Разработчики представили концепт миссии, в рамках которой предусмотрен запуск подводного аппарата к крупнейшему спутнику Сатурна, Титану, для исследования находящихся на нем морей, заполненных жидкими углеводородами.
Если проект будет одобрен и получит финансирование, то миссия будет готова к запуску в 30-х годах, и может стать основой для еще более амбиционных проектов, таких как субмарины для изучения спутников Европа и Энцелад. Об этом заявил Стивен Олесон (Steven Oleson) из Исследовательского центра Гленна НАСА.
Европа и Энцелад (спутники Юпитера и Сатурна соответственно), интересны своими огромными океанами с жидкой водой. К сожалению, толстый ледяной покров является серьезным препятствием для отправки подводного аппарата. В то же время Титан более привлекателен в этом отношении.
Таинственный и потенциально пригодный для жизни мир
Титан является второй по размеру «Луной» в Солнечной системе. Его диаметр – 5 150 км. Крупнее только спутник Юпитера Ганимед, но он больше всего на 120 км.
Но размер – не единственное, чем примечателен Титан. Это единственный объект за исключением Земли, про который известно, что на нем присутствуют открытые водоемы, заполненные жидким метаном и этаном. По площади некоторые из них превышают Великие озера в США.
Помимо этого, в толстой атмосфере спутника содержатся углеродосодержащие органические молекулы, которые необходимы для возникновения жизни. Поэтому, многие астробиологи рассматривают Титан как место, где потенциально может существовать жизнь, и живые организмы могут быть в воздухе или плавать в морях и озерах. Естественно, эти формы жизни должны сильно отличаться от земных, т. к. им приходится существовать при низких температурах и не в воде, а в жидом метане и этане. Все это дает возможность предполагать о существовать двух независимых экосистем, подводной и воздушной.
Изучение углеводородных морей?
Все, что мы знаем о Титане, было получены в ходе миссии Кассини-Гюйгенс. Запущенная межпланетная станция изучала Сатурн и его спутники в период с 2004 по 2017 года. Основная часть этой работы была проделана орбитальной станцией НАСА «Кассини Сатурн», но значительный вклад внес также спускаемый аппарат «Гюйгенс», зонд Европейского и итальянского космических агентств, который приземлился на Титане в январе 2005 года.
Сейчас НАСА работает над собственным космическим аппаратом для изучения Титана, восьмивинтовым дроном Dragonfly, запуск которого запланирован на 2026 год. Если все пойдет по плану, Dragonfly совершит посадку на Титане в 2034 году, после чего займется изучением химического состава спутника и потенциальной обитаемостью в нескольких разных местах.
Подводная лодка может стать следующим шагом в исследовании Титана. Космическое агентство пока не одобрило этот проект в качестве официальной миссии, но Олесон и его команда уже получили два гранта финансирования (на сумму 100 000 и 500 000 долларов в 2014 и 2015 годах соответственно) от программы NASA Innovative Advanced Concepts (NIAC), которая призвана стимулировать развитие идей и технологий.
Проект должен учитывать множество факторов. Так, хотя Титан и крупный спутник, он существенно меньше Земли. Гравитация составляет всего 14% от земной, поэтому на одинаковой глубине субмарина будет испытывать заметно меньшее давление на корпус, чем в земных условиях.
При этом субмарине придется передвигаться в иной среде. По словам Олесона, подводная лодка может довольно легко перемещаться в жидких углеводородах, к тому же, они прозрачны для радиосигналов, что позволяет поддерживать связь с кораблем, даже когда он находится под «водой».
Связь с субмариной может осуществляться напрямую с Земли, или транслироваться через находящийся на орбите Титана аппарат. Это будет зависеть от финальной версии проекта.
В автономном варианте подводная лодка Titan должна быть большой — около 20 футов (6 метров) в длину, с массой (на Земле) 3 300 фунтов (1 500 кг), что необходимо для размещения необходимого коммуникационного оборудования, сказал Олесон.
