Планеты крошки это


Вам известно, что движение звёзд на небе привлекало людей с древних времён. Ещё древние греки — как и многие другие народы до и после них, — проводили различие между Землёй, которую они считали центром Вселенной, и планетами. А планетами они называли маленькие светящиеся точки в небе, которые вращались вокруг Земли.

Планеты крошки это

При этом многие звёзды древними людьми ассоциировались с божествами, так как они привыкли относить к «божественной деятельности» всё то, что они не в силах были объяснить, основываясь на своих знаниях.

Сегодня мы точно знаем больше, что Земля не является ни то что центром Вселенной, но даже не центром Солнечной системы.

Но что же такое Солнечная система? В современном понимании, под Солнечной системой понимается всё космическое пространство и вся материя, находящаяся в сфере притяжения Солнца.


Планеты крошки это

То есть Солнце — это самый главный и самый массивный объект Солнечной системы, который занимает в ней центральное положение. Вокруг Солнца вращается огромное количество спутников, но самыми значительными из них являются большие планеты. Они представляют собой шарообразные тела, которые не имеют собственного света, и освещаются лишь солнечными лучами. В настоящее время выделяют восемь больших планет, удалённых от Солнца в следующем порядке: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун.

Планеты крошки это

С 1930 до 2006 года к планетам относился и Плутон. Однако открытие во внешней части Солнечной системы множества объектов, среди которых Квавар, Седна и, особенно, Эрида, которая лишь слегка меньше Плутона, вынудило учёных причислить последнего к новой категории карликовых планет.


Планеты крошки это

По своим физическим характеристикам планеты принято делить на две группы. Четыре ближайшие к Солнцу — Меркурий, Венера, Земля и Марс — называются планетами земной группы. Их размеры относительно небольшие, но их средняя плотность почти в пять раз больше плотности воды.

Юпитер, Сатурн, Уран и Нептун, которые удалены от Солнца на большие расстояния, намного массивнее планет земной группы и очень сильно превосходят их по объёму. В недрах этих планет вещество сильно сжато, но тем не менее их средняя плотность относительно небольшая. А, например, Сатурн, если конечно найти бассейн огромных размеров, мог бы даже плавать в воде.

У шести из восьми больших планет (кроме Меркурия и Венеры) есть естественные спутники. Давайте взглянем на Солнечную систему со стороны.

Планеты крошки это


Все планеты в ней вращаются вокруг Солнца почти по круговым орбитам в одну и ту же сторону — противоположно ходу часовой стрелки. Такое направление движения в астрономии принято называть прямым движением.

Но Солнечная система — это не только Солнце и восемь больших планет. Конечно же большие планеты — самые важные представители семьи Солнца. Но у нашей звезды есть ещё очень много и других «родственников».

Известный немецкий учёный Иоганн Кеплер почти всю свою жизнь занимался «поисками гармонии планетных движений». Он первый заметил, что между орбитами Марса и Юпитера наблюдается пустое пространство, хотя, по логике вещей, там должна была бы находится планета. И Кеплер оказался прав. Примерно спустя два столетия между Марсом и Юпитером действительно была найдена маленькая планетка. По своему диаметру она оказалась в 3,4 раза, а по объёму — в 40 раз меньше нашей Луны. Планета получила название Церера, в честь древнеримской богини, считавшейся покровительницей земледелия.

Планеты крошки это


Вскоре выяснилось, что у Цереры есть тысячи небесных «сестёр» и многие из них движутся как раз между орбитами Марса и Юпитера. Там они образуют своеобразный пояс малых планет — главный пояс астероидов. В большинстве случаев это планеты-крошки с поперечником всего около одного километра, но есть и крупные экземпляры — Веста, Паллада. и Гигея.

Второй пояс астероидов был открыт сравнительно недавно на окраинах нашей планетной системы — это пояс Койпера. Хотя он и похож на пояс астероидов, но примерно в 20 раз его шире и в 200 раз массивнее.

Но семья нашего Солнца не ограничивается лишь малыми и большими планетами. Иногда на небе бывают видны хвостатые «звезды» — кометы, которые приходят к нам издалека и, как правило, появляются внезапно.

Как считают учёные, на окраинах Солнечной системы имеется своеобразное «облако», именуемое облаком Оорта, состоящее из более ста миллиардов потенциальных кометных ядер. Вот оно-то и служит постоянным источником наблюдаемых нами комет. Правда инструментально существование этого облака не подтверждено, но многие косвенные факты указывают на то, что оно там есть.

Планеты крошки это


Помимо всего вышеперечисленного, практически всё пространство Солнечной системы занято немыслимым числом частиц твёрдого вещества самых разнообразных размеров, но преимущественно очень мелких, масса которых составляет тысячные и даже миллионные доли грамма. Это метеорная пыль, которая образовалась в результате испарения и разрушения кометных ядер.

А когда сталкиваются и разрушаются малые планеты — астероиды — возникают обломки разных размеров — это метеорные тела. Иногда метеорные тела падают на Землю в виде метеоритов.

Как видим, у нашего Солнца оказалась очень большая семья. Но из-за того, что его масса составляет почти девяносто девять целых и восемьдесят шесть сотых процента от суммарной массы всей Солнечной системы, силы гравитационного притяжения между Солнцем и остальными небесными телами оказываются достаточными для удержания «семьи» в Солнечной системе.

Как мы уже говорили, по размерам, массе и общему строению большие планеты делятся на две группы: планеты земной группы, расположенные внутри главного пояса астероидов, и планеты-гиганты — вне его.

Планеты-гиганты в десятки и сотни раз массивнее планет земной группы, но обладают намного меньшей плотностью. Они окружены сравнительно плотными протяжёнными атмосферами. В основном эти планеты состоят из водорода и гелия; доля всех других элементов в них значительно меньше, чем у планет земной группы.


Все большие планеты Солнечной системы вращаются вокруг Солнца в одну сторону, причём направление их осевого вращения, как правило, совпадает с направлением движения по орбите. Исключение составляют лишь Венера и Уран, которые вращаются в противоположную сторону.

Эти особенности планет связаны с теми условиями, в которых происходило их формирование миллиарды лет назад. Согласно современным представлениям формирование Солнечной системы началось около пяти миллиардов лет назад с так называемого гравитационного коллапса (то есть катастрофически быстро сжатия) небольшой части гигантского межзвёздного газопылевого облака.

Впервые эта идея была сформулирована Иммануилом Кантом в 1755 году и доработана Пьером Лапласом в 1796 году. Согласно теории Канта, наша Солнечная система образовалась из вращающегося горячего газопылевого облака, которое, под действием гравитации, сжималось и распадалось на фрагменты. Но эта теория оказалось несостоятельной из-за множества возникших противоречий.

Планеты крошки это

Следующая попытка описать происхождение нашей системы принадлежала Джеймсу Джинсу. В 1919 году он высказал предположение о том, что мимо нашего светила проходила другая звезда, которая и вырвала часть материи Солнца, из которой позже образовались планеты. Но, как вы понимаете, и эта идея не нашла своего подтверждения. В частности, исследования физико-химического состава земных пород и метеоритов показали, что они образовались не из газовых сгустков, а из вполне себе твёрдого вещества.


Лишь 1944 году советским учёным уроженцем города Могилёва (ныне Республика Беларусь) Отто Юльевичем Шмидтом была выдвинута теория о происхождении Солнечной системы, которая развивается и по сей день.

Планеты крошки это

Согласно этой теории, около 5 миллиардов лет назад недалеко от места рождения Солнечной системы произошёл взрыв сверхновой звезды. Этот взрыв не только наполнил газопылевое облако, состоящее в основном из водорода и гелия, железом и ураном, но и определил его будущее, поскольку фронт ударной волны сжал облако газа до критической массы. Эта масса, под действием гравитационных сил, начала́ сжиматься. В быстро сжимающемся облаке реакции усилились — газ и пыль уплотнились во множество комков, каждый из которых стал яслями для будущих звёзд. Сегодня примерно тоже самое мы можем наблюдать в созвездии Ориона, через которое на сотни световых лет протянулось гигантское молекулярное облако.


Планеты крошки это

Когда первые облака столкнулись — они стали вращаться. А когда в облаке возникла гравитация, оно не только стало быстрее крутиться, но и расплющилось в диск.

Через сто тысяч лет это облако превратилось в раздробленную Солнечную систему, в центре которой светилась яркая протозвезда — молодое Солнце. Возникшая протозвезда начала поглощать газ и пыль — большая его часть окажется на Солнце, а из мизерных остатков космической пыли образуются зародыши планет — планетезимали, а позднее и сами планеты.

Через миллион лет всё, что находилось ближе к протосолнцу испарилось под действием высоких температур. Но на расстоянии около 8 миллионов километров образовалась «каменная линия» где формировались планетезимали полностью состоявшие из каменистых материалов и соединений металлов. Примерно через 100 миллионов лет они полностью превратились в протопланеты земной группы. Ещё через нескольких миллиардов лет планеты земной группы обрели привычный нам вид.

