Какие звуки издают планеты в космосе


Какие звуки издают планеты в космосе

НАСА зарегистрировало волны магнитного и электрического поля, связанные с космическими событиями, и перевело эти данные в слышимый человеком диапазон.

Есть бесчисленные вопросы о космосе, которые преследовали ученых на протяжении веков. Чтобы ответить на некоторые из них, мы послали орбитальные аппараты, космические корабли, а иногда даже людей, чтобы собрать образцы и сделать наблюдения, но как вы изучаете то, что не видите?

Люди, естественно, способны слышать и видеть только в определенных конкретных частотах и ​​длинах волн. Однако в космосе множество волн, которые находятся за пределами нашего узкого восприятия, так как же мы их изучаем?

Мы переводим, переделываем и адаптируем их в соответствии с нашими потребностями, чтобы мы могли наблюдать и анализировать их. Науку просто невозможно остановить!

Почему звук не может путешествовать в космосе?


Звуковые волны — это не что иное, как колебания воздуха. Когда эти вибрации находятся в диапазоне от 20 Гц до 20 кГц, мы можем их услышать!

Звуковые волны в основном распространяются путем вибрации частиц в среде, т. е. молекул воздуха. Эти колебания передаются последовательным частицам в среде, что означает, что звуковые волны не могут перемещаться без среды. Причина, по которой мы не можем слышать звук в пространстве, обычно связана с отсутствием такой среды.

Мы можем утверждать, что в космосе есть облака газов, которые могут действовать как среды, но газы не присутствуют равномерно по всему пространству. Кроме того, газы обычно менее плотны в космосе, что означает, что между частицами слишком большие расстояния, поэтому вибрации не могут эффективно распространяться.

Проще говоря, звук не может путешествовать в космосе.

Как ученые слышат звуки Вселенной?

Начнем с того, что ученые фактически не могут «слышать» космические звуки, но у них есть средства для изучения космических волн, преобразуя их в звуковые волны.

«Сонификация» — это преобразование любых не слуховых данных в звук и аналогично визуализации данных.

Метод преобразования называется Сонификации, если он соответствует определенным критериям:

  • Воспроизводимость, т. е. Важные элементы данных остаются неизменными, независимо от условий, при которых проводится Сонификация.
  • Данные должны обрабатываться ультразвуком таким образом, чтобы их могли различить даже неподготовленные слушатели.

Космос полно радиоволн, плазменных волн, магнитных волн, гравитационных волн и ударных волн, которые могут путешествовать в космосе без среды. Эти волны регистрируются приборами, которые могут воспринимать эти волны, и данные передаются на наземные станции, где волны кодируются звуком.

Любой слышимый звук имеет такие переменные, как частота, амплитуда и ритм. Различные пространственные волны согласуются с различными свойствами звука (частотой, амплитудой и т. д.) в разных пропорциях, чтобы получить звук.

НАСА имеет прибор под названием EMFISIS (Electrical and Magnetic Field Instrument Suite and Integrated Science), подключенный к двум спутникам Van Allen Probes, зондовый космический аппарат, который измеряет магнитные и электрические помехи, когда они окружают Землю. Есть три электрических датчика, которые измеряют электрические возмущения и три магнетрона, которые измеряют колебания в магнитных полях. Некоторые из электромагнитных волн лежат в диапазоне слышимых частот, который служит для ученых основой для перевода оставшихся записанных частот в слышимый диапазон для интерпретации данных. Эти знания о волнах и их тонах помогают нам понять схему, которой они следуют. Кроме того, это только волны, которые находятся вблизи атмосферы Земли.

Какие звуки издают планеты в космосе


Хотя научное сообщество уже давно бурлит вопросами, связанными с Солнцем и его недрами, мы также знаем, что ни один спутник или космический аппарат не может долететь до Солнца, не сгорев. Научное наблюдение за солнцем также практически невозможно из-за его яркости. Это оставляет нам возможность наблюдать полевые волны, которые окружают солнце, и естественные вибрации, которые возникают от солнца.

