Перечислите основные элементы эллиптической орбиты планеты


§ 41. Элементы орбит планет. Основные задачи теоретической астрономии

 

Движение планеты будет вполне определено, если извеl.


;ка в плоскости и, наконец, момент времени, в который планета находится в определенной точке орбиты. Величины, определяющие орбиты планеты, называются элементами ее орбиты.


За основную плоскость, относительно которой определяется положение орбиты, принимается плоскость эклиптики.

Две точки, в которых орбита планеты пересекается с плоскостью эклиптики, называются узлами — восm.


у, удаляясь от ее южного полюса.

Эллиптическую орбиту планеты определяют следующие 6 элементов (рис. 28):

1. Наклонение i плоскости орбиты к плоскости эклиптики.


1053;аклонение может иметь любые значения между 0 и 180°. Если 0 £ i < 90°, то планета движется вокруг Солнца (С) в том же направлении, что и Земля (прямое движение); если 90° < i < 180°, то планета движется в противоположном направлении (обратное движение).

 


Перечислите основные элементы эллиптической орбиты планеты

 

2. Долгота (гелиоцентрическая) восходящего узла <, т.е. угол между направлениями из центра Солнца на восходящий узел  и на точку весеннего равноденствия. Долгота восходящего узла может иметь любые значения от 0 до 360°.


Долгота восходящего узла < и наклонение i определяют положение плоскости орбиты в пространстве.

3. Угловое расстояние w перигелия от узла, т.е. угол между направле.


1086;скости орбиты планеты в направлении ее движения и может иметь любые значения от 0 до 360°.

Угловое расстояние перигелия w определяет положение орбиты в ее плоскости. (Иногда вместо w дается долгота перигелия p = < + w)


4. Большая полуось а эллиптической орбиты, которая однозначно определяет сидерический период обращения Т планеты. Часто одновременно с ней дается в качестве элемента среднее суточное движение п = 360° / T = 2p / T, т.е. средняя угловая скорость планеты за сутки.


5. Эксцентриситет орбиты Перечислите основные элементы эллиптической орбиты планеты где а и b — полуоси эллиптической орбиты.

Большая полуось а и эксцентриситет е определяют размеры и форму орбиты.


6. Момент прохождения через перигелий t0 , или положение планеты на орбите в какой-нибудь определенный момент времени t (долгота в эпоху t).

Зная момент прохождения через перигелий t0 и другие элементы орбиты, можно определить положение планеты в плоскости ее орбиты для любого момента времени t.

 

Перечислите основные элементы эллиптической орбиты планеты

 

Положение планеты на орбите определяется двумя величинами: радиусом-вектором r и истинной аномалией q. Истинной аномалией планеты называется угол ПСР (рис. 29) между направлением из Солнца (С) на перигелий П и радиусом-вектором планеты Р. Радиус-вектор r и истинная аномалия q  вычисляются по формулам

r = a (1 — e cos E),

(2.9)

Перечислите основные элементы эллиптической орбиты планеты

(2.10)

где Е = Ð ПON и называется эксцентрической аномалией.

Эксцентрическая аномалия Е вычисляется из уравнения Кеплера

M = E — e sin E,

(2.11)

где М — угол, называемый средней аномалией. Средняя аномалия представляет собой дугу круга, которую описала бы планета за время (t—t0), если бы она двигалась равномерно по окружности радиуса а со средней угловой скоростью п, т.е.

Перечислите основные элементы эллиптической орбиты планеты

 

(2.12)

      Вычисление положения планеты на орбите для некоторого момента времени t проводится в следующей последовательности:

1) по формуле (2.12), в которой известны Т и (t — t0), определяют среднюю аномалию М;

2) по формуле (2.11), при известных е и М, методом последовательных приближений находят эксцентрическую аномалию Е;

3) по формулам (2.9) и (2.10) вычисляют радиус-вектор r и истинную аномалию q .

Определив положение планеты на орбите для заданных моментов времени, можно вычислить для этих же моментов ее пространственные гелиоцентрические координаты. Зная же элементы орбиты Земли и вычислив для тех же моментов положение Земли на ее орбите, можно определить геоцентрические координаты планеты и найти ее расстояние от центра Земли.

Определение видимых координат планеты по элементам их орбит называется вычислением эфемерид, т.е. таблиц, в которых положения планет даются на любые избранные моменты времени (иногда на много лет вперед).

Обратная задача, т.е. определение элементов орбит по наблюденным координатам, называется определением орбит. Эта задача гораздо труднее вычисления эфемерид. Кеплер решил ее для тех планет, которые наблюдаются уже давно. Методы же определения орбит по нескольким (не менее 3-х) наблюдениям, что особенно важно при открытии новых планет и комет, были разработаны лишь в начале XIX в.

