Карликовые планеты облако оорта



В фантастических фильмах показывают, как космические корабли летят к планетам через астероидное поле, они ловко уклоняются от крупных планетоидов и ещё более ловко отстреливаются от мелких астероидов. Возникает закономерный вопрос: «Если пространство трёхмерное, не проще ли сверху или снизу облететь опасное препятствие?»

Задавшись этим вопросом можно найти много интересного о строении нашей Солнечной системы. Представление человека об оной ограничивается несколькими планетами, о которых старшие поколения узнавали в школе на уроках астрономии. Последние несколько десятилетий такую дисциплину не изучали вообще.

Попробуем немного расширить своё восприятие реальности, рассматривая существующую информацию о Солнечной системе (рис.1).

Облако Оорта

Рис.1. Схема Солнечной системы.


В нашей Солнечной системе существует астероидный пояс между Марсом и Юпитером Учёные, анализируя факты, больше склоняются к тому, что данный пояс образовался в результате разрушения одной из планет Солнечной системы.

Этот астероидный пояс не единственный, существует ещё две отдалённые области, называемые по именам астрономов, предсказавших их существование — Джерард Койпер и Ян Оорт — это Пояс Койпера и Облако Оорта. Пояс Койпера (рис.2) находится в диапазоне между орбитой Нептуна 30 а.е. и расстоянием от Солнца примерно в 55 а.е.*

По представлениям учёных астрономов Пояс Койпера, как и пояс астероидов, состоит из малых тел. Но в отличие от объектов пояса астероидов, которые в основном состоят из горных пород и металлов, объекты Пояса Койпера сформированы в своём большинстве из летучих веществ (называемых льдами), таких как метан, аммиак и вода.

Облако Оорта

Рис. 2. Иллюстрированное изображение Пояса Койпера

Через область пояса Койпера так же проходят орбиты планет Солнечной системы. К таким планетам относятся Плутон, Хаумеа, Макемаке, Эрида и множество других. Ещё множество объектов и даже карликовая планета Седна имеет орбиту движения вокруг Солнца, но сами орбиты выходят за пределы пояса Койпера (рис.3). Кстати, орбита Плутона так же выходит из этой зоны. В эту же категорию попала и загадочная планета, у которой пока нет названия и говорят о ней просто — «Planet 9».


Облако Оорта

Рис. 3. Схема орбит планет и малых тел Солнечной системы выходящих за пределы пояса Койпера. Пояс Койпера обозначен зелёной окружностью.

Оказывается, на этом границы нашей Солнечной системы не заканчиваются. Существует ещё одно образование, это облако Оорта (рис.4). Объекты в Поясе Койпера и в Облаке Оорта, предположительно, являются остатками от формирования Солнечной системы около 4,6 миллиарда лет назад.

Облако Оорта

Рис. 4. Солнечная система. Облако Оорта. Соотношение размеров.

Удивительным в его форме являются пустоты внутри самого облака, объяснить происхождение которых официальная наука не может. Учёными принято делить облако Оорта на внутреннее и внешнее (рис.5). Инструментально существование Облака Оорта не подтверждено, однако многие косвенные факты указывают на его существование. Астрономы пока только предполагают, что объекты, составляющие облако Оорта, сформировались около Солнца и были рассеяны далеко в космос на раннем этапе формирования Солнечной системы.


Облако Оорта

Рис. 5. Строение Облака Оорта.

Внутреннее облако — это расширяющийся из центра луч, а сферическим облако становиться за пределами расстояния в 5 000 а.е. и край его находится примерно в 100 000. а.е. от Солнца (рис.6). По другим оценкам внутреннее облако Оорта лежит в диапазоне до 20 000 а.е., а внешнее до 200 000 а.е. Учёные предполагают, что объекты в облаке Оорта в значительной степени состоят из водяных, аммиачных и метановых льдов, но могут присутствовать и скалистые объекты, то есть астероиды. Астрономы Джон Матис (John Matese) и Даниэль Уитмир (Daniel Whitmire) утверждают, что на внутренней границе облака Оорта (30 000 а.е.) существует планета газовый гигант Тюхе и, возможно, она не единственный житель этой зоны.

Облако Оорта

Рис. 6. Схема расстояний объектов нашей планетарной системы от Солнца в астрономических единицах.


