Изменение климата стало важной проблемой для многих людей во всем мире, особенно для молодых людей, которые чувствуют, что их будущее находится под угрозой из-за последствий изменения климата.
Чтобы бороться с изменением климата, нам необходимо понимать, что такое изменение климата и что оно означает для всей планеты и для нас в нашей повседневной жизни.
Большая часть повышения глобальной температуры с 1950 года связана с деятельностью человека
Хотя есть некоторые причины изменения климата, которые являются естественными, например извержения вулканов, причина, по которой мы сейчас сталкиваемся с климатическим кризисом, прежде всего связана с деятельностью человека.
Основные причины изменения климата в результате деятельности человека включают:
- сжигание ископаемого топлива для получения энергии;
- интенсивное земледелие и сельское хозяйство для производства мяса и сельскохозяйственных культур;
- уничтожение лесов для освобождения места для новых землепользований.
При всей этой деятельности выделяются парниковые газы, которые удерживают тепло в атмосфере, вызывая повышение глобальной температуры.
Средняя температура Земли определяется парниковым эффектом
Парниковые газы – это газы, которые удерживают тепло в атмосфере. Когда солнечные лучи проходят через атмосферу, парниковые газы пропускают коротковолновое излучение, вызывающее нагрев Земли. После нагрева планеты, она начинает отдавать тепловое инфракрасное излучение, которое является длинноволновым. Парниковые газы задерживают это излучение, не давая ему полностью улетучиться в космос.
Без парниковых газов средняя температура на Земле была бы слишком низкой для поддержания жизни. Однако, когда мы добавляем больше парниковых газов в атмосферу в результате деятельности человека, это заставляет большую часть солнечной энергии задерживаться в атмосфере, нагревая Землю и вызывая глобальное потепление.
К парниковым газам относятся углекислый газ (CO2), который обычно образуется при сжигании ископаемого топлива, и метан (CH4), который вырабатывается домашним скотом, например коровами, при переваривании пищи.
Глобальная температура повысилась примерно на 1 градус за последнее столетие
За последние 100 лет средняя температура на Земле повысилась на 1 градус. В нашей повседневной жизни мы можем не заметить большой разницы, если температура повысится на один градус, но это повышение температуры оказало значительное влияние на планету.
Температура продолжает расти, и последние пять лет в совокупности являются самыми теплыми годами за всё время наблюдений. В настоящее время страны всего мира работают над достижением целей, изложенных в Парижском соглашении по климату, которые направлены на поддержание глобального повышения температуры ниже 2 градусов и по возможности ограничения его значением 1,5.
США являются вторым по величине источником выбросов CO2 в атмосферу, Россия – четвёртым
В США проживает всего 4,4% населения мира, но при этом они являются одним из крупнейших источников выбросов парниковых газов. Если бы все в мире так сжигали ископаемое топливо и жили так, как живут в США, то потребовалось бы четыре Земли, чтобы обеспечить необходимые ресурсы.
По выбросу парниковых газов Россия занимает 4-е место в мире, и это в основном связано с выбросами в энергетике, сельском хозяйстве, промышленности и транспорте.
Арктический морской лед и ледники тают
Одним из наиболее известных последствий глобального потепления является таяние морского льда и ледников в Арктике.
В 1910 году в Национальном парке Глейшер в штате Монтана в США насчитывалось примерно 150 ледников. Когда в 2017 году был произведён перерасчёт, их число упало до 26.
Тающий лед вызывает повышение уровня океана и всё в большей степени будет влиять на людей, которые живут в районах, где запасы питьевой воды зависят от таяния ледников.
Ожидается, что до конца нынешнего века уровень океана поднимется на 2-3 метра
Поскольку ледники в Арктике, части Антарктики и горных массивах продолжают таять, то уровень мирового океана будет повышаться. Это повлияет на многие страны мира, особенно на низменные районы с высоким риском обширных наводнений, в том числе в некоторых частях России.
Уничтожение тропических лесов – основная причина выброса углекислого газа
Как известно, деревья и леса являются поглотителями углекислого газа. Когда люди вырубают тропические леса или их уничтожают лесные пожары, в атмосферу выбрасывается большое количество углекислого газа. Это способствует парниковому эффекту и увеличивает концентрацию углекислого газа в атмосфере, что еще больше способствует глобальному потеплению.