Вычисление эфемерид и определение орбит — основные задачи теоретической астрономии.

 

Источник: crydee.sai.msu.ru

Точные науки и дисциплины
Дебаты по Теории Относительности Эйнштейна. Все кому не лень хотят опровергнуть Теорию Относительности Эйнштейна. Вам предоставляется слово для аргументации.
Физика, астрономия, математические решения. Физико-математические вопросы, наблюдения, исследования, теории и их решение.
Физика альтернативная. Новые взгляды на физические законы, теории, эксперименты, не вписывающиеся в общепринятые законы физики.
Teхника, узлы, механизмы, электроника и аппаратура. Все про технику, приборы, детали, узлы и механизмы. Электроника, компьютеры, программное обеспечение. Новые технические решения в самых разных областях.
Биология, Генетика, Все о жизни. Генетика и другие вопросы биологии. Их развитие. Медицина. Биотехнологии, агротехника и сельское хозяйство. Эволюционные теории и альтернативные им.
Химия. Вопросы по химическим технологиям, разработкам и применению химических материалов. Химические элементы и их свойства.
Геология, все о Земле и ее обитателях. Геология, метеорология, антропология, сейсмология, атмосферные явления и непознанные эффекты природы.

Источник: www.sciteclibrary.ru

Первый закон Кеплера (1609 г.):

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием, точка A, наиболее удаленная от Солнца – афелием. Расстояние между афелием и перигелием – большая ось эллипса.

Перечислите основные элементы эллиптической орбиты планеты
Рисунок 1.24.2. Эллиптическая орбита планеты массой m << M. a – длина большой полуоси, F и F’ – фокусы орбиты

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым.

Второй закон Кеплера (1609 г.):

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рис. 1.24.3 иллюстрирует 2-й закон Кеплера.

Перечислите основные элементы эллиптической орбиты планеты
Рисунок 1.24.3. Закон площадей – второй закон Кеплера

Второй закон Кеплера эквивалентен закону сохранения момента импульса. На рис. 1.24.3 изображен вектор импульса тела и его составляющие и Площадь, описываемая радиус-вектором за малое время Δt, приближенно равна площади треугольника с основанием rΔθ и высотой r:

Перечислите основные элементы эллиптической орбиты планеты

Здесь – угловая скорость.

Момент импульса L по абсолютной величине равен произведению модулей векторов и :

Из этих отношений следует:

Поэтому, если по второму закону Кеплера , то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии и афелии направлены перпендикулярно радиус-векторам и из закона сохранения момента импульса следует:

Третий закон Кеплера (1619 г.):

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

Перечислите основные элементы эллиптической орбиты планеты

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %.

На рис. 1.24.4 изображены две орбиты, одна из которых – круговая с радиусом R, а другая – эллиптическая с большой полуосью a. Третий закон утверждает, что если R = a, то периоды обращения тел по этим орбитам одинаковы.

Перечислите основные элементы эллиптической орбиты планеты
Рисунок 1.24.4. Круговая и эллиптическая орбиты. При R = a периоды обращения тел по этим орбитам одинаковы
Перечислите основные элементы эллиптической орбиты планеты

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений. Законы Кеплера нуждались в теоретическом обосновании. Решающий шаг в этом направлении был сделан Исааком Ньютоном, открывшим в 1682 году закон всемирного тяготения:

где M и m – массы Солнца и планеты, R – расстояние между ними, G = 6,67·10–11 Н·м2/кг2 – гравитационная постоянная. Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, уже говорилось, что сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T2 ~ R3, где Т – период обращения, R – радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:

Если T2 ~ R3, то

Свойство консервативности гравитационных сил позволяет ввести понятие потенциальной энергии. Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m, находящегося на расстоянии r от неподвижного тела массы M, равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях (рис. 1.24.5).

Перечислите основные элементы эллиптической орбиты планеты
Рисунок 1.24.5. Вычисление потенциальной энергии тела в гравитационном поле

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам. Работа гравитационной силы на малом перемещении есть:

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ ΔAi на малых перемещениях:

В пределе при Δri → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение

Знак «минус» указывает на то, что гравитационные силы являются силами притяжения.

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость υ, его полная механическая энергия равна

Перечислите основные элементы эллиптической орбиты планеты

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6).

При E = E1 < 0 тело не может удалиться от центра притяжения на расстояние r > rmax. В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Перечислите основные элементы эллиптической орбиты планеты
Рисунок 1.24.6. Диаграмма энергий тела массой m в гравитационном поле, создаваемом сферически симметричным телом массой M и радиусом R

При E = E2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории.

При E = E3 > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

Эту скорость необходимо набрать, чтобы преодолеть притяжение Земли и вывести тело (например, спутник) на орбиту Земли.