Планеты крошки это


Во внешней области Солнечной системы образовалась снеговая линия, в которой планетезимали сформировались изо льда (воды, метана и аммиака). Здесь процесс образования планет шёл гораздо быстрее. Частички в средней холодной зоне покрывались льдом, ядра будущих планет-гигантов росли быстро, захватывая окружающий газ и превращаясь в планеты-гиганты. Например, считается, что Юпитер набрал около 90 % своей массы в течение каких-то ста тысяч лет. А в течение следующих нескольких миллионов лет дорос до теперешних размеров.

В самой холодной внешней части диска конденсирующее вещество почти всё было ледяным. Множество отдельных ледяных планетезималий и глыб породили ядра комет и ледяные астероиды.

Спутники планет образовались в результате тех же процессов, что и сами планеты. Также у планет гигантов есть образования из мелких частиц — это кольца, которые отсутствуют у планет земной группы. С читается что они образовались из остатков околопланетного облака.

Screenshot_2020-04-06_§_63_Sostav__stroenie_i_proiskhozhdenie_solnechnoi_sistemy.png

Источник: ozr-shkmis2.edumsko.ru


В 1988 году Плутон в процессе своего движения по орбите перекрыл свет одной из далеких звезд — это позволило достаточно точно определить размеры девятой планеты и обнаружить, что у нее есть атмосфераОткрытие лаборанта Томбо

Девятую планету Солнечной системы искали четверть века и обнаружили только в 1930 году. Возникла некая закономерность — каждый век открывается по одной планете: в XVIII веке был обнаружен Уран, в XIX — Нептун, а в XX — Плутон. На сей раз судьба оказалась благосклонной к молодому человеку без астрономического образования, который успел проработать в обсерватории лишь несколько месяцев. Правда, это были месяцы напряженного труда — каждую ночь он фотографировал небо через телескоп, участок за участком, повторяя съемку с интервалом в несколько суток. Днем же он тщательно просматривал сотни звезд на полученных фотопластинках, пытаясь отыскать среди них новую планету. Эта чудовищно однообразная работа успешно завершилась во второй половине дня 18 февраля 1930 года, когда 24-летний лаборант Клайд Томбо вошел в кабинет директора Лоуэлловской обсерватории Весто Слайфера и сказал: «По-моему, я нашел вашу планету Икс». Много лет спустя Томбо, ставший всемирно известным астрономом и профессором университета, вспоминал, что при этом он страшно волновался и пот прямо-таки стекал с его ладоней.

Астроном Клайд Томбо (1906—1997) открыл Плутон в 1930 годуСлайфер и другие опытные астрономы тут же начали проверять находку, сделанную по фотоснимкам ночного неба. Они бросились к блинк-компаратору, за которым в последние месяцы работал Томбо, и стали сличать снимки, сделанные им в разные дни. Этот прибор позволял сравнивать два снимка, попеременно наблюдая то один, то другой. Быстро перебрасывая с помощью рычажка зеркальную заслонку, астрономы как бы совмещали два кадра, отыскивая изображение планеты, прыгающее из-за ее движения, на фоне неподвижных звезд. В тот день хлопанье заслонки и щелканье рычажка не затихали под куполом обсерватории до глубокой ночи. Проверка шла долго, новую планету обнаружили еще на нескольких фотопластинках, причем некоторые из них были получены еще в 1915 году! Наконец 13 марта было сделано официальное объявление о ее открытии. Дату выбрали намеренно — день рождения Персиваля Лоуэлла, который основал эту обсерваторию на высокогорном плато в штате Аризона близ города Флагстаффа. В 1905 году Лоуэлл приступил к систематическим поискам «планеты Икс», как он называл неизвестную планету, расположенную дальше, чем Нептун. Сам он не дожил до ее обнаружения, но его инициалы — PL стали навсегда с ней связаны, поскольку совмещением этих букв образован астрономический знак для обозначения Плутона. За свое открытие Клайд Томбо в 1931 году был награжден лондонским Королевским астрономическим обществом медалью и премией в 25 фунтов стерлингов (по покупательной способности сейчас это примерно 1 500 долларов). Он также получил от штата Канзас стипендию для обучения в местном университете. Незадолго до открытия новой планеты Томбо окончил сельскую школу в Канзасе, а затем уехал в Аризону работать в обсерватории. Видно, не зря название Канзас на местном наречии означает «Большое небо».

Плутон и Харон на небе над малым спутником, открытым в октябре 2005 года. Яркая «звездочка» слева — второй из новых спутников Плутона

Необычная орбита

Новая планета получила свое имя 1 мая 1930 года. Из множества вариантов астрономы Лоуэлловской обсерватории выбрали предложенное 11-летней английской девочкой из Оксфорда имя бога подземного мира, в котором так же темно, как и на самой дальней из планет. В греческой и римской мифологиях Плутон считается братом Зевса-Юпитера и Посейдона-Нептуна, сыном Кроноса-Сатурна, так что рядом с соседними планетами это имя оказалось вполне в «своем кругу» (и к тому же перекликается с инициалами Персиваля Лоуэлла). Впоследствии выяснилось, что еще в 1919 году французский астроном Рейно предлагал назвать еще не открытую в то время девятую планету Плутоном, но к 1930 году о его предложении забыли. Несмотря на громкое имя, новичок выглядел в компании планет-гигантов чужеродным телом. Размер Плутона был явно меньше, чем у Земли, и в десятки раз меньше, чем у четырех крупных газово-ледяных планет, расположенных, как и Плутон, во внешней части Солнечной системы. Сейчас диаметр Плутона определен довольно точно, он равен 2 390 км, что составляет 2/3 диаметра Луны. Это не только самая дальняя, но и самая маленькая из планет. Даже среди спутников других планет Плутон оказался лишь на восьмом месте после Ганимеда, Титана, Каллисто, Ио, Луны, Европы и Тритона. Правда, он в 2,5 раза больше Цереры — самого крупного объекта из главного пояса астероидов, расположенного между Марсом и Юпитером. Площадь поверхности Плутона 17,9 млн. км2 , что сравнимо с территорией России. Необычной оказалась и орбита Плутона — она очень сильно вытянута, поэтому расстояние от Плутона до Солнца изменяется почти в два раза — от 30 до 50 астрономических единиц (1 а. е. равна расстоянию от Земли до Солнца, примерно 150 млн. км), тогда как у остальных восьми планет орбиты почти круговые. Кроме того, орбита Плутона расположена под значительным углом (17°) к плоскости орбит остальных планет. Получается, что девятая планета ни по каким параметрам не вписывается в довольно стройную картину остальной части Солнечной системы, поэтому Плутон даже предлагают считать не планетой, а астероидом. Сутки на Плутоне в 6,4 раза длиннее земных, а сила тяжести в 15 раз меньше, чем на Земле. Масса этой планеты-крошки в 480 раз меньше массы Земли.

На «семейном портрете» Солнце, планеты и их спутники изображены в одном масштабе, крошечный Плутон — крайний справа. Размер маленькой клетки — 10 х 10 тыс. км

Ландшафты из азотного льда

Чем Плутон отличается от других планет, так это самыми сильными холодами — на его поверхности постоянно чрезвычайно низкая температура: от –220 до –240°С. В таких условиях затвердевает даже азот. Если когда-нибудь космический путешественник ступит на поверхность Плутона, то перед ним должен открыться пейзаж, напоминающий Антарктиду во время полярной ночи, освещенную лунным светом. Однако на Плутоне такому мраку соответствует дневное время суток. Солнце выглядит на небе как большая звезда с еле заметным диском, в 20 млн. раз более яркая, чем Сириус. Здесь днем в 900 раз темнее, чем на Земле в ясный полдень, тем не менее в 600 раз светлее, чем в полнолуние ночью, поэтому в полдень на Плутоне намного темнее, чем в облачные дождливые сумерки на Земле. Отсутствие облаков позволяет видеть на небе тысячи звезд даже в дневное время, а само небо всегда черное, поскольку атмосфера крайне разреженная. Вся поверхность планеты покрыта льдом, который совсем не похож на земной. Это не привычный нам водный лед, а замороженный азот, который образует крупные прозрачные кристаллы, имеющие несколько сантиметров в поперечнике — этакое ледяное сказочное царство. Внутри этих кристаллов заморожено в виде некоего «твердого раствора» небольшое количество метана (обычно его называют природным газом — это тот газ, который вместе с пропаном и бутаном горит у нас на кухне). В некоторых районах Плутона на поверхность выходит водный лед и даже немного льда монооксида углерода (угарного газа). В целом поверхность планеты имеет желтовато-розоватый оттенок, который придают ей оседающие из атмосферы частички сложных органических соединений, образующиеся из атомов углерода, азота, водорода и кислорода под воздействием солнечного света.

