до современной эпохи.


еменная граница между двумя главными интервалами в истории Земли точно не установлена. Но предположительно она намечается на рубеже от 3,5 до 3,8-3,9 млрд. лет назад. Ранняя история и геологическая история — существенно различные этапы жизни нашей планеты. Если в раннюю историю Земля развивалась так же, как и остальные планеты — Луна, Меркурий, Марс и Венера, — т. е. в очень медленном темпе, то путь развития Земли в геологическое время характеризуется необыкновенно быстрой эволюцией ее внешней области и земной коры. Все же другие планеты продолжают пребывать и в настоящую эпоху как бы в догеологическом прошлом.

Земля, как и другие планеты, пережила ранние фазы эволюции — фазу аккреции («рождения») и фазу расплавления внешней сферы земного шара и фазу первичной коры («лунную фазу»).

Фаза аккреции — это образование ее из хаотического роя твердых, преимущественно каменных, некрупных тел и пылевых частиц. Ее надо представлять себе как непрерывное выпадение на растущую Земли относительно все большего количества крупных тел, укрупняющихся в своем полете при соударениях между собой, и притяжением к себе более удаленных мелких частей материи. Вместе с крупными телами на Землю падали макрообъекты — планетезимали, неудавшиеся планеты. Они имели размеры астероидов или некрупных спутников больших планет.


В фазу аккреции Земля приобрела приблизительно 95% современной массы, на что потребовалось по разным оценкам от 17 млн. лет до 400 млн. лет, в период с 4,6 по 4,2 млрд. лет назад. Во время аккреции Земля долго оставалась холодным космическим телом, и только в конце этой фазы, когда началась предельно интенсивная бомбардировка ее крупными объектами, произошло сильное разогревание, а затем полное расплавление вещества внешней зоны планеты.

Фаза расплавления внешней сферы Земли устанавливается сообразно с ранней историей других планет, в первую очередь Луны, а также Меркурия, Марса. Лунная поверхность образована магматическими породами, которые отвердели 4,0 млрд. лет назад, т.е до этого Луна была расплавленным шаром. К этому же времени относят образование у Земли ядра, мантии и коры. Образование ядра создало условия для образования у Земли диполярного магнитного поля. Установление на Земле самых древнейших палеомагнитных пород с возрастом 3,7 млрд. лет — свидетельство существования в то время ядра, и естественно, мантии

Ландшафты того далекого времени были уникальны. Вся поверхность Земли представляла собой океан раскаленного тяжелого расплава с прорывающимися из него газами. В этот своеобразный океан продолжали стремительно врываться как малые, так и крупные космические тела, удары которых о жидкую поверхность вызывали образование всплесков, фонтанов и другие формы взлета и падения тяжелой жидкости. Над раскаленным океаном простиралось сплошь укутанное густыми тучами небо, с которого на поверхность не падало ни капли воды.


«Лунная фаза». Остывание расплавленного вещества внешней сферы Земли вследствие излучения тепла в космос и ослабления метеоритной бомбардировки, не могущей компенсировать потерю тепла, привело к образованию тонкой первичной коры базальтового состава. В раннюю историю Земли происходило и формирование гранитного слоя материковой коры. Самые древние из выявленных гранитных интрузий имеют возраст не менее 3,5 млрд. лет, т. е. они, безусловно, доархейские. В течение всей фазы формирования коры, поверхность которой имела температуру выше 100° С, продолжалось выпадение преимущественно крупных тел. На всей поверхности нашей планеты создавался типичный для всех других планет земной группы рельеф ударных кратеров. Из-за широкого распространения метеоритных кратеров фаза существования ранней коры называется также «лунной фазой» назвал время первичной горячей коры, когда происходила ее бомбардировка крупными объектами, временем гигантской бомбардировки, датируя ее интервалом от 4,2 до 3,8 млрд. лет назад.

В лунную фазу существования Земля постепенно охлаждалась от температуры плавления базальтов (1000°- 800°) до 100° С. С преодолением температурного рубежа + 100° С связано все последующее преобразование природной среды и эволюция земной коры.

Геологическое время эволюции Земли это принципиально новый период развития нашей планеты в целом, особенно ее коры и природной среды.

Как только температура опустилась ниже 100° С, состояние воды, которая находилась в атмосфере в виде горячего пара, изменилось. Водяные пары атмосферы, а в них была сосредоточена практически вся гидросфера Земли, почти целиком превратились в жидкость, наиболее активное состояние воды по сравнению с ее газовой и твердой фазами. Сухая до того времени Земля стала необычайно обводненной. Сформировались поверхностный и грунтовый стоки, возникли водоемы, и, наконец, океаны. Начался круговорот воды в природе.