случае выбора концепции с орбитальным ретранслятором, можно было бы уместить все научные приборы в корпус длиной всего 6,5 футов (2 м) и весом около 1 100 фунтов. (500 кг). В список научного оборудования должны входить, как минимум, приборы для химических исследований, эхолот, метеостанция, прибор, измеряющий физические свойства окружающего моря. Дополнительные инструменты могут, среди прочего, анализировать образцы морского дна и получать изображения океанского дна.
Рассматривается также вариант с нахождением на поверхности, а изучение глубин поручить специальным зондам. Это менее рискованный проект, но он сулит меньше выгод в плане получения интересующий данных и проведения исследований.
По словам Олесона, НАСА может осуществить миссию Титан в рамках программы New Frontiers. В составе этой программы уже запланированы Dragonfly и зонд New Horizons Pluto. Субмарина (в автономном варианте или в виде связки с орбитальным аппаратом) может стать основной целью миссии. Предложения по последнему этапу финансирования New Frontiers, в результате чего был выбран Dragonfly в июне 2019 года, должны были соответствовать пределу затрат в размере 850 миллионов долларов (не включая затраты на запуск). Субмарина будет стоить дороже.
В любой версии, субмарина будет приводиться в действие атомным двигателем, как это предусмотрено на Dragonfly или Cassini. Титан находится в 10 раз дальше от Земли, и получать энергию для субмарины за счет использования солнечной энергии не получится. Впрочем, этот метод малоприменим и в земных условиях, учитывая, что подлодка все же предназначены для передвижения под водой.
Запуск в 2030-е?
Почти все озера и моря Титана расположены в высоких северных широтах, включая две самые интригующие цели для исследования подводной лодкой, моря Kraken и Ligeia. Первое занимает площадь около 154 000 квадратных миль (400 000 квадратных километров) и имеет глубину не менее 115 футов (35 м). Второе имеет площадь 50 000 квадратных миль (130 000 квадратных километров) и максимальную глубину 560 футов (170 м).
Как и на Сатурне, на Титане есть сезоны, которые длятся около семи земных лет каждый. По словам Олесона, оптимальное время для изучения морей Кракен или Лигейя — северное лето Титана, когда космический корабль сможет получать изображения береговой линии в видимом свете и напрямую общаться с Землей.
По его словам, хорошим выбором является прибытие к Титану в 2045 году. Если же миссия будет включать орбитальный аппарат для связи, то возможно прибытие около 2040 года, когда на Титане будет весна.
Полет к Сатурну занимает около семи лет, поэтому этот проект необходимо подготовить к запуску в 2030-х годах, иначе придется ждать еще три десятилетия до следующего требующегося сезона на Титане.
Олесон заявил, что все работы по подготовке миссии вполне удастся выполнить за этот срок.
https://www.space.com/saturn-moon-titan-submarine-concept-mi…
Источник: pikabu.ru
Что такое кольца
На самом деле, то, что мы называем «Кольцом», было бы правильнее назвать «цепью» или потоком. Несмотря на то, что с Земли или даже в мощный телескоп кольца Сатурна или Юпитера выглядят цельными, состоят они, на самом деле, из миллиардов отдельных фрагментов. В зависимости от состава самой планеты и окружающего космоса, этими «ингредиентами» может быть:
- космическая пыль (обычно она составляет 80 – 90% всей массы колец);
- смёрзшийся до состояния льда газ;
- обломки астероидов.
Причём такие «камешки» могут быть как крошечными, длиной в несколько метров, так и гигантскими, достигающими нескольких сотен километров. И, конечно, они не соприкасаются друг с другом, а свободно летят на огромной скорости вокруг планеты. Между крупными астероидами расстояние, как правило, колеблется от нескольких десятков до нескольких тысяч километров. А пространство между ними заполнено также быстро двигающейся мелкой пылью и льдом.