Предполагаемое внутреннее строение Плутона — каменное ядро заключено в толстый панцирь водного льда, на поверхности которого— сравнительно тонкий слой твердого азота, угарного газа и метанаПоверхность Плутона очень яркая и отражает 60% падающего на нее солнечного света, поэтому первые оценки его диаметра оказались завышенными. При этом на Плутоне встречаются наиболее сильные перепады яркости. Здесь можно встретить районы темнее, чем уголь, и районы белее снега. О внутреннем строении планеты пока можно судить только по величине ее средней плотности, которая составляет 1,7 г/см3, что вдвое меньше, чем у Луны, и втрое, чем у Земли. Такая плотность указывает, что Плутон состоит на 1/3 из каменных горных пород и на 2/3 из водного льда. Если материал разделен на оболочки (что наиболее вероятно), то у Плутона должно быть большое каменное ядро диаметром 1 600 км, окруженное слоем водного льда толщиной 400 км. На поверхности планеты — кора из льдов различного химического состава, главная роль в которой отведена азотному льду. Не исключено, что между каменным ядром и его ледяной оболочкой существует слой жидкой воды — глубинный океан, подобный тем, которые вероятнее всего имеются на трех больших спутниках Юпитера — Европе, Ганимеде и Каллисто.

Газовая вуаль планеты

Атмосферу вокруг Плутона обнаружили сравнительно недавно — в 1988 году, когда планета в процессе своего движения закрыла одну из далеких звезд и заслонила собой идущий от нее свет. Атмосферное давление на Плутоне ничтожное — 0,3 паскаля, что в три сотни тысяч раз меньше, чем на Земле. Тем не менее даже в такой разреженной атмосфере могут дуть ветры, возникать дымки и происходить химические реакции. Не исключено, что имеется и ионосфера — слой электрически заряженных частиц в верхней части атмосферы. Предполагается, что газовая оболочка Плутона состоит из азота с примесью метана и угарного газа, поскольку льды этих веществ обнаружены на поверхности планеты путем спектроскопических наблюдений. Слабое гравитационное поле планеты-малютки не в состоянии удерживать атмосферу, и она постоянно улетучивается в космос, а на место улетевших молекул приходят новые, испаряющиеся с ледяной поверхности. Таким образом, атмосфера Плутона напоминает кометную, которая «убегает» от ядра кометы. Ни на одной из планет такого не происходит, во всяком случае, в столь значимых масштабах, как на Плутоне, где атмосфера, по сути, постоянно обновляется.

На Плутоне очень холодно, средняя температура там –230°С. На ночной стороне планеты существенно холоднее, чем на дневной, поэтому атмосферный газ там охлаждается и конденсируется на поверхности в виде инея. Самые же крупные изменения атмосферы Плутона происходят при смене времен года. Увеличение температуры азотного льда на поверхности планеты всего на два градуса приводит к возрастанию массы атмосферы в два раза. Сейчас на Плутоне как раз «летний» период: планета прошла наиболее близкую к Солнцу точку своей орбиты в 1989 году и все еще находится в «теплой» части орбиты. Правда, из-за удаленности и большого коэффициента отражения Плутон получает на единицу поверхности в 1 500 раз меньше солнечного тепла, чем Земля. Когда же Плутон передвинется по своей сильно вытянутой орбите на более далекое расстояние, то нагрев Солнцем уменьшится почти в три раза, температура существенно упадет и наступит глобальная зима, сезонный ледниковый период. Газы сконденсируются и выпадут на поверхность Плутона в виде кристаллов льда. Атмосфера на длительное время исчезнет. Такое не происходит больше ни на одной из планет. В 2015 году, во время пролета автоматической станции New Horizons, на планете по плутоновым меркам все еще будет тепло. В Южном полушарии наступит полярный день, а половина Северного полушария погрузится во тьму полярной ночи. Поэтому можно ожидать, что атмосфера еще не вымерзнет и космическому аппарату будет что изучать не только на поверхности Плутона, но и в его газовой оболочке.

Дорогие полярные ночи

Сезонные изменения на Плутоне происходят за весьма большие промежутки времени. Один оборот вокруг Солнца длится 248 земных лет — таков плутонов год. Длинные на этой планете и сутки — один оборот вокруг оси происходит за 6,4 земных суток. Поэтому в плутоновом году примерно 14 160 плутоновых суток. Со времени открытия планеты по ее календарю прошла всего треть года, а по земному счету набежало почти 76 лет. Каждое из времен года длится на Плутоне по 62 земных года. В отличие от всех планет, кроме Урана, ось вращения Плутона отклонена от положения, перпендикулярного плоскости орбиты, на 60°, поэтому его движение похоже на перекатывание колобка с боку на бок, тогда как все планеты движутся как волчки, вращаясь вокруг оси, почти перпендикулярной плоскости движения. Столь сильный наклон Плутона приводит к тому, что полярная ночь и полярный день там не ограничиваются, как на Земле, лишь районами около полюсов, а простираются почти наполовину каждого полушария — от полюса до 30-го градуса соответствующей широты. На Земле это привело бы к смещению полярного круга с северных окраин Европы и Азии на Мексику, Флориду, Канарские острова и Египет, а полярная ночь охватила бы всю Европу, Россию, Японию, США и Канаду.

Фотографии Плутона с тремя спутниками: Хароном и двумя новыми малыми, открытыми в октябре 2005 года.Подсказки Харона

За первые 48 лет после открытия Плутона о нем удалось узнать очень мало. Даже его размер и масса были определены весьма неуверенно — данные о диаметре различались в пять раз. Положение резко изменилось в 1978 году, когда обнаружилось, что у Плутона есть спутник. Его открыл астроном Джеймс Кристи, проводя наблюдения на станции Военно-морской обсерватории США, расположенной во Флагстаффе — в том же городе, где в 1930 году был открыт и сам Плутон. Для «компаньона» девятой планеты Кристи предложил имя Харон — так в греческой мифологии называли перевозчика, который доставляет души умерших через реку, текущую вокруг подземного царства Плутона. С открытием спутника появились данные, необходимые для точного вычисления массы Плутона.

«Хаббл» зафиксировал перемещение спутников вокруг планеты за интервал в 3 дняДиаметр спутника — 1 205 км, а его плотность — 1,7 г/см3 — точно такая же, как у Плутона. Если расположить Харон и Плутон рядом бок о бок, то их совместный диаметр окажется практически совпадающим с диаметром Луны. Атмосфера у Харона отсутствует. Спутник имеет голубоватый цвет, чем резко отличается от желтоватого Плутона. Особенности спектра отражаемого света приводят к заключению, что Харон покрыт водным льдом, а не метаново-азотным, как Плутон. В целом же Харон, исходя из его плотности, должен состоять на 1/3 из каменных пород и на 2/3 из водного льда. Эти компоненты могут быть распределены двумя способами: в виде довольно однородной смеси (шар из каменно-ледяной «каши», покрытый тонкой ледяной корой) или же в виде отдельных оболочек (каменное ядро диаметром 800 км, окруженное слоем льда толщиной 200 км). Масса Харона составляет 1/5 массы Плутона, что уникально — ни у одной планеты нет спутника со столь большой относительной массой. Плутон и Харон даже называют двойной планетой, массы компонентов которой сопоставимы по величине.

Полная синхронизация

Расстояние от Харона до планеты небольшое — 19 600 км, поэтому воображаемый космический путешественник увидел бы с поверхности Плутона спутник-великан, занимающий в 7 раз больше места, чем Луна на земном небосводе. А с Харона будет казаться, что Плутон, нависающий над горизонтом, вот-вот рухнет на свой спутник — ведь по диаметру Плутон в небе над Хароном в 14 раз больше, чем Луна на нашем небе. Однако любоваться такими картинами можно только с одного полушария — как на Плутоне, так и на его спутнике. Дело в том, что эти два небесных объекта находятся в полном гравитационном резонансе — Харон всегда расположен в плоскости экватора Плутона и делает один оборот вокруг планеты за 6,4 земных суток, точно за такое же время, как и Плутон вокруг своей оси. Поэтому Харон виден только с одного полушария Плутона, причем сам он тоже повернут к планете всегда одним полушарием и постоянно расположен в одной и той же точке на небосводе, никуда не сдвигаясь. Наша Луна тоже всегда обращена к Земле только одной стороной, но в отличие от Харона она движется по небосводу: появляется из-за горизонта, а затем заходит за него. С точки на экваторе Плутона, находящейся строго под Хароном, спутник виден в зените и постепенно опускается к горизонту, по мере ухода наблюдателя в полушарие, лишенное возможности видеть Харон, а с полюсов он всегда виден у самого горизонта. За время плутоновых суток картина на небе мало меняется — оно постоянно черное, в отличие от поверхности планеты, которая днем немного светлее благодаря скупому солнечному освещению. Самая изменчивая деталь на небе Плутона — это Харон, который в течение плутоновых суток освещается с разных сторон, приобретая облик то полной луны, то полумесяца. Эта переменчивость напоминает фазы нашей Луны с той лишь разницей, что «луна» над Плутоном никогда не покидает своего места. Все сказанное относится и к виду Плутона с поверхности Харона: планета постоянно маячит в одной и той же точке неба над Хароном и обращена к нему только одним полушарием. Меридиан, проходящий через центр этого полушария, принят за «плутонов Гринвич» — нулевой меридиан, от которого ведется отсчет долготы. С противоположного полушария Плутона его спутник никогда не виден, так же как невозможно увидеть и сам Плутон с дальнего от него полушария Харона.