Перечислите основные элементы эллиптической орбиты планеты

Перечислите основные элементы эллиптической орбиты планеты

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

Перечислите основные элементы эллиптической орбиты планеты

Перечислите основные элементы эллиптической орбиты планеты

Рис. 1.24.7 иллюстрирует космические скорости. Если скорость космического корабля равна υ1 = 7.9·103 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих υ1, но меньших υ2 = 11,2·103 м/с, орбита корабля будет эллиптической. При начальной скорости υ2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

Перечислите основные элементы эллиптической орбиты планеты
Рисунок 1.24.7. Космические скорости. Указаны скорости вблизи поверхности Земли. 1: υ = υ1 – круговая траектория; 2: υ1 < υ < υ2 – эллиптическая траектория; 3: υ = 11,1·103 м/с – сильно вытянутый эллипс; 4: υ = υ2 – параболическая траектория; 5: υ > υ2 – гиперболическая траектория; 6: траектория Луны

Третья космическая скорость равна примерно 16,6·103 м/сек (при запуске на высоте 200 км над земной поверхностью) и необходима для преодоления гравитации сначала Земли, а затем и Солнца и выхода за пределы Солнечной системы. Сейчас два искусственных спутника развили такую скорость Пионер-10 и Пионер-11, запущенные 2 марта 1972 и 6 апреля 1973 года соответственно. В данный момент аппараты покинули пределы Солнечной системы.

Источник: questions-physics.ru

Движение планеты будет определено, если известны:

— плоскость, в которой лежит её орбита,

— размеры и форма орбиты,

— ориентировка в плоскости,

— момент времени, в который планета находится в определённой точке орбиты.

Величины, определяющие орбиту планеты, называются элементами орбиты. Плоскость эклиптики является основной плоскостью, относительно которой определяется положение орбиты. Перечислите основные элементы эллиптической орбиты планеты Две точки, в которых орбита планеты пересекается с плоскостью эклиптики, называются узлами — восходящим и нисходящим. Восходящий узел — тот, в котором планета пересекает эклиптику, удаляясь от её южного полюса.

Эллиптическую орбиту планеты определяют 6 элементов:

Перечислите основные элементы эллиптической орбиты планеты 1. Наклонение i плоскости орбиты к плоскости эклиптики. Может иметь значения от 0º до 180º. Если 0º£ i < 90º, то планета движется вокруг Солнца в том же направлении, что и Земля (прямое движение). Если 90º > i > 180º, то планета движется в противоположном направлении (обратное движение).

2. Долгота (гелиоцентрическая) восходящего узла b , т.е. угол между направлениями из центра Солнца на восходящий узел b и на точку весеннего равноденствия. Долгота может иметь значения от 0º до 360º.

Долгота восходящего узла и наклонение определяют положение плоскости орбиты в пространстве.

3. Угловое расстояние w перигелия от узла, т.е. угол между направлениями из центра Солнца на восходящий узел и на перигелий П. Отсчитывается в плоскости орбиты планеты в направлении её движения и может иметь любые значения от 0º до 360º.

Угловое расстояние w определяет положение орбиты в её плоскости.

4. Большая полуось а эллиптической орбиты, которая однозначно определяет сидерический период обращения Т планеты. Среднее суточное движение n = Перечислите основные элементы эллиптической орбиты планеты , т.е. средняя угловая скорость планеты в сутки.

5. Эксцентриситет орбиты е = Перечислите основные элементы эллиптической орбиты планеты , (1)

 

где а и b — полуоси эллиптической орбиты. Большая полуось а и е определяют размеры и форму орбиты.

Перечислите основные элементы эллиптической орбиты планеты 6. Момент прохождения через перигелий t0, или положение планеты на орбите в какой-то определённый момент времени t.

Зная момент прохождения через перигелий t0 и другие элементы орбиты, можно определить положение планеты в плоскости её орбиты для любого момента времени t.

Положение планеты на орбите определяется двумя величинами: радиус-вектором Перечислите основные элементы эллиптической орбиты планеты и истинной аномалией q. Истинной аномалией планеты называется угол ПСР между направлением из Солнца на перигелий П и радиусом-вектором планеты Р.

r = Перечислите основные элементы эллиптической орбиты планеты , (2)

 

Перечислите основные элементы эллиптической орбиты планеты , (3)

где Е = <ПОN и называется эксцентрической аномалией.

Эксцентрическая аномалия вычисляется из уравнения Кеплера

М = Ее sin E, (4)

где М — угол, называемый средней аномалией. Средняя аномалия представляет собой дугу круга, которую бы описала планета за время (tt0), если бы двигалась равномерно по окружности радиуса а со средней угловой скоростью n.

 

М = n(tt0) = Перечислите основные элементы эллиптической орбиты планеты . (5)

Источник: helpiks.org


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.