На заре геологической истории существовали обширные водоемы — моря и, вероятно, какие-то первоначальные океаны. В 1973 г. геологи Оксфордского университета обнаружили в юго-западной части Гренландии бурый железняк возрастом 3,76 млрд. лет (+- 70 млн. лет). Бурый железняк — осадочная порода, сформировавшаяся в водном бассейне. Еще раньше те же геологи вместе с сотрудниками Управления геологической съемки Гренландии обнаружили в 1971 г. метаморфизованные осадочные породы возрастом 3,98 млрд. лет. Факт обнаружения осадочных пород такого древнего возраста трудно переоценить. Это означает, что временной рубеж между ранней и геологической историей проходит где-то около 4 млрд. лет назад. Следовательно, на всю раннюю историю Земли остается всего 0,6 млрд. лет. Если помимо внешней сферы Земли расплавлялась и центральная область, то на планете могли образоваться океаны, близкие по объему современным. После охлаждения земной поверхности до температуры ниже 100° С на ней образовалась огромная масса жидкой воды, которая представляла собой не простое скопление неподвижных вод, а находящихся в активном глобальном круговороте. Несмотря на эволюцию этого круговорота в ходе времени, основные особенности его сохранились неизменными. В структурном отношении круговорот, как и в настоящее время, распадался на звенья: атмосферное (испарение, перенос влаги, осадки), литосферное (поверхностный и подземный стоки) и океаническое. В процессе функционирования круговорота воды в природе происходит поглощение солнечной энергии и распределение ее по земному шару. Вода благодаря своей необычайной подвижности и химической активности вступает во взаимодействие с природными компонентами, способствуя их взаимосвязям, чем и обеспечивает формирование того глобального природного комплекса, который в настоящее время называется географической оболочкой.

Источник: planetologia.ru

Рождение Земли и ее структура (4,6 млрд лет назад)

Туманность, из которой появилась Земля, представляла собой обломки звезд более ранних поколений. Она состояла из микроскопических частиц льда, железа и других веществ, собранных в более охлажденных слоях звезд и выброшенных в космос. Силы притяжения сталкивали эти частицы газового диска и склеивали их между собой. Такое явление называется аккрецией.

История нашей планеты записана в горных породах, но даже самые древние из них насчитывают только 3,7 млрд лет, поэтому о более ранних событиях земной эволюции можно судить лишь на основании косвенных данных и построенных на их основе гипотез.

На следующем этапе формирования планеты мелкие частицы соединялись в крупные (размером до километра) — «строительные блоки», называемые планетезималями, которые сталкивались, то разрушаясь, то, наоборот, соединяясь вместе. Таким образом постепенно 5–4,6 млрд лет назад возникло ядро — центр-зародыш будущей планеты Земля.

Наиболее крупные из таких зародышей стали конкурировать между собой за планетезимали, которые оставались свободными. Это происходило на протяжении 1–10 млн лет. Зародыши планет внутренней части Солнечной системы захватывали газовые облака и сливались друг с другом. Процесс образования каждой планеты оказался уникальным, этим и объясняется их разнообразие.

Современная наука считает, что Земля сформировалась за 300–400 млн лет. Этот процесс был достаточно бурным, его сопровождали столкновения с астероидами и падения метеоритов.

Как в гигантской центрифуге, более плотные вещества опускались к центру планеты, в то время как легкие всплывали на поверхность. Эволюция Земли продолжалась и после ее рождения. Два вида энергии: та, которая образовывалась при склеивании частиц, та, что высвобождалась в результате ядерных реакций, разогревали недра юной планеты. В результате этого стало интенсивно формироваться ядро и внутренние оболочки Земли.

Внутренние слои планеты были настолько раскалены, что на глубине всего в несколько десятков километров лежал пласт расплавленных горных пород. С момента формирования Земли вещество и энергия недр, поверхности и атмосферы находились в состоянии постоянного взаимного обмена. Тем самым были созданы условия для зарождения будущей жизни.

Начальный этап жизни юной планеты после ее рождения принято называть догеологическим. Этот период длился 0,9 млрд лет, он пока еще недостаточно изучен и скрывает множество загадок. В то время появлялось множество вулканов, которые выбрасывали газы и водяные пары.

Принято считать, что в догеологический период сформировались важнейшие оболочки, которые современная наука выделяет в структуре Земли, — ядро, мантия и земная кора. Такое расслоение было вызвано мощной метеоритной бомбардировкой планеты и последующим плавлением некоторых ее частей.