Спутники-лилипуты

Крупное астрономическое открытие, связанное с Плутоном, произошло в конце 2005 года, когда автоматическая станция New Horizons уже находилась на космодроме в ожидании старта к этой планете. 31 октября Международный астрономический союз разместил в сети Интернет сообщение об открытии, сделанном группой американских астрономов, которые обнаружили у Плутона сразу два новых спутника. В преддверии полета к Плутону участники предстоящих исследований тщательно анализировали все снимки этой планеты, сделанные космическим телескопом «Хаббл», находящимся на орбите вокруг Земли. И сам Плутон, и его крупный спутник Харон выглядят на них маленькими точками, тем не менее ученым удалось распознать на одном из снимков, сделанном еще в мае 2005 года, две совсем крошечные тусклые точки, которые не были ни звездами, ни какими-либо из астероидов транснептунового пояса. Какова же была радость исследователей, когда они обнаружили еще один снимок, сделанный через три дня после первого, где эти точки были уже в ином расположении. Характер их перемещения показал, что они движутся вокруг Плутона, каждая на своем расстоянии. При последовавшей после этого ревизии более старых снимков был найден еще один, сделанный в 2002 году, который подтвердил находку. Правда, на старом снимке эти спутники видны как очень слабые пятна. Чтобы окончательно удостовериться в том, что обнаруженные объекты действительно представляют собой спутники Плутона, намечено провести в феврале 2006 года с помощью телескопа «Хаббл» серию наблюдений, специально посвященных этим крошечным спутникам. По нынешним данным, они имеют в диаметре от 110 до 160 км и расположены на расстояниях 50 и 65 тыс. км от планеты — намного дальше, чем Харон. В результате этой находки Плутон еще раз показал свою уникальность, став единственным среди транснептуновых объектов обладателем более чем одного спутника. Возможно, что этой троицей дело не закончится, поскольку программа станции New Horizons предусматривает поиск еще меньших спутников Плутона — диаметром вплоть до 1 км.

Станция New Horizons пролетает рядом с ПлутономНа краю Ойкумены

Плутон расположен от Земли в 40 раз дальше, чем Солнце. Это единственная планета, к которой до сих пор не была направлена ни одна космическая станция. Подготовка полета к Плутону началась еще в 1989 году, но одна за другой пять программ были отменены NASA на самых ранних стадиях, когда еще не успевали разработать даже эскиз космического аппарата. Наконец в 2001 году на очередном проекте все-таки остановились и довели его до воплощения. Автоматическая станция New Horizons («Новые горизонты») должна отправиться к Плутону в середине января 2006 года. Ее название хорошо отражает задачи полета: исследовать наименее изученную область на окраине Солнечной системы, где находится самая дальняя планета. Намечено изучить и три спутника Плутона — крупный Харон и пару маленьких, только что открытых и пока безымянных, а также несколько совсем небольших объектов, расположенных еще дальше, чем Плутон, — во внешнем поясе астероидов (поясе Койпера). Станция имеет вид плоской треугольной коробки размером 3х3х2 м, к одной из сторон которой прикреплена антенна-тарелка диаметром 2,1 метра. Посылку радиосигнала на Землю с расстояния в 5 млрд. км будет осуществлять передатчик мощностью 200 ватт, то есть всего в 100 раз больше, чем у сотового телефона. Посланные со скоростью света радиоволны достигнут Земли только через четыре с половиной часа. Чтобы представить, насколько далеко расположен Плутон, вспомним, что свет от Солнца долетает до нашей планеты всего лишь за 8 минут. Радиосигналы, приходящие со станции New Horizons на Землю, будут очень слабыми, и для их приема воспользуются тремя высокочувствительными параболическими антеннами — огромными «тарелками» диаметром по 70 метров каждая, находящимися в США (Калифорния), Испании и Австралии. Пункты дальней космической связи расположены равномерно по поверхности Земли, и это обеспечит круглосуточную радиосвязь со станцией.

Запуск автоматической станции New Horizons с космодрома на мысе Канаверал в американском штате Флорида планируется на январь—февраль 2006 года. Ракета-носитель Atlas-V еще в августе 2005 года была доставлена туда с завода в Денвере грузовым самолетом АН-124-100 «Руслан» авиакомпании «Волга — Днепр», мирового лидера перевозок крупногабаритных грузов. При запуске в середине января траектория полета пойдет таким образом, что примерно через год, в феврале 2007 года, станция приблизится к планете-гиганту Юпитеру и под воздействием его гравитационного поля получит добавку к скорости полета. Это поможет ей достичь Плутона в 2015 году. Если же старт отложится на конец января, то прибытие к Плутону отодвинется на 1—2 года, поскольку пролет у Юпитера будет на большем расстоянии и гравитационный маневр получится слабее. При самом неблагоприятном времени старта — в первой половине февраля — полет будет проходить без помощи Юпитера, поэтому добраться до Плутона станция сможет лишь к 2019 году, а то и позже. После 15 февраля стартовать будет бессмысленно — взаимное расположение Земли и Плутона изменится настолько, что перелет окажется невозможным.

За последние 75 лет Плутон прошел четверть пути по своей очень необычной вытянутой орбите. В течение 20 лет — с 1979 по 1999 год — Плутон находился ближе к Солнцу, чем соседняя с ним планета Нептун

На борту New Horizons — семь научных приборов, с помощью которых предстоит узнать, из каких газов состоит атмосфера Плутона и что за процессы в ней происходят, какие геологические структуры присутствуют на Плутоне и Хароне и каков химический состав материала поверхности планеты и ее спутника, как поток заряженных частиц, выброшенных Солнцем (солнечный ветер), взаимодействует с атмосферой Плутона и с какой скоростью атмосферные газы улетучиваются в космос. Приборы сконструированы таким образом, что получаемые ими данные отчасти дублируются, давая страховку на случай отказа какого-либо из них. В ходе межпланетного перелета намечено раз в год выполнять проверку всех приборов, а затем снова переводить их в «спящий» режим. Солнечные батареи, обычно применяемые на космических станциях, в данном полете бесполезны, поскольку в районе Плутона поступающей от Солнца энергии будет явно недостаточно для работы станции. Получать электроэнергию приборы будут от термоэлектрического генератора, работающего на радиоактивном изотопе плутония. Этот химический элемент был открыт в США в 1940 году и назван в честь планеты Плутон, подобно тому, как ранее имена планет получили его предшественники по таблице Менделеева — уран и нептуний.

Спустя три месяца после пролета вблизи Плутона и Харона станция начнет передавать полученные сведения, зафиксированные в ее электронной памяти. Из-за большого расстояния до Земли радиопередача будет вестись медленно, чтобы слабые сигналы можно было выделить на фоне космических и земных шумов и расшифровать. Процесс передачи растянется на целых девять месяцев. В это время станция будет продолжать полет, все дальше уходя от Солнца. Ее новой целью будет взглянуть с близкого расстояния на некоторые из недавно обнаруженных малых планет, находящихся во внешнем поясе астероидов, так называемом поясе Койпера, который лежит за орбитой Плутона. Этот пояс состоит из множества небольших космических тел — ледяных астероидов, считающихся остатками древнейшего материала, сохранившегося со времени образования планет Солнечной системы. Полет через пояс Койпера может занять еще от трех до шести лет. Получаемые со станции данные будут обрабатываться в двух оперативных научных центрах — имени Томбо в Боулдере (Колорадо) и имени Кристи в Лореле (Мэриленд), названных в честь первооткрывателей Плутона и его спутника Харона. Свидетельства о присвоении имен вручены вдове Клайда Томбо и астроному Джеймсу Кристи. Стоимость этого проекта, включая ракету-носитель и обслуживание дальней космической связью, — примерно 650 млн. долларов, что соответствует сумме в 20 центов с каждого жителя США ежегодно в течение 10 лет полета станции.

Георгий Бурба, кандидат географических наук

Источник: www.vokrugsveta.ru

  Растерянность астрономов не знала предела, когда в марте-апреле 1802 г. Ольберс, наблюдая Цереру, обнаружил неподалеку от нее еще одну слабую планету. Ее назвали Палла-дой. Название Паллада, что в переводе значит «потрясающая» ‘, служит постоянным эпитетом и как бы вторым именем греческой богини разума, ремесел и войны Афины. Расстояние Паллады от Солнца тоже оказалось равным 2,8 астрономической единицы. Что и говорить — не было ни гроша, да вдруг алтын. В 1804 г. к двум новым планетам добавилась третья — Юнона. Вскоре Ольберс примерно на том же удалении от Солнца открыл четвертую планету — Весту.

Пиацци предлагал именовать многочисленных обретенных членов Солнечной системы не планетами, а планетоподобными телами — планетоидами. Однако за ними укрепилось предложенное Вильямом Гершелем общее имя астероидов — «звездоподобных». В наши дни их гораздо чаще называют малыми планетами. Размеры астероидов действительно очень невелики. Самой большой сказалась Церера — поперечник ее всего 770 км. Поперечник стоящей на втором месте по размерам Паллады составляет 490 км.

Ольберсу первому пришла в голову мысль о том, что малые планеты, возможно, представляют собой осколки одной большой планеты, помещавшейся некогда, как и предписывается правилом Боде — Тициуса, между орбитами Марса и Юпитера. Следовательно, число астероидов вовсе не должно ограничиваться четырьмя, и дальнейшие поиски признавались делом вполне уместным. Для облегчения работы Берлинская Академия наук организовала составление специальной звездной карты. Систематическое сопоставление вида звездного неба в телескоп с этой картой и должно было выявлять перемещающиеся звездообразные объекты.