Если взглянуть на нашу Солнечную систему «издалека», то получается все орбиты планет, два астероидных пояса и внутреннее облако Оорта лежат в плоскости эклиптики. У Солнечной системы появляются чётко выраженные направления верха и низа, значит существуют факторы, определяющие такое строение. А с удалением от эпицентра взрыва, то есть звезды, эти факторы исчезают. Внешнее Облако Оорта образует структуру похожую на шар. Давайте «доберёмся» до края Солнечной системы и постараемся лучше понять её устройство.

Для этого обратимся к знаниям русского учёного Николая Викторовича Левашова.

В его книге «Неоднородная Вселенная» описывается процесс образования звезд и планетарных систем.

В космосе существует множество первичных материй. Первичные материи обладают конечными свойствами и качествами, из них может образоваться вещество. Наше пространство-вселенная образовано из семи первичных материй. Фотоны оптического диапазона на уровне микропространства являются основой нашей Вселенной. Эти материи образуют всё вещество нашей Вселенной. Наше пространство-вселенная только часть системы пространств, и оно находится межу двумя другими пространствами-вселенными отличающимися количеством первичных материй их образующих. Вышележащее имеет в своём составе 8, а нижележащее 6 первичных материй. Такое распределение материй определяет направление перетекания вещества из одного пространства в другое, от большего к меньшему.


При смыкании нашего пространства-вселенной с вышележащим образуется канал, по которому вещество из пространства-вселенной образованного 8-ю первичными материями начинает перетекать в наше пространство-вселенную образованного 7-ю первичными материями. В этой зоне происходит распад вещества вышележащего пространства и синтез вещества нашего пространства-вселенной.

В результате этого процесса в зоне смыкания накапливается 8-я материя, которая не может образовать вещество в нашем пространстве-вселенной. Это приводит к возникновению условий, при которых часть образовавшегося вещества распадается на составные части. Возникает термоядерная реакция и для нашего пространства-вселенной, образуется звезда.

В зоне смыкания, в первую очередь, начинают образовываться самые лёгкие и устойчивые элементы, для нашей вселенной это водород. На такой стадии развития звезда называется голубым гигантом. Следующим этапом формирования звезды становится синтез более тяжёлых элементов из водорода в результате термоядерных реакций. Звезда начинает излучать целый спектр волн (рис.7).

Облако Оорта

Рис. 7 Образование звезды. (Взято из книги Левашов Н.В. Неоднородная Вселенная. 2006. Гава 2.5. Природа образования планетарных систем. Рис.2.5.1.)


Нужно отметить, что в зоне смыкания синтез водорода при распаде вещества вышележащего пространства-вселенной и синтез более тяжёлых элементов из водорода происходит одновременно. В процессе термоядерных реакций, нарушается баланс излучения в зоне смыкания. Интенсивность излучения поверхности звезды отличается от интенсивности излучения в её объёме. Первичные материи начинают накапливаться внутри звезды. Со временем этот процесс приводит к взрыву сверхновой звезды. Взрыв сверхновой порождает продольные колебания мерности пространства вокруг звезды.Мерностьквантование (разделение) пространства в соответствии со свойствами и качествами первичных материй.

Во время взрыва происходит выброс поверхностных слоёв звезды, которые состоят в основном из наиболее лёгких элементов (рис.8). Только теперь, в полной мере, можно говорить о звезде как о Солнце — элементе будущей планетарной системы.

Облако Оорта

Рис. 8. Взрыв сверхновой. (Взято из книги Левашов Н.В. Неоднородная Вселенная. 2006. Гава 2.5. Природа образования планетарных систем. Рис.2.5.2.)

По законам физики продольные колебания от взрыва должны распространяться в пространстве во все стороны от эпицентра, если не имеют препятствий и мощность взрыва недостаточна для преодоления этих ограничивающих факторов.


терия, разлетаясь, должна себя вести соответствующим образом. Поскольку наше пространство-вселенная находится между двумя другими пространствами-вселенными, которые оказывают на него влияние, то продольные колебания мерности после взрыва сверхновой будут иметь форму аналогичную кругам на воде и создадут искривление нашего пространства повторяющее эту форму (рис. 9). Если бы такого влияния не было, мы наблюдали бы взрыв приближённый к сферической форме.

Облако Оорта

Рис. 9. Сверхновая звезда SN 1987A, 1990. Фото телескоп Hubble, проект NASA и ESA.