У каких планет есть кольца
В Солнечной Системе кольца имеет половина всех «официально признанных» планет:
- Сатурн;
- Нептун;
- Уран (правда, его кольца удалось увидеть лишь в 1977 году, настолько они тусклые);
- Юпитер – его кольца были открыты зондом Вояджер-1, с Земли их невидно, так десятки более крупных спутников затмевают неяркое свечение колец;
- Считается также, что кольца должны быть у Плутона.
А в 2012 году астрономы нашли экзопланету за пределами Солнечной Системы, вокруг которой вращается 37 крупных колец, а те, в свою очередь, состоят из тысяч более мелких. Ширина всех их — десятки миллионов километров!

Но лично меня в детстве поразило то, что кольца есть у нескольких естественных спутников, вращающихся вокруг планет-гигантов, и даже у астероидов. Например, Рея, спутник Сатурна, имеет целых три таких «украшения»! Есть кольцо и астероида Харикло – правда, астероид этот очень крупный, но всё равно поразительно!
Размеры колец
Ширина кольца вокруг планеты огромна (например, у Сатурна она равна 480 000 километров); а вот толщина колеблется от нескольких десятков метров до нескольких километров. Причём движутся кольца у всех планет строго над экватором. Все астероиды, которые оказывались вдали от экватора, рано или поздно притягивались планетой, пока от пылевого роя не осталось только тонкое колечко.
Искусственные кольца у планет
Человек отличается удивительной способностью портить любое место, где он появляется. И космос – не исключение. За 50 лет мы оставили на орбите столько мусора, что из внешнего космоса все эти блестящие металлические обломки должны смотреться, как самое настоящее кольцо!
Источник: travelask.ru
Сатурн
Второй по размерам и шестой по удаленности от Солнца газовый гигант. Планета наиболее узнаваема среди объектов Солнечной системы именно благодаря своим ярким кольцевым образования. Считается, что образовались они из крупных спутников, поглощенных Сатурном на заре своего существования. Ядра спутников разрушались в атмосфере гиганта, а частицы льда и пыли формировали вокруг ее орбиты такие знамениты образования.
Всего у Сатурна 8 главных кольцевых образований. Первые семь из них названы буквами латинского алфавита, а последнее и самое удаленное именуется Фебом – в честь одного из прозвищ древнегреческого бога Аполлона.
Кольца Сатурна самые широкие. Их размер в поперечнике составляет более 13 млн. км (диаметр последнего элемента системы – образование Феба). При этом его толщина невелика – от десятка метров до километра. Общая масса обломков, из которых они состоят, составляет 3*109кг.
К примеру элемент D – ближе всего находится к планете он расположился от Сатурна на 67 тыс. км. Между собой образования разделены щелями и делениями, получившими имена известных астрономов. Элементы системы А и В между собой расположили самое большое деление, шириной 4700 км. Этот промежуток назван в честь итальянского астронома Джованни Кассини.
Сатурнианская кольцевая система наклонена к плоскости орбиты на 27°. При наблюдении это влияет на видимость образования с Земли. В период равноденствия гиганта она практически недоступна для наблюдения. В течение следующих 7 лет она постепенно раскрывается, достигая максимума своей заметности в период солнцестояния. Последующие 7 лет видимость прогрессивно ухудшается. В 1921 году «исчезновение» колец Сатурна даже привело к панике среди жителей Земли. Люди считали что образования вокруг планеты разрушились и их обломки летят на нашу планету :).
Нептун
Планета является самым мелким газовым гигантом и самой дальней в Солнечной системе. Кольца Нептуна долгое время оставались неизвестны для исследователей. Обнаружил их только в 1989 году американский космический зонд Вояджер-2. Всего у него 5 кольцевых образований. В честь астрономов и математиков которые приняли участие в открытии Нептуна их и назвали.