Составление Берлинской звездной карты отняло много лет, но открытия астероидов после ее появления действительно посыпались как из рога изобилия. В 1845 г. «родилась» Астрея, вслед за Астреей в один год объявились Геба, Ирис и Флора, за ними Метида, Виктория, Эвномия, Мельпомена и т.д.- конца этим открытиям не предвиделось. „.

Если в 1852 г. было известно лишь 20 астероидов, то к 1870г. число их достигло 110. С применением же для цели поисков астероидов фотографии их стали обнаруживать сотнями. Если первая четверка астероидов имела поперечники хотя бы в сотни километров, то теперь астрономам стали попадаться глыбы размерами в несколько десятков километров. Наименьшие же из известных астероидов имеют в поперечнике всего-навсего 1 — 2 км.

Из-за плохой погоды, чересчур быстрого перемещения и по другим причинам лишь небольшую часть из множества вновь открываемых астероидов удается наблюдать несколько раз. Для них вычисляются орбиты, такие астероиды получают номер и регистрируются в каталогах. Несмотря на многие трудности, число «учтенных» астероидов непрерывно растет. Вот данные об общем количестве зарегистрированных астероидов за три 50-летних периода:

Период наблюдений

Число вновь зарегистрированных астероидов

Обще*

заре

к

1800—1849

10

1850—1899

442

1900—1949

1114

Данные об общем количестве зарегестрированных астероидов за три 50-летних периода

В наше время общее количество зарегистрированных астероидов приближается к 2000.

До Великой Отечественной войны большой вклад в открытие новых астероидов внесли советские астрономы, работавшие в Симеизской обсерватории в Крыму. По поручению Международного Астрономического Союза вычислениями орбит астероидов ныне ведают два международных центра: один в Институте теоретической астрономии АН СССР в Ленинграде и другой в обсерватории города Цинциннати в США.

Общее число малых планет в Солнечной системе не раз пытались более или менее достоверно оценить разные астрономы. У них различались исходные предположения, не сходились и ответы. Одно только роднило эти ответы: число малых планет всегда оказывалось чудовищно большим. По современным представлениям, вокруг Солнца обращается около 250 млн. астероидов, включая астероиды размером до 1 км. Подавляющее большинство этих «карманных планеток» не может наблюдаться с Земли ни при каких условиях. Но если бы из года в год использовать для их поисков крупнейшие в мире телескопы, число зарегистрированных астероидов удалось бы, вероятно/довести тысяч до пятидесяти. Конечно же, те неполные две тысячи объектов, которые занесены ныне в специальные каталоги это ничтожная доля процента, капля в океане крупных обломков, глыб и камней, вращающихся вокруг Солнца между орбитами Марса и Юпитера.

Но и этого количества обнаруженных астероидов оказалось достаточно, чтобы установить некоторые важные закономерности.

Астероиды вращаются вокруг Солнца, двигаясь в ту же сторону, что и большие планеты,- против часовой стрелки, если смотреть со стороны северного полюса мира. Львиная доля их удалена от Солнца на расстояния от 2,3 до 3,3 астрономической единицы. Таким образом, планеты-карлики образуют между орбитами Марса и Юпитера широкое кольцо, или, как его иначе называют, «пояс астероидов». Среднее расстояние пояса астероидов от Солнца — 2,8 астрономической единицы — действительно соответствует той величине, которая предвычислялась до его открытия по правилу Боде — Тициуса.

Плотность астероидов внутри пояса неравномерна. Вначале астрономы не видели причин для беспокойства в том, что им практически не встречаются малые планеты с расстояниями от Солнца, например, в 2,50 или 2,84 астрономической единицы. Но в конце концов существование нескольких «провалов» в поясе астероидов стало очевидным. Объяснить их удалось воздействием гиганта Юпитера.

Планеты крошки этоСогласно третьему закону Кеплера, расстояние планеты от Солнца и период ее обращения вокруг Солнца неразрывно связаны. Если период обращения малой планеты оказывался кратным периоду обращения Юпитера, то взаимное расположение Солнца, Юпитера и малой планеты систематически повторялось. Из-за огромной массы и близости Юпитера его так называемое возмущающее влияние на движение малой планеты было очень значительным и, систематически повторяясь одинаковым образом, приводило к тому, что малая планета сходила со своей первоначальной орбиты. Период ее обращения вокруг Солнца изменялся. Так исчезали малые планеты с периодами обращения в 1/2, 1/3, 2/5, 3/7 от периода обращения Юпитера. В связи с этим и появились в поясе астероидов пустые места, щели, которые называют «окнами Кирквуда».

Возмущающее действие Юпитера привело не только к возникновению пустот в поясе астероидов, но и к возникновению там сгустков, семейств малых планет, движущихся по очень близким орбитам.

С воздействием тяготения Юпитера связано существование знаменитой «троянской» группы астероидов. Эти астероиды движутся строго по орбите Юпитера, часть впереди, а часть позади него. Период обращения «троянцев» вокруг Солнца в точности совпадает с периодом обращения Юпитера.

.7 А*6МЧ@Н

Апглцплх Ах ил лее Одиссеи ¦ Нестор Дцрмед Г ектдр ? я с

¦ /1\ ‘

W ‘Л »

Планеты крошки это

Па*щркл Анхиз Троил v

зней ‘

«пион .              :

В 1906 г. были открыты 2 группы астероидов, движущихся по орбите Юпитера с тем же, что и у Юпитера, периодом обращения вокруг Солнца. Они получили имена героев описанной Гомером в «Илиаде» Троянской войны. На 60° впереди планеты движется группа «греков», на 60° позади — группа «защитников Трои» — «троянцев». Каждая из групп астероидов расположена в вершине равностороннего треугольника, в двух других вершинах которого находятся Юпитер и Солнце

Задолго до открытия «троянцев» один из создателей небесной механики Лагранж, занимаясь задачей взаимного притяжения трех тел, нашел любопытный частный случай. Он математически показал, что если вокруг тела А (например, Солнца) обращается значительно менее массивное тело В (например, Юпитер) и если по той же самой орбите тела В обращается вокруг А еще гораздо менее массивное тело С (например, астероид), то движение тела С по орбите тела В может длиться неопределенно долго при том важном условии, что тела А, В и С находятся в вершинах равностороннего треугольника. Такое движение оказывается устойчивым. Это значит, что если какая-либо внешняя сила попытается вывести малое тело С из его «точки равновесия», то тотчас возникающее возмущающее притяжение более массивного тела В непременно станет толкать его обратно в исходное положение.

Лагранж указал на этот случай как на чисто теоретическую возможность, даже не предполагая встретить его в пределах Солнечной системы. Каково же было удовлетворение астрономов, когда они в начале XX в. неожиданно натолкнулись на подтверждение такого теоретического решения в природе.

Теперь известно уже 15 астероидов, которые движутся по орбите Юпитера в соответствии с решением Лагранжа. Тринадцать из них имеют собственные названия — им даны имена героев описанной Гомером в «Илиаде» Троянской войны. Поэтому и вся группа названа «троянцами».

Как и во времена Ольберса, ныне по-прежнему распространена точка зрения, что гигант Юпитер не только расчистил «окна Кирквуда», организовал семейства астероидов и увлек за собой группу «троянцев», но что именно он-то и является главным виновником самого факта возникновения пояса астероидов. Аргументом в пользу такого воззрения служит распределение астероидов по массе, хотя здесь и придется несколько раз воспользоваться неопределенным выражением «как будто бы».

Как будто бы установлено, что распределение астероидов по массе не хаотично, а подчиняется определенной закономерности. Рассортируем каталогизированные астероиды на группы по размерам таким образом, чтобы в каждой последующей группе размеры астероидов были в одинаковое, число раз меньше, чем в предыдущей. Учтем, разумеется, что теперь открыты уже практически все крупные астероиды, а чем они мельче, тем меньший процент их попал в каталоги. В итоге окажется, что суммарный объем и суммарная масса астероидов в каждой выделенной группе должны быть примерно равны.

Как будто бы установлено, что такое распределение по массе отвечает закону случайного дробления крупного тела на множество частей. А отсюда следует, что кольцо астероидов действительно может рассматриваться как след гибели пятой планеты Солнечной системы, раскрошенной и рассеянной по орбита мощным возмущающим притяжением гиганта Юпитера.

Советский астроном С. В. Орлов предложил назвать эту гипотетическую планету Фаэтоном.

По греческой мифологии, Фаэтон был одним из сыновей бога Солнца, но он был смертным. Фаэтон мечтал доказать приятелям свое родство с Гелиосом, и ему пришла в голову безумная мысль проехать по небу на огненной колеснице отца. Управлять же этой колесницей был в силах только сам Гелиос. В роковую минуту вырвал Фаэтон у отца клятву исполнить любое свое желание. И он попросил у Гелиоса его огненную колесницу.

В ужасе проклял Гелиос свою уступчивость, но был вынужден исполнить клятву. Как стрела понесся Фаэтон по небу. Не сдержав коней, он упал и разбился насмерть.