Мощности взрыва звезды недостаточно, чтобы исключить влияние пространств. Поэтому направление взрыва и выброса вещества будут задавать пространство-вселенная, в состав которой входит восемь первичных материй и пространство-вселенная сформированная из шести первичных материй. Более приземлённым примером этого может послужить взрыв ядерной бомбы (рис. 10), когда, из-за разности состава и плотности слоёв атмосферы, взрыв распространяется в определённом слое между двумя другими образуя концентрические волны.

Облако Оорта


Рис. 10. Фото взрыва ядерной бомбы.

Вещество и первичные материи, после взрыва сверхновой, разлетаясь оказываются в зонах искривления пространства. В этих зонах искривления начинается процесс синтеза вещества, а впоследствии образование планет. Когда планеты сформируются, то они компенсируют искривление пространства и вещество в этих зонах уже не сможет активно синтезироваться, но искривления пространства в виде концентрических волн останутся — это орбиты, по которым движутся планеты и зоны астероидных полей (рис. 11).

Чем ближе зона искривления пространства к звезде, тем перепад мерности более ярко выражен. Можно сказать, он более резкий, а амплитуда колебания мерности увеличивается с удалением от зоны смыкания пространств-вселенных. Поэтому ближние к звезде планеты будут меньшего размера и будут содержать большую долю тяжёлых элементов. Таким образом, устойчивых тяжёлых элементов больше всего на Меркурии и, соответственно, по мере убывания доли тяжёлых элементов идут — Венера, Земля, Марс, Юпитер, Сатурн, Уран, Плутон. Пояс Койпера будет содержать преимущественно лёгкие элементы, как и облако Оорта, а потенциальные планеты могут быть газовыми гигантами.

Облако Оорта

Рис. 11. Образование планетарных систем. (Взято из книги Левашов Н.В. Неоднородная Вселенная.2006. Гава 2.5. Природа образования планетарных систем. Рис.2.5.4.)


С удалением от эпицентра взрыва сверхновой продольные колебания мерности, влияющие на образование орбит планет и формирование пояса Койпера, а также на образование внутреннего облака Оорта, затухают. Искривление пространства исчезает. Таким образом материя будет разлетаться сначала в пределах зон искривления пространства, а потом (как вода в фонтане) ниспадать с двух сторон, когда искривление пространства исчезнет (рис. 12).

Грубо говоря получится «шар» с пустотами внутри, где пустоты – это зоны искривления пространства, образованные продольными колебаниями мерности после взрыва сверхновой, в которых материя сконцентрирована в виде планет и астероидных поясов. Облако Оорта

Рис. 12. Солнечная система. Схема.

Фактом, подтверждающим именно такой процесс образования Солнечной системы, является наличие различных свойств облака Оорта на разной удаленности от Солнца. Во внутреннем облаке Оорта движение кометных тел ничем не отличается от привычного движения планет. Они обладают стабильными и, в большинстве случаев, круговыми орбитами в плоскости эклиптики. А во внешней части облака кометы движутся хаотично и в разных направлениях.


После взрыва сверхновой и образования планетарной системы процесс распада вещества вышележащего пространства-вселенной и синтеза вещества нашего пространства-вселенной, в зоне смыкания, продолжается до тех пор, пока звезда вновь не достигнет критического состояния и не взорвётся. Либо тяжёлые элементы звезды повлияют на зону смыкания пространств таким образом, что процесс синтеза и распада прекратится — звезда погаснет. Эти процессы могут происходить миллиарды лет.

Поэтому, отвечая на вопрос, заданный в начале, о полёте через астероидное поле необходимо уточнить, где мы его преодолеваем внутри Солнечной системы или за его пределами. Кроме того, при определении направления полёта в космосе и в планетарной системе, возникает необходимость учитывать влияние соседствующих пространств и зон искривлений.

*а.е. — АСТРОНОМИЧЕСКАЯ ЕДИНИЦА, единица длины, применяемая в астрономии, для измерения расстояний в пределах Солнечной системы. Равна среднему расстоянию от Земли до Солнца; 1 астрономическая единица = 149,6 млн. км

Александр Каракулько

Источник: welemudr.mirtesen.ru

Что такое пояс Койпера?

Пояс Койпера — это область пространства, которая начинается за пределами орбиты планеты Нептун. И если бы этот газовый гигант не образовался, здесь все было бы иначе. Во времена формирования Солнечной системы здесь вполне могла появиться еще одна планета. Однако из-за образования Нептуна исходный материал не смог объединиться. Поэтому он остался поясом разрозненных обломков.