Существует две гипотезы того, как появилось земное ядро. Согласно первой изначально однородное вещество, из которого состояла Земля, разделилось на тяжелый центр, куда «стекало» расплавленное железо, и более легкую мантию, состоящую из силикатов. Образование ядра, которое и по сей день остается жидким, происходило по мере того, как капли металла и другие тяжелые химические соединения как бы просачивались к сердцу планеты. Место опускающихся тяжелых соединений занимали более легкие шлаки — они поднимались к поверхности Земли. Из них состоит современная кора планеты и внешняя часть мантии. Это предположение не дает убедительного объяснения тому, как расплавленный железно-никелевый сплав мог «просочиться» более чем на тысячу километров вглубь земного шара и достичь его центра.

Сторонники второй гипотезы считают, что железное ядро Земли — это остатки железных метеоритов, с которыми сталкивалась планета вскоре после своего рождения. Потом их покрыл слой каменных (силикатных) метеоритов, из которого образовалась мантия. Уязвимое место этой гипотезы в том, что для такого хода событий железные и каменные метеориты должны были существовать раздельно и падать на Землю в строгой очередности. В то же время исследования показывают, что те из них, которые имеют железную структуру, могут появиться только в результате разрушения уже сформированной планеты. Таким образом, они не могут быть младше других планет Солнечной системы. Так как обе гипотезы не вполне убедительны, остается признать, что точным знанием о возникновении ядра Земли люди пока не обладают.

Плотное внутреннее ядро Земли очень важно для всего живого. Благодаря ему масса планеты достаточно велика, чтобы удерживать в своем гравитационном поле атмосферные газы, водяные пары, без которых не было бы гидросферы, и другие земные слои. Если бы Земля лишилась своего ядра, то мы остались бы и без воды, и без воздуха.

Как же устроено земное ядро, которое, очевидно, возникло в самом начале жизни планеты? В нем есть внешние и внутренние оболочки. Считается, что внешний слой лежит на глубине в 2900–5100 км от поверхности Земли и по своим физическим свойствам характеризуется почти как жидкость. Он состоит из потоков расплавленного железа и никеля и является прекрасным проводником электрического тока. Именно этому слою мы обязаны существованием магнитного поля нашей планеты, которое создается по законам электромагнитной индукции постоянно движущимся проводником тока.

Промежуток в 1270 км от внешнего слоя до центра земного шара занимает внутреннее ядро, состоящее на 4/5 из железа и на 1/5 из диоксида кремния. Оно обладает очень высокой температурой и большой плотностью. Внешнее ядро связано с земной мантией, тогда как внутреннее существует само по себе. Высокие температуры сочетаются в последнем с огромным давлением (до 3 млн атмосфер), поэтому его вещество остается твердым. Предполагают, что даже легчайший из земных газов — водород — в таких условиях существует в твердой фазе.

Происхождение земного ядра и внутренняя структура нашей планеты продолжают быть научными загадками. Очень многое остается непознанным по сей день. Пока большинство ученых сходятся во мнении, что формирование центральной оболочки началось одновременно с рождением самой Земли.

Ядро покрывает мантия. Ее пластическое (полурасплавленное, нетвердое) вещество заполняет толщу пространства на глубину 2900 км от земной коры к центру планеты. Масса мантии составляет примерно 67% от общей массы планеты. Считается, что этот слой неустойчив за счет своего пластического состояния и находится в постоянном движении. В наиболее глубоких слоях мантии, где давление выше, его состояние переходит в твердое. Внешняя оболочка Земли — кора — имеет толщину от нескольких километров под дном океанов до нескольких десятков километров под материками.

В самом начале истории нашей планеты земная кора была относительно тонкая и представляла собой застывший слой расплавленного базальта. На сегодняшний день в ней различают три слоя: осадочный — у самой поверхности, гранитный и самый глубокий — базальтовый. Первые два хорошо изучены геологами, а вот третий пока никто не видел. На континентах базальтовый слой не выходит на поверхность, а из-за нахождения на большой глубине он недоступен даже для самых современных буровых скважин.

Однако мы все равно знаем о нем кое-что благодаря новейшим сейсмическим методам. Во время землетрясений на глубине 10–700 км возникают волны, которые называют сейсмическими. Как у всякой волны, их скорость тем выше, чем плотнее та среда, в которой они распространяются (например, звуковые волны распространяются в воде в 4,5 раза быстрее, чем в воздухе). Анализируя скорость сейсмических волн, можно судить о плотности вещества на разных уровнях в земной коре.