Предложенное С. В. Орловым название пятой планеты, если только она действительно существовала, очень точно отражает ее прискорбную участь,

Фаэтон — условное имя гипотетической планеты. Вы не встретите его в каталогах малых планет. Там помещаются данные не о гипотетических, а о реально открытых астероидах, которым для отличия их друг от друга присваиваются порядковые номера и собственные имена. По установившейся традиции имена эти в подавляющем большинстве случаев женские, причем в женские имена переделываются и мужские фамилии, и названия городов.

В честь Владимира Ильича Ленина астероид № 852 назван Владиленой. В память об известных ученых астероиды назывались Ольберсией, Пиаццией, Ломоносовой, Струвеаной, Бредихиной, Штернбергией. В честь городов получили свои названия астероиды Москва, Симеиза и многие другие.

Мужские имена закрепляются для отличия в особых случаях лишь за теми астероидами, которые обладают какими-либо уникальными свойствами.

В 1898г. был открыт астероид Эрос (№ 433); он долгое время был единственным из известных астероидов, которые заходят далеко внутрь орбиты Марса. Потом были обнаружены другие астероиды, движущиеся по сильно вытянутым орбитам. Некоторые из них заходят не только внутрь орбиты Марса, но даже внутрь орбит Венеры и Меркурия. Новых редкостных членов пояса астероидов назвали Ганимед, Амур, Аполлон, Адонис, Гермес.

Но самую широкую и шумную известность приобрел открытый в 1949 г. астероид Икар.

Икар обращается вокруг Солнца за 409 дней. Он имеет наименьшее из известных среднее расстояние от Солнца и, приближаясь к нему, заходит далеко внутрь орбиты Меркурия. Удаляясь от Солнца, Икар проходит очень близко от Земли.

Икар стал знаменит в связи со слухами о его возможном столкновении с Землей. Эти слухи, неизвестно где и как родившиеся, распространялись с фантастической быстротой и взволнованно обсуждались на всех континентах. Столкновение ожидалось летом 1968 г. Некоторые обсерватории вынуждены были официально опровергать сообщения телеграфных агентств о том, что Икар якобы «столкнется с Землей с силой, равной взрыву тысячи водородных бомб».

Падкие на сенсации журналисты раздули выдуманную историю о том, что будто бы «Соединенные Штаты, Англия и СССР обсуждают возможности использования какой- либо ядерной ракеты для того, чтобы предотвратить столкновение этого астероида с Землей». Было экстренно подсчитано, что у человечества в принципе имеются технические возможности послать к Икару ракету-перехватчик и путем взрыва мощнейшей водородной бомбы несколько изменить его орбиту.

Дебаты о том, что Икар упадет на наши головы, не имели под собой почвы. Шанс на столкновение Икара с Землей не составлял и одной миллиардной. Как и было предвычислено, Икар благополучно миновал Землю на расстоянии свыше 7 млн. км. Для примера вспомним, что астероид Гермес, не вызвав, однако, паники, подходил в 1937 г. к Земле на расстояние всего в 580000 км, т.е. был от нас лишь в полтора раза дальше Луны.

Случай с Икаром очень интересен в психологическом плане. Если даже в наши дни, при всесторонне развитых средствах информации, когда люди читают газеты, слушают радио и смотрят телевидение, возможно распространение нелепых, противоречащих научным данным, но будоражащих весь мир слухов, нетрудно представить себе то чудовищное, подогретое суеверным страхом волнение умов, которое могло возникнуть в связи с необычными астрономическими событиями раньше, в былые столетия. Отсутствие ясного представления об управляющих небесными явлениями процессах, небольшое число грамотных для своего времени специалистов, отсутствие достоверных сообщений, суеверия — все это в былые века зачастую приводило к апокалиптическому ожиданию конца света, всяческих ужасов и бедствий.

Но может ли на самом деле астероид столкнуться с Землей? Да, может, подобно тому как может столкнуться с Землей метеорит.

В 1947 г. на территории СССР в западных отрогах Сихотэ-Алиньского хребта упал огромный метеорит. На месте его падения экспедициями Академии наук СССР были собраны многие десятки тонн метеоритного вещества. При влете в земную атмосферу общий вес Сихотэ-Алиньского метеорита, по подсчетам, превышал тысячу тонн. Поперечник его составлял несколько метров. Упавшего в Сихотэ-Алине «космического пришельца» вполне справедливо считают мелким астероидом. Но такие явления исключительно редки и не влекут за собой катастрофических последствий для Земли в целом.

Дальнейшее изучение астероидов в высшей степени важно. Астероиды — это наиболее крупная фракция межпланетной материи, размеры твердых частиц которой колеблются от сотен километров до нескольких микрон. Каково все-таки происхождение этой межпланетной материи? Остатки ли это протопла-нетного вещества? Или же в наследство от первичного облака нам остались только мельчайшие частицы межпланетной материи, а астероиды — это действительно обломки раскрошенной Юпитером планеты, устроившим неподалеку от себя гигантскую «каменоломню Солнечной системы»? На все эти вопросы еще предстоит найти убедительные ответы. 

Источник: uchebnikfree.com

Астероиды — малые планеты

Для справки

АСТЕРОИД — небольшое планетоподобное тело Солнечной системы (малая планета). Самый большой из них Церера, имеющий размеры 970х930 км. Астероиды по размерам сильно различаются, самые маленькие из них не отличаются от частиц пыли. Несколько тысяч астероидов известно под собственными именами. Полагают, что насчитывается до полумиллиона астероидов с диаметром более полутора километров. Однако общая масса всех астероидов меньше одной тысячной массы Земли. Большинство орбит астероидов сконцентрировано в поясе астероидов между орбитами Марса и Юпитера на расстояниях от 2,0 до 3,3 а.е. от Солнца. Имеются, однако, и астероиды, чьи орбиты лежат ближе к Солнцу, типа группы Амура, группы Аполлона и группы Атена. Кроме того, имеются и более далекие от Солнца, типа центавров. На орбите Юпитера находятся троянцы. Астероиды могут быть классифицированы по спектру отраженного солнечного света: 75% из них очень темные углистые астероиды типа С, 15% — сероватые кремнистые астероиды типа S, а оставшиеся 10% включают астероиды типа М (металлические) и ряд других редких типов. Классы астероидов связаны с известными типами метеоритов. Имеется много доказательств, что астероиды и метеориты имеют сходный состав, так что астероиды могут быть теми телами, из которых образуются метеориты. Самые темные астероиды отражают 3 — 4% падающего на них солнечного света, а самые яркие — до 40%. Многие астероиды регулярно меняют яркость при вращении. Вообще говоря, астероиды имеют неправильную форму. Самые маленькие астероиды вращаются наиболее быстро и очень сильно различаются по форме. Космический аппарат «Галилео» при полете к Юпитеру прошел мимо двух астероидов, Гаспра (29 октября 1991 г.) и Ида (28 августа 1993 г.). Полученные детальные изображения позволили увидеть их твердую поверхность, изъеденную многочисленными кратерами, а также то, что Ида имеет небольшой спутник. С Земли можно получить информацию о трехмерной структуре астероидов с помощью большого радиолокатора Аресибской обсерватории. Астероиды, как полагают, являются остатками вещества, из которого сформировалась Солнечная система. Это предположение подкреплено тем, что преобладающий тип астероидов внутри пояса астероидов меняется с увеличением расстояния от Солнца. Столкновения астероидов, происходящие на больших скоростях, постепенно приводят к тому, что они разбиваются на мелкие части.

Астероиды рвутся к Земле!

14 июня 1873 г. Джеймс Уотсон на обсерватории Энн Арбор (США) открыл астероид 132 Аэрту. За этим объектом удалось следить всего три недели, а потом его потеряли. Однако результаты определения орбиты, говорили о том, что перигелий Аэрты находится внутри орбиты Марса. Но астероиды, которые бы приближались к орбите Земли, оставались неизвестны до конца XIX в. Первый астероид вблизи Земли был открыт Густавом Виттом только 13 августа 1898 г. В этот день на обсерватории Урания в Берлине он обнаружил слабый объект, быстро перемещающийся среди звезд. Большая скорость свидетельствовала о его необычайной близости к Земле, а слабый блеск близкого предмета — об исключительно малых размерах. Это был 433 Эрос, первый астероид-малютка поперечником менее 25 км. В год его открытия он прошел на расстоянии 22 млн. км от Земли. Его орбита оказалась не похожа ни на одну до сих пор известную. Перигелием она почти касалась орбиты Земли. 3 октября 1911 г., Иоганн Пализа в Вене открыл астероид 719 Альберт, который мог подходить к Земле почти так же близко, как Эрос до 0,19 a. e.. 12 марта 1932 г. Эжен Дельпорт на обсерватории в Уккле (Бельгия) открыл совсем крошечный астероид на орбите с перигелийным расстоянием q=1,08 a. e. Это был 1221 Амур поперечником менее 1 км, прошедшем в год открытия на расстоянии 16,5 млн. км от Земли

Новый «близкий» астероид был открыт в 1911 году. Это был астероид Альберт, подходивший к орбите Земли почти так же близко, как и Эрос, но при этом его афелии находился на 180 миллионов километров дальше, чем кольцо астероидов. Удивительное открытие среди астероидов произошло в 1949 году. Был открыт астероид Икар (1566). Его орбита (см. рис.) проникает внутрь орбиты Меркурия! К Солнцу Икар приближается на расстояние в 28,5 миллионов километров. Его поверхность на солнечной стороне раскаляется до такой степени, что, будь на ней цинковые или свинцовые горы, они растеклись бы расплавленными ручьями. Температура поверхности Икара превышает 600 С!