В 1951 году астроном Джерард Койпер предположил, что находящийся за пределами орбиты последнего газового гиганта Солнечной системы — Нептуна материал был слишком удален друг от друга, чтобы образовать планету. Он предположил, что в этой области пространства рождаются объекты, которые мы называем кометами.  Эта идея объясняла, почему за пределами Нептуна нет крупных тел. Такое предположение также давало ответ на еще одну загадку Солнечной системы: откуда берутся кометы? Астрономы предполагали, что они все родом оттуда.

Хотя изначально ученые знали только о существовании Плутона в этом регионе, они считали, что это не единственное тело за орбитой Нептуна. И ожидали открытия других крупных планет в поясе Койпера. Но работа, проводимая в течение десятилетий, ничего не дала.

Однако в 1992 году, после многих лет исследований с помощью мощных телескопов, ученые наконец смогли подтвердить существование в Поясе Койпера относительно крупных объектов. Сегодня мы знаем, что пояс Койпера содержит тысячи тел размерами до 100 километров в поперечнике. Но они не будут существовать там вечно. С течением времени столкновения между ними превратят их в пыль. Возможно, за «всего» 100 миллионов лет от пояса Койпера, который мы знаем сегодня, не останется ничего.  Ну, возможно, кроме самых больших карликовых планет.
Плутон — не единственная карликовая планета в этом регионе. Есть и другие: Квавар (Quaoar), Макемаке (Makemake), Хаумея (Haumea), Орк (Orcus) и Эрида (Eris). У некоторых из этих тел даже есть свои собственные луны.

Что такое облако Оорта?

Облако Оорта — это гигантская сфера, диаметр которой поражает воображение. И окончательно не установлен. Хотя очевидно, что он намного больше, чем диаметр пояса Койпера. По оценкам некоторых астрономов, этот регион начинается на расстоянии 2000 а.е. от нашей звезды. И заканчивается на расстоянии около 50 000 а.е. Это почти равно одному световому году. Другие астрономы считают, что его радиус даже превышает 100 000 а.е. Чтобы лучше понимать, о каких расстояниях мы говорим, напомним, что Плутон находится в среднем на расстоянии 40 а.е. от Солнца, Макемаке — 45, а Эрида — 68.

Хотя некоторые из комет в нашей Солнечной системе, как считал Койпер, действительно происходят из пояса, получившего название по его фамилии, современные ученые считают, что большинство из этих ледяных тел родом из далекого Облака Оорта. Считается, что кометы образуются, когда какая-то звезда находится достаточно близко к этой области, чтобы подтолкнуть их своей гравитацией к внутренней части Солнечной системы.

После этого кометы с длинным орбитальным периодом начинают свое бесконечное путешествие к Солнцу. Краткосрочные кометы, с орбитами до 200 лет, прибывают из пояса Койпера. А кометы с большим периодом, чьи орбиты могут длиться тысячи лет, все родом из Облака Оорта.

Кстати в этом правиле, как и во всем в нашей жизни, есть исключения. Вполне возможно, что, читая предыдущий абзац, вы подумали о комете Галлея. И что ее относительно короткий период в 75 лет дает основания полагать, она родом из пояса Койпера. Тем не менее это не так. Считается, что на самом деле она родилась в Облаке Оорта.

Транснептуновые объекты

Все объекты за пределами Нептуна классифицируются как так называемые транснептуновые объекты. Независимо от того, находятся ли они в поясе Койпера или в облаке Оорта. Поскольку Облако расположено намного дальше, чем Пояс, его крайне трудно изучать. И астрономам пока не удалось идентифицировать там объекты с той же степенью детализации, что и в Поясе Койпера. Более того, за исключением комет с длительным периодом, астрономы обнаружили только четыре небесных тела, которые по своим орбитам могли изначально быть родом из тех мест. К сожалению, нет никакой возможности произвести прямые наблюдения этой области пространства в ближайшие годы. И вполне возможно, что пройдут десятилетия, прежде чем мы отправим какой-либо космический аппарат в этот район Солнечной системы.

На Вояджеры надежды тоже нет. Чтобы добраться туда, им потребуется еще 300 лет. И, по оценкам астрономов, потребуется еще 30000, чтобы пролететь облако Оорта насквозь…

Друзья! Если вам понравилась эта статья, ставьте лайк и подписывайтесь на наш канал! Спасибо!

И заходите на наш сайтЖивой Космос!

Источник: zen.yandex.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.