Коралловые рифы разрушаются
За последние 30 лет погибла половина коралловых рифов в мире. Человеческая деятельность, а также повышение температуры воды в значительной степени способствовали обесцвечиванию кораллов. Когда вода становится слишком теплой, одноклеточные водоросли зооксантеллы, живущие в тканях коралла, исчезают. Большую часть своей энергии коралл получает именно за счёт этих водорослей. Когда водоросли исчезают, коралл перестаёт расти, обесцвечивается и становится уязвимым для болезней.
Это влияет на рыб, моллюсков и множество других видов, для которых эти кораллы являются домом. В период с 2014 по 2017 год в результате обесцвечивания Большого Барьерного рифа в сочетании с воздействиями циклонов погибло около 50% его кораллов.
По мере повышения глобальной температуры некоторые виды с большой вероятностью вымрут
Изменение климата увеличит существующие риски и создаст новые риски как для природных, так и для антропогенных систем.
Эти риски распределяются неравномерно и, как правило, выше для обездоленных людей и сообществ. Прибрежные районы будут уязвимы для повышения уровня океана, а некоторые островные государства, такие как Мальдивы, могут полностью исчезнуть.
Большая часть видов сталкивается с повышенным риском исчезновения из-за изменения климата. Например, большинство растений не могут естественным образом переместиться туда, где они смогут сохраниться. Большинство мелких млекопитающих и пресноводных моллюсков также не смогут пережить эти изменения.
Подписывайтесь на канал Глубины космоса, будет много интересного!
Источник: zen.yandex.ru
Что такое климат и погода
Под климатом принято понимать усреднённое значение погоды за длительный промежуток времени — нескольких десятилетий.
Под погодой принято понимать совокупность физических свойств наземного слоя атмосферы в коротком промежутке времени — часы, сутки, недели.
Если погода — явление изменчивое, то климат — явление статистически устойчивое, характерное для конкретной местности. И кратковременное отклонение погоды от климатической нормы, как засушливое лето, не говорит об изменении климата в сторону потепления. Для выявления изменений климата нужен значимый тренд характеристик атмосферы за длительный период времени.
К основным глобальным геофизическим циклическим процессам, формирующим климатические условия на Земле, относятся:
- теплооборот;
- влагооборот;
- общая циркуляция атмосферы.
Климат изучается наукой климатологией. Понятие «климат» относится и к другим небесным телам, имеющим атмосферу, — планетам, их спутникам, астероидам.
Формирование погоды в атмосфере Земли
Нижний слой атмосферы нагревается от Земли, здесь собирается водяной пар и образуются почти все виды облаков. Процессы, происходящие в тропосфере — формирование и перемещение воздушных масс, образование циклонов и антициклонов, появление облаков и выпадение осадков, — определяют погоду и климат у земной поверхности.
С точки зрения формирования погоды и климата атмосфера выполняет ряд важных функций:
- Перераспределяет тепло на планете и влажность воздуха, формирует ее тепловой и режим влажности, уравновешивает сезонные колебания, годовой и суточный ход температуры и влажности.
- Участвует в круговороте воды в природе, процессах фотосинтеза, обмена веществ и энергии в биосфере, в процессах трансформации твердого покрова Земли и формировании почвы.
- Защищает земную поверхность от негативного воздействия на живые организмы ультрафиолетового, рентгеновского и космического излучений, от космической «пыли».
- Распространяет звуковую энергию.
- Поглощает природные и антропогенные загрязнения и освобождается от них путем самоочищения.
На образование погоды в земной оболочке влияют природный факторы и те, что вызваны деятельностью людей.
Естественные факторы:
- солнечная радиация;
- характер поверхности (снег, вода, почва и т.п.);
- атмосферная циркуляция (циклоны, антициклоны, атмосферные фронты, пассаты, муссоны и т.п.).
Антропогенные факторы, связанные с деятельностью человека:
- загрязнение воздуха промышленными выбросами (смог);
- уничтожение лесов, мелиорация, ирригация, создание искусственных водоемов.
На характер погоды оказывают влияние:
- облачность;
- наличие туманов и осадков;
- длительность инсоляции;
- электрическое состояние воздуха и др.
Несмотря на непрерывно изменяющееся состояние погоды, выраженность отдельных ее компонентов характеризуется периодичностью (суточный, сезонный и годовой ход). Наиболее резкие изменения наблюдаются при прохождении переходных зон между воздушными массами с разными физическими свойствами — атмосферных фронтов.