В период между 1949 и 1968 годами Икар подошел так близко к Меркурию, что тот своим гравитационным полем изменил орбиту астероида. Расчеты австралийских астрономов показали, что при следующем сближении Икара с нашей планетой в 1968 году, он рухнет в Индийский океан в районе африканского побережья. Его падение на Землю эквивалентно по мощности взрыву около 1000 водородных бомб! Надеюсь, читатели современной «желтой прессы» представляют, что творилось на африканском побережье, и не только, после таких газетных сообщений.

«Сенсационные результаты» австралийских астрономов перепроверили советский астроном И. Л. Беляев и американец С. Херрик, после чего человечество сразу успокоилось. Оказывается, Икар действительно тесно должен сблизиться с Землей. Но эта теснота сугубо астрономическая. В момент максимального сближения оба небесных тела будут находиться на расстоянии примерно 6,5 МИЛЛИОНОВ километров. 14 июня 1968 года, приветственно «помахав» землянам, Икар, действительно прошел мимо Земли, как было предсказано, и был доступен для наблюдений любительскими средствами наблюдений неба.

Но, давайте посмотрим, что же говорят астрономы современности об астероидной опасности для Земли. Это все таки ближе к интригующей ситуации, связанной с падением астероида на Землю. К началу 90 годов прошлого столетия, астрономы, проведя анализ пролета астероидов около Земли на «опасных» расстояниях начали создавать целые группы по обнаружению потенциально опасных астероидов. Вскоре их наблюдения уже можно было свести в одну таблицу.

Минимальные сближения астероидов с Землей зафиксированные на период с 1937 по 1994 годы. По данным Д. Гулютина.

Минимальное расстояние (в млн. км.)

Дата сближения

Обозначение

730

30 октября 1937 года

1937 UB

670

22 марта 1989 года

1989 FC

165

18 января 1991 года

1991 BA

465

5 декабря 1991 года

1991VG

150

20 мая 1993 года

1993 КА2

165

15 марта 1994 года

1994 ES1

720

24 ноября 1994 года

1994 WR12

100

9 декабря 1994 года

1994 XM1

430

27 марта 1995 года

1995 FF

450

19 января 1996 года

1996 JA1

 

Как видно из таблицы, астероиды достаточно близко подходят к Земле по космическим меркам, что и настораживает астрономов. Казалось бы астероиды, словно сговорившись, пытаются атаковать Землю, как бы пристреливаясь.

Однако следует иметь ввиду, что регулярные наблюдения ведутся не более десятка лет, отсюда и большое количество «внезапно» вторгшихся в окрестности Земли астероидов.

14 мая 1996 года

14 мая 1996 года астрономы Т. Спар и К. Герген-ротер (Аризонский университет, США), работающие на 40-см широкоугольном астрографе по программе поиска потенциально опасных для Земли астероидов, обнаружили в 900 тыс. км. от нашей планеты один такой «экземпляр». По предварительным оценкам астероид, получивший обозначение 1996 JA1, имел размеры от 300 до 500 метров в диаметре. 19 мая этот «небесный бродяга» пронесся на расстоянии 450 тыс. км. от Земли, т.е. чуть больше расстояния от Земли до Луны.

Исходя из тревожных фактов, описанных выше, астрономическая общественность 16 июня 1996 года провела конференцию «Астероидная опасность-96», что совпало с 250-летием со дня рождения итальянского астронома Джузеппе Пиацци. Конференция длилась 4 дня и собрала не только астрономов и математиков, но и разработчиков космической техники. Было заслушано множество докладов, раскрывающих проблемы обнаружения опасных астероидов, слежения за ними и противодействия их возможному столкновению.

1997 год. Обнаружен потенциально опасный астероид 1997XF11. Это было последней каплей для NASA, и американское космическое агентство учредило новую службу NEOPO (Near-Earth Object Program Office — Управление программой околоземных объектов), которая будет координировать работу по поиску и слежению за потенциально опасными космическими объектами. Служба NEOPO надеется обнаружить до 90% из 2000 астероидов и комет диаметром более 1 км, которые могут подходить близко к Земле. Эти объекты достаточно велики, чтобы вызвать глобальную катастрофу, но заметить на небе их очень сложно. Поэтому поиск опасных комет и астероидов должен объединить усилия многих обсерваторий и космических агенств. Так что же? Будем защищаться?

Астероид 1999 AN10 был открыт в 1999 году с помощью автоматического телескопа LINEAR. Когда Андреа Милани (Пизанский университет, Италия) и его коллеги определили параметры его орбиты, оказалось, что в течение 600 лет астероид будет довольно часто пролетать мимо Земли, а в 2039 году существует даже опасность столкновения, правда, очень маленькая — приблизительно ОДИН ШАНС ИЗ МИЛЛИАРДА!

Так что столкновение в 2039 году нам не угрожает, но на смену ему пришли две новые черные даты: одна в 2044, вторая в 2046 году. Шансы на столкновение в 2046 году довольно малы — один из пяти миллионов. Но вот вероятность того, что малая планета окажется на орбите, ведущей к столкновению в 2044 году, по расчетам в десять раз выше — 1:50000. Служители прессы подхватили из этого сообщения то, ЧТО ИМ БЫЛО НУЖНО, т.е. то, что АСТРЕОИД МОЖЕТ УПАСТЬ НАЗЕМЛЮ(!), забыв, естественно, указать ВЕРОЯТНОСТЬ ТАКОГО СОБЫТИЯ и раздули сенсацию до вселенских масштабов. Кричащие заголовки типа «Апокалипсис грядет!» или «Конец света близок!» заставили крепко поволноваться население стран цивилизованного мира. Но не будем забывать об истории с астероидом Икар, который «должен был» упасть в Индийский океан.

А вот интересная схема, составленная любителем астрономии В. С. Гребенниковым из г. Новосибирска. Он начертил подобие мишени, в центре которой — наша родная планета, и 8 окружностей вокруг нее через каждые 100 тыс. км. В нужное место поставил Луну, а потом как бы пальнул в эту мишень десятком картечин-астероидов, пронесшихся мимо нас по данным в ЗВЕЗДОЧЕТЕ (1996 г., №9) и «Науке и жизни» (1995 г., №5). Самая ближняя точка на схеме, это болид весом около тысячи тонн, который «просвистел» среди бела дня над США 10 августа 1972 года настолько полого к «горбу» земного шара, что не упал, а на высоте всего 58 км «отпружинился» от плотной земной атмосферы и унесся в космос. Пофантазировав, можно подумать «кто-то» пристреливается и довольно успешно мечет сюда огромные смертоносные глыбы, и точность метания, «кучность боя» по сравнению с 1937 годом вроде бы возросла… Однако, опять же, следует заметить, что активно следить за такими астероидами астрономы стали только в последнее десятилетие. Из известных «расчетных» астероидов наибольшую опасность представляет Эрос — глыба 40х14 км., могущая через ПОЛТОРА МИЛЛИОНА ЛЕТ наделать побольше бед, чем «динозавровая зима».

Взглянув на эту схему, у пользователей сайта, пожалуй, временно потеряется вера в «светлое будущее» человечества.

Так что же? «Ешь ананасы, рябчиков жуй, день твой последний…» ну и так далее. Удручающая картина, нарисованная автором, схемы, а также таблица сближений, впечатляет, но не более того!

Хватит пугать неискушенного пользователя концом света. Посмотрим на астероидную опасность более оптимистично.