С помощью такого метода была построена карта глубины нашей планеты и доказано, что скорость сейсмических волн в самом нижнем слое земной коры близка к той, которая развивается в базальтовом. Еще одно косвенное подтверждение существования этого третьего загадочного слоя — повсеместное распространение на Земле базальтовых лав. Современные поля, состоящие из этого вещества, на поверхности планеты — след древних вулканических извержений. По глубоким разломам расплавленный базальт поднимался из земных недр, выплескивался на поверхность и застывал.

Как же возник базальтовый слой земной коры? В самом начале жизни нашей планеты, примерно 4–4,5 млрд лет назад, Земля была сильно раскалена. В верхней части мантии давление было немного ниже, поэтому там был возможен переход части веществ из твердого состояния в жидкое. Образовывалась магма, близкая по составу к базальту. Она медленно двигалась вверх к поверхности Земли. Извергаясь, магма остывала и отвердевала. Так постепенно складывалась кора из базальтов.

Говоря о строении Земли, нам часто придется пользоваться термином «горные породы». Считается, что впервые так назвал разные группы минералов русский ученый Василий Михайлович Севергин в конце XVIII в. В те времена изучение камней было частью горного дела, поэтому использовалось слово «горные», хотя камни, разумеется, существуют не только в горах.

Горные породы делятся на три основных типа: магматические, осадочные и метаморфические. Происхождение первого типа нам уже понятно: эти породы образованы застывшей магмой. Они имеют ярко выраженное кристаллическое строение, при этом чем медленнее остывала вулканическая лава, тем крупнее получались кристаллы. К таким породам относятся, например, граниты и базальты.

Осадочные породы возникают из обломков кристаллических минералов, их так и называют — обломочные (песок, речная галька или мельчайшие частицы, которые образуют глину), а также из останков живых организмов — тогда они называются органическими (это и каменный уголь, и известняк, в котором видны осколки морских ракушек, и, конечно же, нефть). Когда минералы подвергаются глубоким физическим и химическим изменениям (метаморфозам) под действием высоких температур и давления, получаются метаморфические породы.

Метаморфизму могут подвергаться как магматические, так и осадочные породы. К первым относятся многие сланцы, а ко вторым — хорошо известный мрамор, который возник в результате глубоких преобразований известняка.

Одной из самых распространенных в земной коре пород считаются метаморфические гнейсы.

Формирование поверхности древней Земли и возникновение Луны (4,6–4 млрд лет назад)

На начальном этапе формирования Земли (около 4,6–4 млрд лет назад) расслоение внутренней материи земного шара сопровождалось интенсивной метеоритной бомбардировкой поверхности планеты. Метеориты падали на Землю и образовывали кратеры. Огромная энергия ударов, подчиняясь закону ее сохранения, переходила в тепло: холодные (около абсолютного нуля!) метеориты разогревали земную поверхность и недра планеты. Одновременно с метеоритным подогревом шло постоянное извержение огромного количества вулканов. Пары и газы выходили наружу из глубин планеты.

Из раскаленных недр вырывалась расплавленная магма, которая покрывала огромные пространства юной планеты и образовывала базальтовые поля — в то время земная поверхность была похожа на лунную.

Шаг за шагом внутренняя структура Земли приближалась к современной научной модели. Формировались ядро, мантия и кора, которая еще многократно изменялась, прежде чем приняла знакомые нам очертания.

Луна превосходит любой другой спутник в Солнечной системе по соотношению собственного размера к такой же характеристике Земли. В этом заключатся непохожесть Луны на другие планеты-спутники. Ее загадку долго пыталась разгадать современная наука. Наиболее убедительной считается гипотеза, согласно которой Луна появилась после мощного столкновения небесных тел. О подробностях этой космической катастрофы и ее влиянии на историю Земли мы поговорим позже.

Луна не похожа на нашу планету: на ее поверхности нет воды, не существует лунной атмосферы, в ее составе мало железа, а также летучих соединений. Однако соотношение изотопов кислорода у этих планет почти одинаково. Этот важный показатель еще называют кислородной подписью. Такие данные позволяют выдвинуть гипотезу о том, что и Земля, и Луна сформировались из одних и тех же планетезималей («строительных блоков») на одинаковом расстоянии от Солнца.

Присутствием огромного спутника объясняются многие явления на нашей планете. Луна находится по космическим меркам не очень далеко от нас, поэтому ее притяжение хорошо ощущается на Земле. Оно вызывает приливы и отливы не только в океанах, но и в закрытых водоемах земной коры.

Лунное притяжение вызывает волны, которые пробегают по земной поверхности и вытягивают ее примерно на 50 см в сторону планеты-спутника.