Поверхность солнца является конвективной из-за звуковых волн очень низкой амплитуды. НАСА создало солнечные звуки из данных, собранных в течение 40 дней с помощью гелиосферной обсерватории (SOHO) Michelson Doppler Imager (MDI). Эти данные были обработаны следующим образом:

  • Данные о допплеровской скорости, полученные из MDI (доплеровского тепловизора Майкельсона), были усреднены по солнечному диску Солнца.
  • Обработка проводилась таким образом, чтобы устранить эффекты движения космического аппарата и паразитные шумы.
  • Затем был использован фильтр для выбора чистых звуковых волн.
  • Наконец, данные были интерполированы, так что все недостающие места были покрыты.
  • Затем данные были масштабированы для соответствия диапазону слышимых частот.

Это всего лишь один метод, принятый учеными для изучения звуков космоса. Есть также датчики, которые измеряют электрическую активность пыли, когда комета проходит мимо космического корабля!

«Гигантские прыжки» — это мелодия, составленная НАСА, которая описывает объем научной активности, связанной с Луной. Каждый звук в музыке существует благодаря данным, которые мы получили. Чем выше шаг в данном разделе, тем больше научных публикаций за этот период.

Да, и космические волны далеки от того, что вы обычно слышите в кино. Не ждите грохота и свиста. Космические волны больше похожи на сирены и свистки!


Насколько полезны звуки космоса?

Десятки космических звуков прошли через процесс сонификации. Слуховая система человека уникальна в том смысле, что она может идентифицировать паттерны, поэтому мы распознаем, является ли определенный тон повторяющимся или нет. Эта возможность была использована учеными для разделения и идентификации данных.

Если вы посмотрите на набор данных и расшифруете его, было бы более разумно, если бы вы могли его услышать, а не анализировать экран всплесков или диаграмму. Вот почему Сонификация стала популярным методом анализа космических явлений.

Роберт Александр, специалист по ультразвуковой обработке в Исследовательской группе по солнечной и гелиосферной среде в Университете Мичигана, во время изучения солнечных данных услышал гул, частота которого соответствовала периоду вращения Солнца. Этот звук подразумевал, что он, вероятно, будет периодическим. Это помогло ему сделать вывод, что существуют как быстрые, так и медленные солнечные ветры, которые периодически обрушиваются на землю.


Это только один пример; сонификация также показала, что юпитерианская молния существует. Это помогло исследовать ударные волны, которые формируются, когда магнитное поле планеты препятствует солнечному ветру, и многое другое!

Ученые превратили эти звуки в музыку, применив цифровые технологии.

Эта практика сонификации была использована для инновационного сотрудничества между Европейской южной обсерваторией (ESO) стипендиатом Крисом Харрисоном и слабовидящим астрономом Университета Портсмута доктором Николасом Бонном. Доктор Бонн создал мюзикл, в котором он дал осязаемые формы звездам и черным дырам. Он и его команда переосмыслили звезды, связав громкость звука с яркостью звезды, тон с цветом звезды и так далее.

Это шоу было в основном попыткой открыть чудесный космический мир для аудитории, которая может иметь проблемы со зрением, учитывая, что астрономия в значительной степени связана с зрением и наблюдением.

Наука всегда была многомерной, и человеческое любопытство привело к некоторым поистине удивительным открытиям. Изучение пространства посредством сонификации — это один из таких прорывов, который дал нам силы и позволил заглянуть в глубины космоса, даже несмотря на то, что нам не хватает способности «смотреть» на вселенную.

Источник: new-science.ru

Человек воспринимает звук в результате интерпретации мозгом сигнала из окружающего мира звуковыми сенсорами — ушами. Барабанная перепонка в ухе улавливает высокочастотные изменения давления воздуха, а мозг обрабатывает полученный сигнал. У звука, который слышит человек, существует диапазон — от 16 до 20 кГц. Все, что выше и ниже этих значений, недоступно для человеческого уха.


Звуковые волны — механические колебания, которые рождаются в среде в результате давления на ее частицы. Благодаря наличию кислорода среда на Земле упругая, а череда ее сжатий и растяжений позволяет звуковой волне распространяться в ней. В космосе ситуация иная: отсутствие кислорода делает невозможным распространение звука в привычном понимании.

Как звучит пульсар

В январе 2018 года радиотелескоп «Аресибо» уловил излучение пульсара PSR B1957 + 20 из созвездия Стрелы в момент супервспышки. Поток энергии уничтожил часть поверхности красного карлика, компаньона пульсара по двоичной системе «Черная вдова».