Планеты — крошки

Мы рассказали про планеты солнечной системы. Но 9 планет и 86 спутников, о которых мы говорим, — это не все. В планетной системе есть еще великое множество очень небольших, но самостоятельных тел. Их называют малыми планетами или астероидами. 1 января 1801 г. итальянский астроном Пиацци нашел на небе маленькую звездочку, которая, как он установил, медленно передвигалась среди звезд. Ясно, что это была неизвестная до того планета. Когда определили ее путь, то оказалось, что он лежит между путями Марса и Юпитера, т. е. в зоне солнечной системы, казалось бы давно изученной и хорошо знакомой. Удивительное это было открытие! Удивительно было и то, что новая планета, которую назвали Церерой, была так мало заметна: ведь она была ближе Юпитера и немногим дальше Марса! Приходилось сделать вывод, что это какое-то небольшое небесное тело

Ученым снова пришлось удивиться, когда через год, в 1802 г., нашли еще одну планету — Палладу, путь которой тоже проходил между орбитами Марса и Юпитера. В 1804 г. там же обнаружили третью планету — Юнону, в 1807 г. четвертую — Весту. Итак, оказалось, что между путями Марса и Юпитера движется несколько каких-то маленьких небесных тел

Позднее, начиная с конца первой половины XIX в., такие планеты стали открывать все в большем числе. Находки стали особенно частыми, после того как для поисков применили фотографию. Очень много планет открыли сотрудники Симеизской обсерватории в Крыму. Российские астрономы С. И. Белявский и Г. Н. Неуймин открыли около сотни малых планет. Теперь таких планет известно более 1600

Немало надо потрудиться, чтобы изучить такое множество небесных тел. Ведь для каждой планеты нужно определить ее путь, расстояние от Солнца, время оборота вокруг Солнца. Нужно на каждый год вычислить положение малой планеты на небе, чтобы астрономы могли снова найти ее и сфотографировать. Этим важным делом занимаются в Институте теоретической астрономии Академии наук в Петербурге. Главную часть работы там выполняют компьютеры

У каждой малой планеты, или астероида, есть свой номер и название. Вначале, пока астероидов знали немного, их, как и большие планеты, называли именами богов или богинь из древнеримских мифов. Потом таких имен не хватило, и теперь астероиды называют обычными женскими именами, а также именами городов, стран и ученых. Так, среди планет есть Анна и Вера, Москва и Казань, Армения и Италия, Коперник и Ньютон. Есть планета, названная Владиленой

Не все малые планеты движутся все время между Марсом и Юпитером. Некоторые пересекают орбиту Марса и даже орбиты более близких к Солнцу планет. Малая планета № 1566 — Икар — подходит иногда к Солнцу даже ближе, чем Меркурий

Самая крупная из малых планет — Церера имеет поперечник до 770 км, самые мелкие — неправильные глыбы диаметром около 1 км

Наша планетная система — не единственная. В бесконечной Вселенной есть много других звезд, окруженных планетами, которые при помощи современных телескопов мы еще не можем непосредственно наблюдать. Но недалеко то время, когда человечество овладеет такими мощными средствами наблюдения, что его взору откроются многие другие планетные миры

Крупнейший из астероидов — Церера — имеет диаметр 933 км, диаметр Паллады 490 км, Весты — 380 км (снимок слева), Юноны — 170 км. Справа один из снимков астероида 253 Матильда, полученных кораблем NEAR 27 июня 1997 года. Это один из немногих астероидов, исследованных на сегодняшний день так близко

Некоторые астероиды обращаются вокруг Солнца по очень вытянутым орбитам. Дальше всех находится Гидальго — на расстоянии 5.7 астрономических единиц. Ближе всех к Солнцу подходит Икар — на расстояние всего 28 млн. км

Астероиды классифицируют по их спектрам (и, следовательно, их химическим составам) и альбедо: к типу С, включающему в себя более чем 75% известных астероидов, относят наиболее темные астероиды с альбедо < 0.065, сходные по отражательным свойствам с углистыми хондритами. К типу S (17% астероидов) относят астероиды с альбедо от 0.065 до 0.23, обладающие свойствами каменистого вещества с небольшим количеством металлов (Н-хондриты). Те же значения альбедо у астероидов класса М, но они обнаруживают поляризационные свойства, характерные для металлов

Большинство астероидов обращается вокруг Солнца по орбите между Марсом и Юпитером. Орбиты некоторых лежат за орбитой Юпитера, есть также и такие астероиды, чьи орбиты располагаются ближе к Солнцу, чем Земля (например, Икар)

Различие между кометами и астероидами несколько спорно. Основное различие, кажется, состоит в том, что кометы имеют более вытянутые орбиты

Aстероиды иногда также называют малыми планетами или планетоидами

Общие представления о формировании планет, комет и астероидов

Общие представления о формировании планет, комет и астероидов

Современные наблюдательные данные о физико-химическом составе планет и кометно-астероидном компоненте позволяют предложить следующий наиболее вероятный сценарий их образования в процессе формирования Солнца и самой солнечной системы

Около 10 млрд. лет тому назад протозвездное облако, из которого впоследствие родилось Солнце и планеты, представляло собой квазисферическое образование, состоящее на 75% из водорода и 25% — из гелия-4, а на долю всех остальных элементов приходилась лишь незначительная часть массы облака. Тем не менее, несмотря на относительно малый вклад в плотность протозвездной материи, роль этих тяжелых элементов была определяющей в динамике охлаждения вещества. Физикам и химикам хорошо известен тот факт, что чем выше атомный номер химического элемента, тем легче возбуждается его электронная оболочка. Это возбуждение сопровождается высвечиванием квантов электромагнитного излучения, уносящих энергию, затраченную на возбуждение атома. Собственно, этот механизм определяет тепловой режим протосолнечного облака, приводя к уменьшению его температуры

Наряду с охлаждением, протосолнечное облако сжимается под действием собственной гравитации вещества, сопровождающемся нарастанием плотности в центре облака. Рост плотности приводит к разогреву центральной части облака до сверхвысоких температур, когда возможно » включение» реакций термоядерного синтеза элементов. При этом между гравитацией и давлением вещества в центральной части облака устанавливается баланс, характеризующий первую фазу формирования нашего Солнца

А что в этот период происходит на перифирии протосолнечного облака? Многочисленные расчеты и компьютерные эксперименты позволяют сделать вывод о том, что на фазе формирования ядра внешние области облака имеют сложную многофазную структуру

Прежде всего, в области ядра возникает зона аккреции (натекания) окружающего вещества на центральное образование, приводящее к увеличению его массы. Выделяющаяся в результате сжатия ядра энергия формирует область сильной ионизации, расширяющуюся к периферии облака. Под действием излучения вещество » выдувается » к периферии и собирается в плотную оболочку — пылевой кокон, простирающийся вплоть до внешней границы облака. При этом относительно слабое вращение протозвездого облака в начале сжатия, по мере формирования плотной центральной зоны будет уси- ливаться и приводить к сплющиванию всей системы в тороидальное образование

Компьютерное моделирование позволяет выделить несколько характерных этапов этого процесса. На первой (1) фазе баланс между гравитацией, давлением и вращением вещества приводит к образованию сначала толстого, а затем все более уплощающегося диска. Далее в диске происходит фрагментация вещества на сгустки пыли (2-3). Спустя примерно миллион лет пылевые сгустки слипаются в компактые тела астероидных размеров с близким к пылевому физико-химическим состававом (4). После этого примерно еще 100 млн.лет рой астероидов испытывает интенсивное перемешивание, сопровождающееся дроблением более крупных объектов и объединением (слипанием) мелких. На этой фазе (5), собственно и формируются зародыши планет земной группы — Меркурия, Венеры, Марса и Земли. После этого, примерно еще за 200 млн. лет (6) сформировались планеты группы Юпитера, аккрецировав на себя газ, не вошедший в менее массивные планеты земной группы. И, наконец, еще через 1 млрд. лет образуются самые удаленные от Солнца планеты — Нептун и Плутон, завершающие процесс формирования солнечной системы как целого

Из этого сценария становится ясно, что астероиды и кометы — это остатки роя протопланетных тел, причем астероиды — это каменистые образования внутренней околосолнечной зоны, породившей планеты земной группы, а кометы — это каменно-ледяные образования, генетически связанные с зоной планет-гигантов. Но наиболее примечательно, что в процессе формирования планет группы Юпитера, планеты-гиганты Юпитер и Сатурн выполнили роль своеобразных»чистильщиков» солнечной системы, своим гравитационным полем выбросив малые протопланетные сгустки на дальнюю периферию солнечной системы. Таким образом, солнечная система оказалась окружена роем каменно-ледяных тел, простирающимся на расстояния от 20000 до 200000 радиусов орбит Земли вокруг Солнца ( как не удивиться «специальной» подготовке Земли для зарождения на ней биологической жизни и как не удивиться преклонению древних не только Солнцу, но и Юпитеру!)

Любопытно, что еще в 1950 году выдающийся голландский астроном Ян Оорт, анализируя орбиты движения 19 долгопериодических комет, задолго до эпохи компьютерного моделирования и беспилотной миссии к комете Галлея, высказал предположение о необходимости существования коментного пояса на периферии Солнечной системы. За прошедшие почти 50 лет список известных комет увеличился практически на порядок, а их траектории прекрасно согласуются с представлениями о существовании кометного пояса. Далее, следуя традиции, этот кометный пояс солнечной системы мы будем называть «облаком Оорта»

Насколько же массивно облако Оорта? По современным данным его масса оказывается весьма невелика — примерно 10% массы Земли приходится на сто миллиардов ядер комет. Отсюда легко определить массу «типичного » кометного ядра — около ста миллиардов тонн, хотя в мире комет существуют как «карлики»(массой до миллиарда тонн), так и «гиганты» (до ста тысяч миллиардов тонн!). Однако и «карлики» и «гиганты» движутся в солнечной системе по эллиптическим орбитам, в полном соответствии с законами механики и теории гравитации. Эти же законы предсказывают, что орбиты комет являются устойчивыми, т.е. подобно планетам, ядра комет совершают свой круговорот на периферии солнечной системы в облаке Оорта. Но тогда почему же мы встречаем их во внутренних областях солнечной системы? Для ответа на этот вопрос нам потребуется сделать следующий шаг в понимании устройства солнечной системы и ее места в нашей Галактике.

 

Источник: znakka4estva.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.