Образование Галле расположилось ближе всего к поверхности планеты (42000 км). Далее последовательно идут Леверье, Ласселла, Араго и Адамса. Последнее имеет радус 63 тыс. км и состоит из 5 дуг: Храбрость, Свобода, Равенство 1, Равенство 2, Братство.
Помимо льда, пыли и обломков, которые являются основными компонентами любых кольцевых образований, они имеют высокий процент вероятно органических веществ, придающих им красный цвет.
Юпитер
Планета обладает самыми внушительными размерами. Межпланетный аппарат Вояджер-1 подтвердил наличие колец у Юпитера пятой планеты Солнечной системы. Зонд Галилео и
и орбитальная обсерватория Хаббл получили о них дополнительные сведения.
Кольца Юпитера тонкие и слабые. Ближайшее к планете – гало – имеет радиус 92 тыс. км. Оно самое массивное и его толщина достигает 12,5 тыс. км. Далее следуют тонкое главное и два так званых «паутинных», названных в честь формирующих их спутников планеты – Амальтеи и Фивы. Общий радиус системы равняется 226 тыс. км.
Уран
Эта бледно-голубая «ледяная» планета занимает седьмое место по удаленности от Солнца. Уран развил кольцевую систему сильнее, чем у Нептун и Юпитер. Она состоит из 9 узких главных, 2 пылевых и 2 внешних колец. Самым близким к планете является кольцо ζ(дзета), радиус которого 37 тыс. км. Далее μ(мю) оно расположилось от Урана на на расстоянии 103 тыс. км. Самым яркий образованием является ε(эпсилон). Его яркость обусловлена плотным слоем ледяных частиц, отражающих больше всего света в системе.
В состав входят более тусклые элементы системы помимо льда и пыли, чрезвычайно темное вещество, поглощающее свет. Считается, что это органика, облученная магнитосферой планеты. Все элементы урановой кольцевой системы произошли в результате столкновения небольших спутников и разрушения астероидов, попавших в атмосферу планеты.
По мнению астрономов, ранее кольцевыми образованиями обладали и твердотельные планеты, в том числе Земля. Через десятки миллионов лет такая участь ждет Марс, когда спутник Фобос упадет на его поверхность под силой приливного взаимодействия.
Источник: spaceworlds.ru
Структура колец
Кольцо Юпитера расположено на расстоянии 50 тыс. км от условной границы в атмосфере планеты (с давлением ок. 1 атм) и имеет ширину ок. 1000 км. Кольцо представляет собой область относительно малой плотности, заполненную преим. силикатными частицами малого размера (менее 10–5 м), придающими области оранжеватый цвет. По направлению к Юпитеру и от него эту область продолжает диффузная туманность более или менее однородной структуры.
Кольца Сатурна обладают значительно более сложной структурой. В них выделяют семь областей (зон). Три осн. концентрич. зоны: внешнее кольцо А, наиболее яркое среднее кольцо В (эти кольца можно наблюдать даже в обычный бинокль) и довольно прозрачное «креповое» внутр. кольцо С, не имеющее резкой границы (рис. 1). Кольца A и B разделены т. н. щелью Кассини шириной ок. 4700 км, кольца B и C – т. н. щелью Максвелла шириной ок. 270 км. Наиболее близкую к планете внутр. область кольца С выделяют как кольцо D. У внешней границы кольца А находится очень узкое кольцо F нерегулярной формы, за которым расположено кольцо G и самое внешнее, практически прозрачное кольцо Е. Внешняя граница кольца А находится на расстоянии ок. 75 тыс. км от условной границы в атмосфере планеты (с давлением 1 атм), внутр. граница кольца С – на расстоянии ок. 20 тыс. км. Т. о., протяжённость чётко различимых колец Сатурна – ок. 55 тыс. км, в то время как их толщина не превышает 3,5 км. Преобладающий размер частиц колец – неск. сантиметров, но встречаются также частицы с характерным размером неск. микрометров и крупные фрагменты размером в единицы и десятки метров. Мелкие частицы участвуют в образовании пылевой плазмы, находящейся над плоскостью кольца B. Пылевая плазма образует радиальные тёмные полосы (т. н. спицы – dark spokes), контролируемые магнитным полем планеты. Угловая скорость «спиц» (в отличие от кеплеровой скорости частиц колец) совпадает с угловой скоростью собственного вращения планеты. Плотность колец не велика – сквозь них просвечивают звёзды. По данным ИК-спектрометрии, частицы колец Сатурна, вероятно, состоят из водяного льда или покрытых льдом частиц др. химич. состава. Суммарная масса частиц колец примерно соответствует спутнику диаметром ок. 200 км. В соответствии с законами Кеплера, скорость движения частиц во внутр. зоне кольца больше, чем во внешней.