Пульсар — космический источник радио-, оптического, рентгеновского или гамма-излучений, приходящих на Землю в виде периодических всплесков, импульсов. Пульсары представляют собой вращающиеся нейтронные звезды с магнитным полем, которое наклонено к оси вращения, что вызывает модуляцию приходящего на Землю излучения.



Астрофизики из Университета Торонто конвертировали гамма-излучение пульсара в звук, который способен услышать человек, — и получили красивую мелодию, в которой красный карлик будто просит о помощи.

Музыкальное творчество астрофизиков

Чтобы люди услышали излучение небесных тел, ученым приходится транспортировать электромагнитные волны в звуковые. Результатом таких преобразований является творчество астрономов и физиков, а не хаотичный набор звуков, как в случае с записью падения камня, проезжающего поезда или шума моря.

Электромагнитные волны и другие излучения преобразуют в звук по правилам, которые придумывают сами астрофизики. В них мощность излучения или длина волны соответствуют звуку на определенной частоте или высоте. Этот процесс похож на создание светомузыки — когда тому или иному звуку соответствуют вспышка света или затухание.

Впервые астрофизики преобразовали излучение космических тел в звук в 1996 году. Тогда зонд «Галилео» передал на Землю запись электромагнитных волн, излучаемых крупнейшей планетой в Солнечной системе — Юпитером. Спустя десять лет ученые предположили, что в действительности источником волн стали заряженные частицы на спутнике газового гиганта — Ганимеде.


В январе космический аппарат «Юнона» отправил на Землю запись, которая рассказала о планете куда больше, чем запись излучения, исходящего из окрестностей газового гиганта 12-летней давности.


«Галилео» — автоматический космический аппарат НАСА, созданный для исследования Юпитера и его спутников. Аппарат был запущен в 1989 году. В 1995 году он вышел на орбиту Юпитера и проработал до 2003 года. Это был первый аппарат, вышедший на орбиту Юпитера, изучавший планету длительное время и сбросивший в ее атмосферу спускаемый зонд. Станция передала свыше 30 Гб информации, включая 14 тыс. изображений планеты и спутников, а также уникальную информацию об атмосфере Юпитера. Название станции связано с тем, что именно Галилео Галилей открыл четыре спутника Юпитера в 1610 году.

«Юнона», от англ.


no, Jupiter Polar Orbiter
— автоматическая межпланетная станция НАСА, запущенная 5 августа 2011 года для исследования Юпитера. Это второй проект в рамках программы «Новые рубежи». Выход аппарата на полярную орбиту газового гиганта произошел 5 июля 2016 года. Целью миссии является изучение гравитационного и магнитного полей планеты, а также проверка гипотезы о наличии у Юпитера твердого ядра. Кроме того, аппарат должен заняться исследованием атмосферы планеты — определением содержания в ней воды и аммиака, а также построением карты ветров, которые могут достигать скорости в 618 км/час. «Юнона» продолжит изучение районов южного и северного полюсов Юпитера, начатое АМС «Пионер-11» в 1974 году и АМС «Кассини» в 2000 году.


Зонд записал звук, который рождается в точке соприкосновения магнитных полей Юпитера и Солнца. Это область в пространстве, где заряженные частицы подлетают к Юпитеру на огромных скоростях и начинают замедляться, образуя зону повышенной плотности. Исследовательский аппарат записал звук перехода, который длился около двух часов.

Другим звуком сопровождалось прохождение гелиево-водородной плазмы или солнечного ветра через магнитное поле планеты, при котором частота и высота звука зависели от плотности плазмы.


s/spookyspacesounds">

Звук второй по размерам планеты в Солнечной системе, Сатурна, в 1977 году записал зонд «Кассини», находясь в 377 млн км от газового гиганта. Источником радиоволн ученые назвали области полярного сияния на полюсах планеты, пик которого приходится на период перед рассветом и за несколько минут до полуночи. Энерговыделения при этом варьируются от 7 до 124 ГВт, а полярное сияние длится от нескольких минут до часа. Для сравнения, энерговыделение четырех атомных блоков Чернобыльской АЭС составляло 4 ГВт.

Исходящее от Сатурна излучение отличается от радиоволн Юпитера сложной структурой — большим количеством высоких и низких тонов, а также частым изменением частоты звучания.