Великая космическая катастрофа и метеоритные бомбардировки

Ученые Дональд Дэвис и Уильям Хартманн объясняли появление Луны с помощью гипотезы космической катастрофы. Суть ее в том, что протоземля в некоторый момент столкнулась с другой древней планетой, размер которой был, как у современного Марса. Этой гипотетической планете дали имя Тея — так греки называли мать богов солнца, зари и луны (Гелиоса, Эос и Селены).

Считается, что Тея появилась 4,6 млрд лет назад одновременно с другими планетами Солнечной системы и тоже вращалась по орбите Земли, но притяжение Солнца и Земли сместили ее, и она врезалась в Землю.

Столкновение произошло на небольшой скорости и почти по касательной — планеты не разрушились и только часть вещества Земли и Теи была выброшена в космос. Эти попавшие на околоземную орбиту обломки и дали начало Луне, которая стала двигаться по земной орбите. Земля же после столкновения увеличила скорость своего вращения (цикл «день-ночь») и наклон его оси.

Компьютерное моделирование подтвердило возможность такого хода событий и указало на то, что Луне после столкновения потребовалась сто лет — лишь миг по космическим меркам, — чтобы стать шаром. Низкое содержание железа в составе спутника нашей планеты объясняется тем, что столкновение произошло уже после формирования земного ядра, которое вобрало в себя большую часть земного железа.

Обломки астероидов, блуждающие в космосе, куски планетезималей, которые так и не стали планетами, — весь этот космический мусор выпадал на поверхности Земли и Луны в виде метеоритов. Предполагают, что в первые 700 млн лет своей жизни наша планета притягивала больше метеоритов, чем ее спутник, из-за своей массы, превосходящей лунную.

Масштабные геологические изменения последующих временных эпох скрыли от нас следы былых космических атак. На поверхности же Луны, а также таких планет, как Марс и Меркурий, остались отметки соударений — кратеры. Они могут быть огромными и напоминать моря размером в тысячи километров или совсем маленькими. Земля в начале своей жизни также подвергалась бомбардировке метеоритами самых разных размеров.

На поверхность нашей планеты за 100 млн лет упало 3 ´ 1022 кг космических обломков — этого хватило бы, чтобы составить грузовой поезд из 500 000 000 000 000 000 нагруженных вагонов! При падении метеоритов их кинетическая энергия переходила в тепловую. Они разрушались и взрывались, нагревая Землю, выделяя газы и смешивая вещества из своего состава с земными.

Тепло, которое при этом выделялось, частично расплавило оболочку молодой планеты, но последовавшие гигантские извержения вулканов почти полностью уничтожили следы космической бомбардировки.

Более 160 метеоритных кратеров найдено на поверхности Земли. Они сразу возникали группами в зонах метеоритных дождей, которые покрывали десятки квадратных километров земной поверхности. Метеоритный дождь — это падение множества обломков одного крупного метеорита.

При этом вместо одного углубления появляется целое поле из них — серия кратеров, направление которой может указать путь, по которому двигались обломки, оказавшись в атмосфере.

Кратеры, как правило, имеют округлую форму, они около 100 км в диаметре и обнесены возвышающимся по краям насыпным валом.

Метеориты достигают Земли по сей день. Фрагменты разрушившегося астероида упали из космоса 15 февраля 2013 г. на город Челябинск в России. Всего на территории этого государства существует 16 крупных кратеров, метеоритное происхождение которых доказано. Их помогают выявить снимки, сделанные со спутников.

В 1908 г. на Землю упал Тунгусский метеорит. Взрыв при этом был сравним с эффектом от взрыва очень мощной водородной бомбы (40–50 мегатонн в тротилловом эквиваленте). В радиусе 25–30 км от места падения были повалены деревья, а на значительной части Евразии заметно свечение неба и облаков. Далеко не всегда падение метеоритов выглядит так катастрофично. Большинство из найденных более скромны по размеру.

Метеориты по своему составу делятся на железные, каменные и смешанного типа (железокаменные). Железные метеориты в своем составе всегда имеют металл никель, анализ содержания которого в найденном камне позволяет признать его небесное происхождение.

Поверхность метеорита хранит следы его прохождения через земную атмосферу. Обломки космических тел проникают в верхние слои атмосферы с чудовищной скоростью — более 11 км/с! Возникающее при этом трение очень велико — летящее тело разогревается и плавится. Встречный поток воздуха мгновенно срывает размягчившийся слой, и за движущимся метеоритом тянется дымовой след — шлейф мелких капелек расплава. Сопротивление воздуха тормозит разогнавшееся тело, снижая его скорость до скорости свободного падения. При этом последний из расплавленных слоев застывает на поверхности небесного камня в виде тонкой (менее 1 мм) пленки, которую называют корой плавления. Она не отличается по своему составу от самого метеорита, но выделяется своей структурой и видом. Кора плавления почти всех метеоритов черного цвета.