Экватор Сатурна наклонён к плоскости эклиптики под углом 27°, поэтому в разных точках орбиты планеты кольца при наблюдении с Земли видны под разными углами. При наиболее благоприятной конфигурации видна вся их ширина – наблюдается т. н. раскрытие колец. В др. предельном случае кольца выглядят как очень тонкая полоска, видимая лишь в крупные телескопы. Это происходит, когда плоскость колец проходит точно через центр Солнца и их боковая поверхность оказывается неосвещённой либо когда кольца обращены к наблюдателю на Земле «ребром». Период обращения Сатурна вокруг Солнца и, соответственно, полный цикл изменения фаз колец составляет ок. 29,5 лет.
Кольца Урана (рис. 2) очень тёмные и узкие, состоят из частиц, не имеющих ледяной оболочки. К кон. 2008 у Урана открыто 13 колец, обозначаемых буквами греч. алфавита (α, β, γ,…). Самое крупное из этих колец (ε) имеет неравномерную ширину и форму. Плоскость колец Урана почти перпендикулярна плоскости эклиптики.
Кольца Нептуна образованы тёмными частицами и состоят из четырёх узких зон. Они отличаются ещё более нерегулярной формой и переменной плотностью, поэтому выглядят состоящими из отд. «арок». Два наиболее характерных кольца с арками названы в честь учёных Дж. К. Адамса и У. Леверье, предсказавших существование Нептуна путём расчёта его орбиты.
Формирование колец
Образование систем колец вокруг планет-гигантов является прямым следствием законов механики и напоминает процесс формирования планет. Все кольца находятся внутри т. н. Роша предела – области, в которой спутник планеты может быть разорван на части за счёт приливных сил. Этот эффект препятствует консолидации частиц, находящихся вблизи планеты, и, соответственно, образованию крупных спутников. Совр. конфигурация колец обязана своим происхождением влиянию гравитац. притяжения спутников планеты, находящихся в ближайших окрестностях (или даже внутри) структуры колец и называемых по этой причине «пастухами». Частицы колец, сами представляющие собой маленькие спутники, оказываются в резонансах с более крупными спутниками планеты (т. е. отношение периода их обращения к периоду обращения спутника выражается простой дробью – 1/2, 2/3 и т. п.). Это приводит к нарушению однородной структуры колец, в частности к образованию внутри них щелей (напр., щели Кассини в кольцах Сатурна), по своей природе аналогичных «пустым» областям (т. н. люкам Кирквуда) в Главном поясе астероидов (см. Астероиды). Те же причины вызывают генерацию волн плотности, формирование иерархич. структуры колец и их расслоение на тысячи тонких спиральных колечек (ringlets), наблюдаемых в структуре осн. колец Сатурна (рис. 3).