Звук пролетающей кометы

14 февраля 2011 года космический аппарат НАСА Stardust записал звук пролетающей кометы Tempel 1. Прибор, установленный на спутнике, записал звук ударов о корпус частиц пыли и небольших камней, в потоке которых летела комета. На аудиозаписи слышны 5 тыс. ударов, зафиксированных за 11 минут — столько времени аппарат и комета находились максимально близко друг к другу.

Спустя 3,5 года года аппарат «Филы» с зонда «Розетта» высадился на поверхность кометы Чурюмова — Герасименко и с помощью прибора Rosetta Plasma Consortium (RPC) записал колебания электромагнитных волн в магнитном поле кометы. Комета звучит на частоте 40–50 мГц, а человеческое ухо не способно его воспринять. Чтобы сделать излучение слышимым, исследователи с помощью магнитометра транспонировали эти данные в звук, увеличив их частоту в 10 тыс. раз.  В результате получилось странное чириканье и щелчки.

Спустя год астрофизикам удалось понять, почему комета издает такой звук: дело в потоке заряженных частиц (плазмы), которые бомбардируют комету и вызывают необычные вибрации при прохождении через ее магнитное поле.

Возможно, самый жуткий звук из всех, что можно услышать в космосе, — шум черной дыры. Его воссоздал профессор Массачусетского технического университета Эдвард Морган на основе рентгеновского излучения, исходящего от самой большой черной дыры в Млечном пути — GRS 1915+105 в созвездии Орла.

При транспонировании излучения этого микроквазара в звук получается нота си-бемоль, но находится она на 57 октав ниже обычного звучания и на 47 октав ниже уровня, который может воспринимать человек.

В космосе множество загадок, и многие из них связаны с излучением. Например, астрофизики до сих пор не могут понять природу радиовспышек — ярких импульсов радиоизлучения длительностью в несколько миллисекунд.

Они были зафиксированы впервые в 2007 году группой Дункана Лоримера на австралийском телескопе Паркс. При этом наука не могла точно ответить на вопрос, откуда эти сигналы поступают и что является их источником. Ученые выдвигали множество теорий происхождения этого явления — от излучения сильно намагниченными нейтронными звездами в результате взрыва в сверхмассивных черных дырах до сигналов далеких цивилизаций. Однако до сих пор доподлинно известно лишь то, что они не с Земли.

Вероятно, перевод излучения в звук поможет ответить на некоторые вопросы о происхождении этого и многих других явлений, а мы услышим еще более странные и таинственные звуки Вселенной.

Источник: hightech.fm

Какие звуки издают планеты в космосе

«Музыка» космоса — известный метод исследований, при котором различные космические объекты подвергают «озвучке». Космос наполнен электромагнитными (и не только) волнами самых разных частот: рентгеновское и гамма- излучение, ультрафиолет, видимый свет, инфракрасное излучение, радиоволны. Некоторые волны мы можем усилить и перевести в звуковые сигналы.

Преобразовывать космическое излучение в звуковые волны можно для двух целей:

  • сбора информации в повторяющихся паттернах звука и поиск закономерности, т.е. получение определенного набора данных для исследований;
  • получения эстетическое удовольствие.

Ученые постоянно выкладывают сборники космической «музыки» (не приходится сетовать на редкий выход новых «альбомов»), поэтому каждый может составить собственную картотеку звуков вселенной, заняться научными поисками, сделать ремикс. Или просто послушать концерт в исполнении Марса.

«Дыхание» вселенной

Гравитационные волны, зарегистрированные недавно обсерваторией LIGO, преобразовали в звуковые. Колебания частоты звука соответствует колебанию частоты гравитационных волн.

Ученым Института теоретической физики Ватерлоо так понравился этот звук, что на его основе они записали блюз.

Шум из далекого космоса

Так называемые быстрые радиовсплески (FRB) — это единичные радиоимпульсы длительностью несколько миллисекунд неизвестной природы, регистрируемые радиотелескопами по всему миру. Типичная энергия всплесков, по оценкам, эквивалентна выбросу в космическое пространство энергии, испускаемой Солнцем в течение нескольких десятков тысяч лет.

