Кто открыл законы движения планет


В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами. Очень непросто наблюдать гравитационное взаимодействие и между различными окружающими нас телами, даже если их массы составляют многие тысячи килограмм. Однако именно гравитация определяет поведение «больших» объектов, таких, как планеты, кометы и звезды, именно гравитация удерживает всех нас на Земле.

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства.

Закономерности движения планет с давних пор привлекали внимание людей. Изучение движения планет и строения Солнечной системы и привело к созданию теории гравитации – открытию закона всемирного тяготения.

С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Первая попытка создания модели Вселенной была предпринята Птолемеем (~ 140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды.


Кто открыл законы движения планет
Рисунок 1.24.1. Условное изображение наблюдаемого движения Марса на фоне неподвижных звезд

Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника. В системе Коперника траектории планет оказались более простыми. Немецкий астроном Иоганн Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы. Кеплер использовал результаты наблюдений за движением планет датского астронома Тихо Браге.

Первый закон Кеплера (1609 г.):

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием, точка A, наиболее удаленная от Солнца – афелием. Расстояние между афелием и перигелием – большая ось эллипса.


Кто открыл законы движения планет
Рисунок 1.24.2. Эллиптическая орбита планеты массой m << M. a – длина большой полуоси, F и F’ – фокусы орбиты

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым.

Второй закон Кеплера (1609 г.):

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рис. 1.24.3 иллюстрирует 2-й закон Кеплера.

Кто открыл законы движения планет
Рисунок 1.24.3. Закон площадей – второй закон Кеплера

Второй закон Кеплера эквивалентен закону сохранения момента импульса. На рис. 1.24.3 изображен вектор импульса тела и его составляющие и Площадь, описываемая радиус-вектором за малое время Δt, приближенно равна площади треугольника с основанием rΔθ и высотой r:

Кто открыл законы движения планет


Здесь – угловая скорость.

Момент импульса L по абсолютной величине равен произведению модулей векторов и :

Из этих отношений следует:

Поэтому, если по второму закону Кеплера , то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии и афелии направлены перпендикулярно радиус-векторам и из закона сохранения момента импульса следует:

Третий закон Кеплера (1619 г.):

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

Кто открыл законы движения планет

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %.

На рис. 1.24.4 изображены две орбиты, одна из которых – круговая с радиусом R, а другая – эллиптическая с большой полуосью a. Третий закон утверждает, что если R = a, то периоды обращения тел по этим орбитам одинаковы.

Кто открыл законы движения планет
Рисунок 1.24.4. Круговая и эллиптическая орбиты. При R = a периоды обращения тел по этим орбитам одинаковы

Кто открыл законы движения планет

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений. Законы Кеплера нуждались в теоретическом обосновании. Решающий шаг в этом направлении был сделан Исааком Ньютоном, открывшим в 1682 году закон всемирного тяготения:

где M и m – массы Солнца и планеты, R – расстояние между ними, G = 6,67·10–11 Н·м2/кг2 – гравитационная постоянная. Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, уже говорилось, что сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T2 ~ R3, где Т – период обращения, R – радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:


Если T2 ~ R3, то

Свойство консервативности гравитационных сил позволяет ввести понятие потенциальной энергии. Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m, находящегося на расстоянии r от неподвижного тела массы M, равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях (рис. 1.24.5).

Кто открыл законы движения планет
Рисунок 1.24.5. Вычисление потенциальной энергии тела в гравитационном поле

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам. Работа гравитационной силы на малом перемещении есть:

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ ΔAi на малых перемещениях:

В пределе при Δri → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение

Знак «минус» указывает на то, что гравитационные силы являются силами притяжения.

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость υ, его полная механическая энергия равна


Кто открыл законы движения планет

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6).

При E = E1 < 0 тело не может удалиться от центра притяжения на расстояние r > rmax. В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Кто открыл законы движения планет
Рисунок 1.24.6. Диаграмма энергий тела массой m в гравитационном поле, создаваемом сферически симметричным телом массой M и радиусом R

При E = E2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории.


При E = E3 > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

Эту скорость необходимо набрать, чтобы преодолеть притяжение Земли и вывести тело (например, спутник) на орбиту Земли.