От характера и интенсивности солнечной радиации зависит режим циркуляции воздушных масс. Неодинаково нагретые над поверхностью суши и океана воздушные массы образуют и разрушают циклоны (атмосферные возмущения с пониженным давлением в центре и вихревым движением воздуха) и антициклоны (области повышенного атмосферного давления с максимумом в центре). Циклон отличается неустойчивой ненастной ветреной погодой с осадками, перепадами уровней давления, температуры и высокой электропроводностью воздуха. Антициклон — сухой, ясной, безветренной погодой, какая бывает жарким летом или морозной зимой.
К основным факторам, которые характеризуют погоду, относятся:
- Гелиофизические — интенсивность солнечной радиации и солнечная активность (солнечные пятна, активные области, хромосферные вспышки, радиоизлучения).
- Геофизические — напряженность планетарного и аномального геомагнитного полей, геомагнитная активность (геомагнитные бури, импульсы).
- Электрическое состояние атмосферы — напряженность электрического поля, электропроводность воздуха, атмосферная ионизация, электромагнитные колебания и разряды.
- Метеорологические.
- Синоптические явления — облачность, осадки.
- Химический состав тропосферы — концентрация кислорода, углекислого газа, загрязнений.
Метеорологические факторы:
- температура воздуха, радиационная температура поверхностей;
- влажность воздуха;
- направление и скорость движения воздуха;
- атмосферное давление.
Роль атмосферы в формировании климата
Подвижная атмосфера Земли — центральный компонент климатической системы. Температура, влажность воздуха, осадки, ветер — все это характеризует погоду и ее усредненный многолетний режим, т.е климат. Треть количества солнечной энергии, поступающей на верхнюю границу земной оболочки, отражается обратно в мировое пространство, 13%, в том числе ультрафиолетовая радиация, поглощается озоносферой, 7% — остальными слоями, менее половины всего количества достигает земной поверхности.
На величину рассеянной радиации влияют не только высота Солнца над горизонтом, но и другие факторы:
- прозрачность атмосферы;
- облачность, т.е. содержание в ней водяных паров;
- запыленность;
- общее количество углекислоты.
Первоисточником водяного пара в атмосфере является Мировой океан, с поверхности которого ежегодно испаряется слой воды метром в толщину. Часть этой влаги воздушными потоками направляется в сторону материков. В областях переменно-влажного климата осадки увлажняют почву, во влажных — создают запасы грунтовых вод. Облака и туманы, формирующиеся в тропосфере, обеспечивают влагой почву, тем самым определяя развитие флоры и фауны местности.
Атмосферное давление имеет большое значение для формирования ветра. Ветер, как рельефообразующий фактор, прямым образом воздействует на животный и растительный мир: может подавить рост растений и одновременно способствовать переносу семян. Ветер и главный регулятор морских течений.
Клиническая классификация погоды (по Федорову)
Медицинская классификация климато-погодных условий проводится для оценки их влияния на здоровье человека. Определяется степень благоприятности территорий для курортного лечения, возможности использования климатотерапии, определения возможности акклиматизации и оценки метеопатических (отрицательных) реакций у больных.
Г.П.Федоров выделил три типа погоды:
- Оптимальной (I тип) считается благоприятно влияющая и щадяще действующая на организм человека. Умеренно влажная или сухая с относительной влажностью воздуха (о.в.в.) 40-70%, маловетреная (до 3 мс), преимущественно солнечная с межсуточной изменчивостью температуры в пределах 2°С и атмосферного давления (а.д.) в пределах 4 гПа или 3 мм ртутного столба (рт.ст.).
- Раздражающая (II тип), или умеренно благоприятная: солнечная и пасмурная, сухая и влажная, колебания а.д. в течение суток не превышает 8 гПа или 6 мм рт.ст., температуры — 4°С, ветра — до 9 м/с, о.в.в. равна 70-90%.
- Острая (III тип), неблагоприятная. Дождевая (о.в.в. превышает 90%), пасмурная, циклоническая с силой ветра свыше 9 м/с. А.д. поднимается или падает более чем на 8 гПа, температура — более чем на 4°С.
Климатические зоны на территории России
Территория России простирается на тысячи километров с запада на восток по Евразии от крутых гор до низменностей, омывается морями трёх океанов, содержит огромное количество рек и озёр. Страна включает в себя почти все климатические зоны, которые есть на Земле — от жаркой субтропической до ледяной арктической.