Впервые и абсолютно случайно быстрый радиовсплеск был обнаружен в феврале 2007 года. Потребовалось 10 лет исследований, чтобы установить источник импульсов, который находится в карликовой галактике в 3 млрд световых лет от Земли. Однако что именно вызывает всплески длинных волн в конце электромагнитного спектра, остается предметом дискуссий.

Как «звучат» все планеты Солнечной системы

Как распространяется звук на поверхности наших ближайших соседей? Да, у Меркурия нет атмосферы, и на его поверхности было бы очень тихо. Тем не менее можно услышать вибрации, если прижать ухо к земле. Напротив, у Венеры очень плотная атмосфера из углекислого газа и азота. Звуковые волны могут ощущаться приглушенными, потому что они проходят через нечто более плотное, чем воздух, но менее плотное, чем вода.

На Марсе очень тихо, а вот Юпитер, вероятно, является одной из самых громких планет в солнечной системе — у газового гиганта много облачных слоев, поэтому любой шум создаст много отскоков. Теоретически один звук будет иметь многочисленные эхо-сигналы. Эти и другие звуки можно послушать в ролике выше.

Звуки Красной планеты

Подробнее о Марсе. Ролик записан в период с января 2004 года по апрель 2015 года и демонстрирует путь в 42,2 километра.

Микрофон Opportunity использовался на приборе, предназначенном для измерения химического состава горных пород и почвы путем их испарения по технологии лазерно-искровой эмиссионной спектрометрии. Лазер «выстреливает» в мишень, которая «взрывается» в виде плазмы и создает очень резкую волну давления, акустический сигнал которой пропорционален массе разрушаемого образца. Использование микрофона для настройки, калибровки и фокусировки лазера помогает улучшить работу инструмента, но в то же время позволяет записать множество новых звуков с поверхности Красной планеты.

Лебединая песнь Cassini

Аппарат Cassini, который скоро пожертвует собой ради науки, записал звуки ударов сотен кольцевых частиц в секунду, которые испарялись в электрически возбужденный газ.

Звуки грозы на Сатурне

Cassini также отправляет ученым звуки, передающие хаотичное движение глубоко в атмосфере под облаками Сатурна.

Оркестр TRAPPIST-1

Канадские астрофизики озвучили движение экзопланет в системе TRAPPIST-1. Орбиты планет этой системы лежат близко к центральной звезде — так, год на шестой планете длится чуть больше 12 дней. Орбиты небесных тел известны лишь с некоторой точностью, известно, что периоды планет соотносятся попарно почти как целые числа — резонансы. Например, резонанс 2:3 означает, что на три оборота одной планеты приходится в точности два оборота другой планеты.

Астрофизик Мэтт Руссо визуализировал и создал аудиозапись резонансов. Когда экзопланета совершает транзит перед звездой, играет нота, частота которой связана с периодом обращения небесного тела. Когда две планеты сближаются — звучит удар в барабан. Кроме того, в записи используются данные об изменениях в яркости звезды.

«Кошачье» мурлыканье кометы Чурюмова-Герасименко

Ученые Европейского космического агентства использовали свой корабль «Розетта», чтобы записать звук, издаваемый кометой Чурюмова-Герасименко вследствии колебания магнитного поля. Чтобы мы могли услышать этот звук, его частота была увеличена примерно в 10 000 раз.

Космические сонаты

Озвученная версия одного из самых мощных взрывов во вселенной — гамма-всплеска GRB 080916C. Воспроизводимые ноты представляют собой соответствие гамма-лучам, полученным космическим телескопом Fermi Gamma-ray Space Telescope.

Это видео является компиляцией 241 сверхновых J1 типа Ia, появившихся в результате взрывов белых карликов. Каждой сверхновой была назначена нота, которая игралась по следующим правилам:

  • громкость ноты — расстояние до сверхновой, причем более отдаленная сверхновая становилась тише и слабее;
  • протяженность — определялась параметрами светимости сверхновой;
  • инструмент, на котором играли ноту — сверхновые, расположенные в крупных галактиках, игрались на контрабасе, в то время как сверхновые, находящиеся в менее крупных галактиках, игрались на рояле.