В Российской Академии наук существует специальный комитет, который занимается поиском и изучением метеоритов. За долгое время им собрана одна из лучших в мире коллекций небесных камней — ее начало было положено еще в XVIII в. Метеориты собирают во многих городах России, с ними можно познакомиться в краеведческих и геологических музеях.

Десятки и сотни миллионов лет метеоритные обстрелы не только разогревали недра Земли, но и меняли ее облик. Даже процессы в первичной атмосфере, которые сделали ее наконец пригодной для жизни, могли быть вызваны такими небесными камнями. Когда метеорит на огромной скорости входит в плотные воздушные слои, он раскаляется и начинает гореть, при этом выделяются водяной пар и углекислый газ — обычные для многих реакций горения.

Типичный метеорит, попадая в атмосферу Земли, высвобождает около 12% своей массы в виде водяного пара и около 6% углекислого газа, всего 18% — почти пятую часть. Если вспомнить наш воображаемый гигантский поезд, нагруженный метеоритным веществом, которое выпало на планету вскоре после ее рождения, получится, что масса выделившихся газов поместилась бы в 90 000 000 000 000 000 наполненных вагонов. Такое колоссальное количество новых газов, занесенных метеоритами, изменило первичную атмосферу — она обогатилась веществами, которые впоследствии стали строительными материалами для жизни на Земле.

Одно из лучших мест для сбора и изучения метеоритов — ледяные пустыни Антарктиды. Своих камней там очень мало, поэтому чернеющий на снегу обломок, скорее всего, в буквальном смысле упал с неба. Изучение метеоритов настолько важно для развития наших знаний о космосе, что создаются даже специальные машины-роботы, которые будут способны обследовать антарктические просторы в поисках упавших небесных камней.

Сильно увеличив содержание в атмосфере водяных паров и углекислого газа, метеориты повысили общую влажность земной атмосферы и ее температуру. Второе обстоятельство вызвано присутствием углекислого газа и создаваемого им парникового эффекта — о нем мы еще будем говорить не раз. Часть ученых считает также, что метеоритный обстрел из космоса помог образованию в древнем океане крупных органических молекул. Для подтверждения этой гипотезы группа японских ученых провела интересный эксперимент: с помощью специально сконструированной пушки они воспроизводили древнюю метеоритную бомбардировку, обстреливая океан «метеоритами» типичного для космических тел состава (то есть содержащих железо, никель и углерод). Результаты показали, что в воде после такой бомбежки действительно появился ряд органических молекул, в том числе аминокислоты, жирные кислоты и амины.

Атмосфера и гидросфера Земли — условия существования будущей жизни (4,3–3,8 млрд лет назад)

В начале земной эволюции базальтовый слой земной коры образовывался в недрах планеты и расплавленная магма поднималась вверх по разломам коры. Она содержала газы. При высоких температурах и давлении химические реакции протекали бурно. Их продуктами становились такие привычные нам земные вещества, как азот, водород, монооксид углерода (угарный газ), углекислый газ и вода. Можно сказать, что первичная атмосфера вышла из земных недр.

Масса Земли к тому времени была уже достаточно большой, чтобы удерживать атмосферные газы за счет сил притяжения.

Однако первичная атмосфера не была похожа на современную.

Древние вулканы выбрасывали облака газов. Более легкие из них (водород и гелий) поднимались вверх, достигая открытого космоса, а тяжелые удерживались земным притяжением у поверхности планеты. Из этих газов 4,3–3,8 млрд лет назад и сложилась первичная атмосфера Земли. Конечно, то, что выдыхали вулканы, сильно отличалось от сегодняшней азотно-кислородной атмосферы. Юная планета была окружена облаками азота, аммиака, углекислого газа, метана, водорода, инертных (благородных) газов, а также парами воды, соляной, борной и плавиковой кислот. Только кислорода в первичной атмосфере почти не было — его содержание в «воздухе» древней планеты составляло менее 0,001% от нынешней концентрации.

В те времена практически весь кислород был связан в различных химических соединениях и не существовал в свободном состоянии. Ядовитая, непригодная для дыхания атмосфера также не обладала и озоновым слоем, который защищает сегодня все живое от космической радиации. Однако постепенно она обогащалась продуктами сгорания метеоритов.