Кто открыл законы движения планет

Кто открыл законы движения планет

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

Кто открыл законы движения планет


Кто открыл законы движения планет

Рис. 1.24.7 иллюстрирует космические скорости. Если скорость космического корабля равна υ1 = 7.9·103 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих υ1, но меньших υ2 = 11,2·103 м/с, орбита корабля будет эллиптической. При начальной скорости υ2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

Кто открыл законы движения планет
Рисунок 1.24.7. Космические скорости. Указаны скорости вблизи поверхности Земли. 1: υ = υ1 – круговая траектория; 2: υ1 < υ < υ2 – эллиптическая траектория; 3: υ = 11,1·103 м/с – сильно вытянутый эллипс; 4: υ = υ2 – параболическая траектория; 5: υ > υ2 – гиперболическая траектория; 6: траектория Луны

Третья космическая скорость равна примерно 16,6·103 м/сек (при запуске на высоте 200 км над земной поверхностью) и необходима для преодоления гравитации сначала Земли, а затем и Солнца и выхода за пределы Солнечной системы. Сейчас два искусственных спутника развили такую скорость Пионер-10 и Пионер-11, запущенные 2 марта 1972 и 6 апреля 1973 года соответственно. В данный момент аппараты покинули пределы Солнечной системы.


Источник: questions-physics.ru

КЕПЛЕР, ИОГАНН (Kepler, Johann) (1571–1630), немецкий астроном. Родился 27 декабря 1571 в Вейль-дер-Штаде, позднее вошедшем в княжество Вюртемберг. Окончив церковную школу в Альдерберге, в 1586 поступил в высшее духовное училище при Маульборнском монастыре. В 1589 был принят в Тюбингенский университет, где в течение трех лет изучал теологию, математику и философию. Астрономию в университете читал М.Местлин, который давал Кеплеру частные уроки и познакомил его с теорией Коперника. В 1591 Кеплер защитил магистерскую диссертацию, в 1593 окончил университет и был рекомендован на должность профессора математики в гимназии Граца (Верхняя Штирия). Здесь с 1594 читал лекции по астрономии. В 1596 вышло в свет его первое сочинение Тайна Вселенной (Prodromus dissertationum mathematicarum continens mysterium cosmographicum, 1596), в котором Кеплер попытался найти соотношения между элементами планетных орбит. Это сочинение привлекло внимание Тихо Браге, который пригласил Кеплера в качестве помощника для обработки результатов наблюдений за планетами. Сотрудничество астрономов продолжалось около двух лет, вплоть до смерти Тихо Браге 24 октября 1601. Вскоре император Рудольф II назначил Кеплера на должность придворного математика, которую он занимал до конца жизни.


Еще при жизни Тихо Браге Кеплер предпринимал попытки математического описания закономерностей движения планеты Марс в рамках существовавших тогда теорий (Птолемея, Тихо Браге, Коперника). В результате долгих размышлений Кеплер пришел к эмпирическим законам движения планет (законы Кеплера). Согласно первым двум, планеты обращаются вокруг Солнца по эллиптическим орбитам, в фокусе которых располагается светило; радиус-вектор каждой планеты заметает равные площади за равные промежутки времени. Эти результаты были опубликованы в книге Новая астрономия (Astronomia Nova, 1609), ставшей в один ряд с De Revolutionibus Коперника и Principia Ньютона.

Сама идея гелиоцентрической системы мира была предложена еще Аристархом, считавшим, что все планеты движутся с постоянной скоростью вокруг Солнца. Однако его теория противоречила наблюдениям, что вынудило Птолемея разработать сложную геометрическую систему эксцентрических окружностей и эпициклов. Спустя 14 столетий Коперник попытался включить некоторые геометрические идеи Птолемея (эксцентрические окружности) в систему Аристарха, считая, что движения планет должны быть равномерными и круговыми. И только Кеплер понял, что орбиты имеют форму эллипса и планеты движутся по ним с угловой скоростью, обратно пропорциональной квадрату расстояния от Солнца. Эти законы в пределах точности наблюдений полностью согласовывались с данными Тихо Браге, а обнаруженные позже небольшие расхождения были объяснены в рамках ньютоновой механики.