Солнечный хорал

Вы слышите запись, сделанную в период с 1998 по 2010 гг. спектрометром на борту космического корабля Advanced Composition Explorer NASA, замерявшего скорость солнечного ветра. В общей сложности 88 840 сэмплов, собранных за 12-летний период, были сжаты для создания двух секунд аудио (файл был зациклен). 27-дневный солнечный период вращения звучит как шум с частотой около 68,5 Гц.

Последний аккорд сегодня сыграют ученые Бирмингемского университета, представившие аудиозаписи звучания древнейших звезд Млечного Пути, на основе данных, собранных космическим телескопом «Кеплер». Астрономы измерили акустические колебания нескольких древних звезд в скоплении M4 и на их основе воссоздали звуки.

Источник: habr.com

Не секрет для любого старшеклассника, изучающего астрономию, что в космосе звука нет как такового. Все просто: в космосе вакуум, и звук там существовать не может. Но ученые упорно ищут и записывают, воспроизводят и распространяют некие сигналы из космоса, звуки и даже космическую музыку. Как?

Звуки космоса

Первый звук из космоса был записан американским спутником Вояджер. После чего, Nasa даже выпустила альбом с «космической музыкой». Это электромагнитные волны, обработанные и наложенные на частоту звукового диапазона, которую слышит человеческое ухо. Результат превзошел все мыслимые ожидания. Потрясающие, завораживающие «стоны» и «вздохи» космоса поистине заслуживают называться «космической музыкой».

В настоящее время, профессионалы более чем в 26 странах мира используют музыкальный поток, созданный благодаря высоким технологиям, для глубокого расслабления.

Джеффри Томпсон. NASA КОСМИЧЕСКАЯ МУЗЫКА. Это в прямом смысле «Первобытные Звуки» записанные в открытом космосе космическими аппаратами Вояджер 1 и 2 при прохождении в магнитных полях планет солнечной системы Юпитера, Сатурна, Урана и Нептуна. Они очень похожи на звуки сакральных песнопений, тибетских поющих чаш, голоса кальмаров, китов и дельфинов. Исследования показали, что эти звуки оказывают плодотворное влияние и гармонизацию нашего внутреннего состояния. Эти частоты есть следствие взаимодействия солнечного ветра и ионосферы планет. Электромагнитные колебания были переведены в звуковые, и оказалось, что они лежат в слышимом диапазоне (20-20000 Гц). NASA называет их «Акустическими Волнами», которые формируют настоящую «Музыку Сфер».

Согласно НАСА, на Земле существуют естественные радиоизлучения. Представители агентства объяснили:»Если бы у людей были радиоантенны вместо ушей, мы бы слышали удивительную симфонию странных звуков, которые исходят с нашей планеты. Ученые называют их «атмосферными помехами» или «атмосфериками».

Они звучат, как фоновая музыка из научно-фантастического фильма, но это реальные звуки. Радиоизлучения являются естественными, и хотя мы часто даже не осознаем их присутствия, они вокруг нас все время. Так, например, молнии и землетрясения могут испускать пугающие радиопомехи и странные звуки.

Как говорится в докладе исследователей из Университета Айовы (США), феномен, получивший название «хор Земли», возникает в результате того, что магнитные пояса Земли захватывают частицы солнечного ветра, воспроизводят звуки и посылают их в открытый космос.
Как отмечается, низкочастотные электромагнитные колебания услышать невозможно, так как после Большого взрыва во Вселенной образовался вакуум, в котором, как известно, звуковые волны не распространяются. Поэтому, ученые пошли на небольшую хитрость и преобразовали эти импульсы в сигналы доступные человеческому уху. Данные звуки, похожие на свист и щебетание птиц, и презентовали специалисты NASA в виде «саундтрека» в мировой сети.

Ученые отмечают, что об этих звуках на самом деле знали на протяжении уже многих десятилетий. Их могли ловить радиолюбители на своих приемниках, они слышали свист, похожий отдаленно на птичий щебет. Подобное «пение» можно также услышать, если снять защитный шлем скафандра, находясь на орбите.
Впрочем, как выясняется, «поет» не только Земля. Специалисты НАСА даже выпустили целый диск с космической музыкой. На нем есть и шум пульсара, похожий на тарахтение вертолета, и гудящее биение Солнечных протуберанцев. А при прослушивании спутника Сатурна – Ио кажется, даже при желании можно различить шепот похожий на человеческую речь.

Источник: dosoaftor.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.