Современная атмосфера Земли совсем не похожа на древнюю: ее главные составляющие — азот (3/4 объема), кислород (1/5) и благородный газ аргон (около 1/100). В ней существенно меньше углекислого газа и водяных паров, а другие летучие элементы представлены в крайне малых, как говорят химики, следовых количествах.

Медленное охлаждение Земли и формирование первичной атмосферы помогли появиться и водной оболочке планеты — гидросфере. Как мы знаем, в древней атмосфере было очень много водяного пара, который вырывался из недр вместе с расплавленной лавой. Конденсируясь, он выпадал в виде дождей. На земной поверхности собирались потоки воды, они сливались вместе и заполняли углубления. Так возникали древнейшие озера. Поверхность Земли была еще слишком горячей, жидкость закипала, и столбы пара снова поднимались в атмосферу. Такая циркуляция воды помогала остудить поверхность планеты. Со временем озера становились все крупнее, превращаясь в океаны. Новые потоки воды несли в них частицы горных пород, продукты выветривания и растворенные вещества с земной поверхности. Последние представляли собой смесь солей. Таким образом морская вода обретала свой вкус — именно такой, какой мы знаем сегодня.

Мы не должны удивляться тому, что вода на Земле появилась в виде пара вместе с потоками расплавленной магмы, вырывающейся из щелей коры: и в настоящее время количество воды, которая в связанном виде хранится в земной мантии, столь велико, что значительно превышает объем всех океанов и морей планеты.

Описанная схема формирования первичной атмосферы и гидросферы выглядит последовательной и логичной, но ведь никто из ученых не мог непосредственно наблюдать за теми процессами, которые протекали около 4 млрд лет назад. Мы имеем дело с гипотезами, основанными на косвенных данных. В них пока еще немало противоречий и загадок. Наука знает очень немного про первый период земной эволюции.

Земля — единственная среди планет Солнечной системы, где существует развитая гидросфера. Воды на нашей планете так много, что она занимает примерно 2/3 ее поверхности, образуя Мировой океан. Верхние слои коры, земную поверхность, нижние слои атмосферы и гидросферу иногда объединяют вместе и называют географической (ландшафтной) оболочкой.

Источник: SiteKid.ru

Первичные материи в Большом Космосе

То, что современное человечество считает Вселенной, на самом деле является маленькой частичкой Большого Космоса. По нашим представлениям Вселенная громадна и необъятна, но в рамках Космоса это всего лишь песчинка на берегу огромного океана.

В Большом Космосе существует бесконечное число материй. Они могут в той или иной степени взаимодействовать между собой, а могут не взаимодействовать вообще. Степень воздействия одной материи на другую определяется коэффициентом взаимодействия.

Наша Вселенная образована слиянием семи форм материй и это число не несёт в себе никакого божественного или мистического смысла. Это просто качественная структура нашей Вселенной. Поэтому не случайно белый свет при преломлении распадается на семь цветов, музыкальная октава имеет семь нот, наработка семи тел сущности является завершением эволюции земного цикла.

Справка: Современные учёные называют неизвестные им материи одним общим названием — Тёмной Материей или Dark Matter. И те же учёные признают, что они НИЧЕГО не знают о 90% Вселенной, в т.ч. и о т.н. Тёмной Материи.

Если две формы материи не взаимодействуют между собой вообще, то даже если они пронизывают друг друга, в них ничего не меняется и ничего нового не возникает. В этом случае коэффициент взаимодействия равен нулю. У таких двух форм материй нет общих качеств и свойств.

Важным моментом является знание о том, что пространство неоднородно по своей природе. Другими словами, в различных объёмах пространства существуют различные качества и свойства.

Когда материи начинают взаимодействовать?

О взаимодействии форм материй можно говорить только тогда, когда это взаимодействие рассматривается в конкретном объёме пространства. В различных объёмах пространства взаимодействие между материями неодинаково: где-то оно максимальное, где-то минимальное, где-то отсутствует вовсе.

Начальная стадия образования планеты

Для примера возьмём две материи и обозначим их буквами А и В. Допустим, что между ними происходит максимальное взаимодействие, при котором происходит полное слияние данных материй друг с другом и возникает новая гибридная форма материи АВ.

Подобное слияние материй возможно только в тех пределах объёма пространства, где все параметры этих материй становятся одинаковыми. Именно неоднородность пространства изменяет качественную структуру материй и в результате этого создаются условия для слияния материй.

Итог: внутри неоднородности в пределах объёма, где возникают условия для слияния материй, возникает новая гибридная материя АВ.

Возникшая форма материи АВ также влияет на неоднородность пространства, где она возникла. Материя АВ заполняет эту неоднородность и происходит её вырождение.