Наличие спутников с очень близкими орбитами приводит также к эффекту гравитац. фокусировки и концентрации частиц в тонких кольцах Урана и к образованию сгустков частиц (арок), дрейфующих в азимутальном направлении у колец Нептуна. Механизм образования арок до конца не понят, хотя одним из объяснений служит наличие резонансов частиц колец со спутником Нептуна Галатеей, поскольку эксцентриситеты и наклонения орбит частиц и спутника практически одни и те же. Резонансы препятствуют равномерному распределению частиц вдоль орбиты. Т. о., К. п. представляют собой сложную открытую систему частиц, находящихся в орбитальном движении и одновременно испытывающих хаотич. взаимодействия. В результате в системе возникает эффект самоорганизации, создающий упорядоченность в конфигурациях колец (в первую очередь за счёт возникновения коллективных процессов и наличия в дисковой системе неупругих столкновений макрочастиц). Механизм самоорганизации заложен в самой системе; близкие спутники планеты оказывают на процесс дополнит. «стимулирующее» влияние.
Существуют две осн. гипотезы происхождения К. п.: 1) образование колец из частиц протопланетного облака (из которых сформировались спутники вне предела Роша); 2) возникновение К. п. в результате распада астероида или кометы, попавших внутрь предела Роша. Характерным примером последнего события служит кольцо Юпитера. В пользу второй гипотезы говорит также оценка времени существования колец – ок. 0,5 млрд. лет, что существенно меньше возраста Солнечной системы (ок. 4,5 млрд. лет). В рамках этой гипотезы нужно считать, что К. п. периодически возникают и исчезают в результате гравитац. захвата планетой малого тела и его последующего разрушения. Другим аргументом, подтверждающим гипотезу распада, могут служить, напр., преимущественно ледяные частицы колец Сатурна. Эти частицы обладают высоким альбедо, т. е. не покрыты тёмным микрометеорным веществом, как это произошло бы с реликтовыми кольцами за время существования Солнечной системы.
Источник: bigenc.ru
Наша Солнечная система состоит из Солнца и планет, звезд, комет, астероидов и других космических тел. Сегодня мы поговорим о планетах, которые окружены кольцами. У каких планет есть кольца, Вы узнаете из этой статьи.
Как называется планета с кольцами?
Преимущественно кольца имеют только планеты-гиганты, о которых мы поговорим ниже. Кольца представляют собой образования из пыли и льда, которые вращаются вокруг небесного тела. Концентрируются они возле экватора и тем самым образуют тонкие линии. Такая особенность связана с осевым вращением планет: стабильное гравитационное поле присутствует в экваториальной зоне. Это и удерживает кольца вокруг планеты.
У каких планет есть кольца?
В нашей Солнечной системе кольца имеются у планет-гигантов. Самые большие и четко видимые кольца у Сатурна. Впервые их обнаружил в 1659 году голландский астроном Христиан Гюйгенс. Всего колец 6: наибольшее из них поделено на тысячи маленьких колечек. Они состоят из кусочков льда разного размера.
В конце ХХ века, когда изобрели космические корабли и точные телескопы, ученые увидели, что кольца есть не только у Сатурна. В 1977 году во время исследования Урана, было замечено свечение вокруг него. Оказалось, что это кольца. Так было открыто 9 колец, а «Вояджер-2» в 1986 году обнаружил еще 2 кольца – тонких, узких и темных.
В 1979 году космический аппарат «Вояджер-1» открыл кольца вокруг планеты Юпитер. Его внутреннее кольцо слабое и соприкасается с атмосферой планеты. И, наконец, в 1989 году «Вояджер-2» обнаружил вокруг Нептуна 4 кольца. Некоторые из них имели арки, области, где наблюдалась повышенная плотность вещества.
Тем не менее, современная высокоточная техника позволила открыть новые тайны нашей системы. Последние исследования ученых показали, что кольца есть у спутника Сатурна – Рея. Также карликовая планета Хаумеа, которая вращается в периферийной части Солнечной системы, имеет свою систему колец.
Напоследок хотим рассказать Вам один удивительный факт. В далеком прошлом кольца были у нашей планеты! Но по непонятным причинам она их утратила. Большое число ученые считают, что у нашего соседа Марса спустя миллионы лет могут появиться кольца.
Надеемся, что из этой статьи Вы узнали, у каких планет есть кольца.
Источник: kratkoe.com