Публикация Новой астрономии и почти одновременное изобретение телескопа ознаменовали наступление новой эры. Эти события стали поворотной точкой в жизни и научной карьере Кеплера. После смерти Рудольфа II положение ученого при дворе в Праге становилось все более неопределенным. Поэтому он обратился к новому императору за разрешением временно занять пост математика провинции Верхняя Австрия в Линце, где провел следующие 15 лет. Главным достижением Кеплера в этот период стало открытие третьего закона движения планет: квадраты периодов обращения планет соотносятся как кубы больших полуосей их эллиптических орбит. Этот закон был сформулирован в сочинении Гармония мира (De Harmonice Mundi, 1619). Следующие 9 лет Кеплер трудился над составлением таблиц положения планет, основанных на новых законах их движения.

События Тридцатилетней войны и религиозные преследования вынудили Кеплера в 1626 бежать в Ульм. Не имея средств к существованию, он в 1628 поступил астрологом на службу к имперскому полководцу Валленштейну. Последней крупной работой Кеплера стали задуманные еще Тихо Браге планетные таблицы, опубликованные в Ульме в 1629 под названием Рудольфовы таблицы (Tabulae Rudolphianae). Осенью 1630 Кеплер отправился в Регенс

Источник: otvet.mail.ru

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник — объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами — Сатурна и Юпитера — он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса — тетраэдр (правильный четырехгранник) и т. д.* Шесть сфер планет, пять вписанных между ними правильных многогранников — казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. По меткому замечанию современного британского биолога Дж. Холдейна (J. B. S. Haldane), «идея Вселенной как геометрически совершенного произведения искусства оказалась еще одной прекрасной гипотезой, разрушенной уродливыми фактами». Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге (Tycho Brahe, 1546–1601), Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника (см. Принцип Коперника) и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Наша задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон** описывает геометрию траекторий планетарных орбит. Возможно, вы помните из школьного курса геометрии, что эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек — фокусов — равна константе. Если это слишком сложно для вас, имеется другое определение: представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, — это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно — Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было, я бы сказал, прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности (причем это заблуждение мне и сегодня приходится раз за разом развеивать среди своих студентов). Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца. В формальном виде я его формулировку уже приводил, а чтобы лучше понять его физический смысл, вспомните свое детство. Наверное, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты кружатся вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать всё сначала — накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести из законов механики Ньютона, закона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам — гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним — и угловые скорости галактик в целом (см. также Темная материя). Меня радует, что труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

Источник: elementy.ru

15 ноября 1630 года умер выдающийся ученый Иоганн Кеплер. За свою жизнь он сделал открытия во многих областях: физике, математике, астрономии, механике, оптике. Эйнштейн называл его «несравненным человеком». Мы сделали подборку великих открытий Кеплера.

Астрономия

Кеплер был первооткрывателем трех законов движения планет. Они полностью и с превосходной точностью объяснили видимую неравномерность этих движений. Вместо многочисленных надуманных эпициклов модель Кеплера включает только одну кривую — эллипс. Второй закон, открытый ученым, установил, как изменяется скорость планеты, когда она удаляется от Солнца или приближается к нему. Третий же позволяет рассчитать эту скорость и период обращения вокруг Солнца. Кеплеровская система основана на модели Коперника, но в ней очень много нового. Например, исчезли круговые движения сфер, несущих на себе планеты, было введено понятие планетной орбиты. Если у Коперника центром была Земля, а точнее — центр земной орбиты, то у Кеплера она — рядовая планета, движение которой подчинено общим трём законам. Общим же фокусом орбит планет Кепплер назвал солнце.

Математика

В этой области Кеплер открыл математический анализ. А предшествовало этому то, что ученый нашел способ определения объемов разнообразных тел вращения, который описал в книге «Новая стереометрия винных бочек». Метод содержал первые элементы интегрального исчисления. К заслугам Кеплера также относится составление одной из первых таблиц логарифмов. Кроме того, у него впервые встречается такое понятие, как «среднее арифметическое».

Механика и физика

Кеплер ввел в физику понятие инерции — прирожденного свойства тел сопротивляться приложенной внешней силе. Ученый вплотную подошел к открытию закона тяготения, хотя и не пытался выразить его математически. Он был первым, кто выдвинул гипотезу о том, что причиной приливов является воздействие Луны на верхние слои океанов. Это произошло почти на сто лет раньше Ньютона.

Источник: www.vologda.kp.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.