Слияние двух форм материй

Что представляет собой неоднородность пространства?

Неоднородность представляет собой искривление пространства, в котором изменяется мерность (совокупность качественных характеристик) в пределах этой неоднородности по сравнению с соседними участками пространства. Другими словами, когда мерность пространства изменяется на некоторую величину, возникают условия для слияния двух материй.

Для того чтобы могли слиться воедино две формы материи, необходимо, чтобы мерность пространства изменилась на величину:

∆λ = 0,020203236…

Возьмём третью форму материи и обозначим её буквой С. Для того чтобы возникли условия для слияния трёх форм материй, мерность пространства должна снова измениться на величину ∆λ. В итоге произойдёт полное слияние трёх форм материй в пределах некоторого объёма пространства (для удобства будем считать его сферой) и возникнет качественно новая гибридная форма материи АВС.

Материя АВС занимает объём меньший, чем материя АВ. Сферы (объёмы), занимаемые этими гибридными материями имеют чёткие границы и в пределах каждой из этих сфер мерность пространства однородна.

Слияние трёх материй

При последующем изменении мерности пространства внутри неоднородности на величину ∆λ = 0,020203236… возникают условия для слияния ещё одной формы материи D. В результате возникает новая гибридная форма материи АВСD, которая будет занимать сферу объёмом меньше, чем материя АВС.

Полное слияние четырёх форм материй

Следующее изменение мерности на величину ∆λ = 0,020203236… приводит к возникновению условий для слияния ещё одной формы материи E. В результате возникает новая гибридная форма материи АВСDE.

Возникновение планеты

Так происходит до тех пор, пока не сливаются воедино семь форм материй, образующих нашу Вселенную (ещё материи F и G) и не возникает гибридная материя АВСDEFG.

Возникновение планеты из семи форм материй

Эти слившиеся семь форм материй создают шесть материальных сфер разного размера и качественного состава. Внутренняя сфера, которая образована слиянием семи форм материй и есть физически плотная планета Земля. Вещество физической сферы имеет четыре агрегатных состояния:

  • Твёрдое;
  • Жидкое;
  • Газообразное;
  • Плазменное.

Разные агрегатные состояния возникают в результате колебаний мерности пространства на величину меньше, чем ∆λ.

Теперь давайте «прогуляемся» от центра неоднородности к краю:

  • Сфера, образованная слиянием шести форм материй называется эфирной сферой;
  • Из пяти форм материй — астральная сфера;
  • Из четырёх форм материй — первая ментальная сфера;
  • Из трёх форм материй — вторая ментальная сфера;
  • Из двух форм материй — третья ментальная сфера.

Как образовалась планета Земля

Больше всего общих качеств и свойств физически плотная сфера имеет с эфирной сферой, а меньше всего с третьей ментальной сферой.

Как образовалась планета Земля: резюме

Итак, когда мы говорим о нашей планете, мы должны подразумевать не только физически плотную сферу, а все шесть материальных сфер, которые, как матрёшки вложены одна в другую. Эти сферы представляют собой ЕДИНОЕ ЦЕЛОЕ. Это очень важно понимать для расшифровки многих процессов живой и неживой материи, происхождения и развития жизни и многого другого.

Когда процесс формирования качественных структур Земли завершается, неоднородность в этой области пространства нейтрализуется. Образовавшиеся сферы заполняют неоднородность. Дальше материи продолжают своё движение, не сливаясь друг с другом.

Активность движения форм материй не всегда одинаково, поэтому на планете происходят такие явления, как движение земной коры, землетрясения, извержения вулканов и прочее.

Процесс формирования нашей планеты завершился шесть миллиардов лет назад.

Данная статья подготовлена на основе Главы 1 книги «Последнее обращение к человечеству» Николая Левашова и является её кратким содержанием. Вот ссылка на видеообзор книги (там же можно скачать книгу в электронном виде).

Источник: sergeiyurev.com

Земля сегодня

Хотя земная поверхность кажется твердой и незыблемой, изменения еще происходят. Они вызываются разного рода процессами, одни из которых разрушают земную поверхность, а другие ее воссоздают. Большинство изменений протекает крайне медленно и обнаруживается лишь специальными приборами. Для образования новой горной цепи требуются миллионы лет, по мощное извержение вулкана или чудовищной силы землетрясение могут преобразить поверхность Земли за считанные дни, часы и даже минуты. В 1988 г. землетрясение в Армении, длившееся около 20 секунд, разрушило здания и убило более 25 000 человек.

Источник: www.polnaja-jenciklopedija.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.