На северо-западе страны — морской климат, при движении к центру он изменяется на континентальный и субтропический рядом с Чёрным морем, в Сибири резко континентальный, на Дальнем Востоке царствуют муссоны.
Земля делится на 4 условные основные зоны:
- полярную;
- умеренную;
- субтропическую;
- тропическую.
Природно-климатическое зонирование возникает из-за разного прогревания поверхности Солнцем. Основное деление происходит вдоль меридианов. Внутри России деление на 4 климатические зоны в основном совпадает с 20-м, 40-м, 60-м, 80-м меридианами.
- Тропическая — Юг России.
- Субтропическая — Запад и Северо-Запад, Приморье.
- Умеренная — южные районы Сибири и часть Дальнего Востока.
- Полярная — Якутия, северные районы Сибири и Дальнего Востока.
Причины изменения климата
Климат на планете формируется под влиянием Солнца. Из-за неравномерного нагревания земной поверхности образуются движущиеся в определенном направлении ветры и морские течения. При повышении солнечной активности отмечаются потепления и геомагнитные бури.
Естественными причинами климатических преобразований являются сдвиги планетарной орбиты, изменения геомагнитного поля, движения материковых и океанических плит, извержения вулканов. Все это способствовало циклическим колебаниям климата от ледниковых периодов до межледниковья.
В современную эпоху к естественным причинам добавились антропогенные. С начала XXI века воздействие на планету парникового эффекта в несколько раз превысило по интенсивности воздействие солнечной радиации.
«Парниковые» газы накапливаются в нижних слоях атмосферы. К ним относятся:
- Водяной пар участвует в образовании облачности. Естественный газ.
- Углекислый газ появляется в результате разложения органики и вулканических извержений, потребляется растительностью. Из-за деятельности человека количество его растет быстрее, чем успевают поглощать растения.
- Метан образуется при горении биологических отходов, добыче природного газа и каменного угля. Держится в атмосферных слоях несколько лет и создает эффект теплицы активнее, чем углекислый газ.
- Озон бывает стратосферным и тропосферным. Первый естественный и защищает планету от вредного солнечного ультрафиолета, второй образуется в результате промышленных выбросов и несет опасность для живых организмов.
«Парниковые» газы накапливаются в атмосфере в результате:
- сгорания топлива;
- использования аэрозолей;
- выброса отходов тяжелой промышленности;
- химической обработки сельскохозяйственных земель;
- животноводческой деятельности;
- вырубки лесов;
- свалок мусора и захоронений отходов.
Перечисление этих причин лишний раз доказывает факт: именно активная деятельность человека стала причиной выраженного характера изменения климата, глобального потепления.
Источник: wiki.fenix.help
Тепловой режим земной поверхности. Солнечная радиации, приходящая на Землю, нагревает главным образом ее поверхность. Термическое состояние земной поверхности является поэтому основным источником нагревания и охлаждения нижних слоев атмосферы.
Условия нагревания земной поверхности зависят от ее физических свойств. Прежде всего существуют резкие различия в нагревании поверхности суши и воды. На суше тепло распространяется в глубину преимущественно путем мало эффективной молекулярной теплопроводности. Суточные колебания температуры на поверхности суши распространяются, в связи с этим, только на глубину до 1 м, а годовые — до 10—20 м. В водной поверхности температура распространяется в глубину главным образом путем перемешивания водных масс; молекулярная теплопроводность имеет ничтожное значение. Кроме того здесь играет роль более глубокое проникновение радиации в воду, а также более высокая теплоемкость воды по сравнению с сушей. Поэтому суточные и годовые колебания температуры распространяются в воде на большую глубину, чем на суше: суточные — на десятки метров, годовые — на сотни метров. В результате тепло, приходящее и уходящее на земную поверхность, распространяется в более тонком слое суши, чем водной поверхности. Это значит, что суточные и годовые колебания температуры на поверхности суши должны быть гораздо больше, чем на поверхности воды. Так как от земной поверхности нагревается воздух, то при одинаковом значении солнечной радиации летом и днем температура воздуха над сушей будет выше, чем над морем, а зимой и ночью наоборот.
Неоднородность поверхности суши также сказывается на условиях ее нагревания. Растительный покров днем препятствует сильному нагреванию почвы, а ночью уменьшает ее охлаждение. Снежный покров предохраняет зимой почву от чрезмерной потери тепла. Суточные амплитуды температуры под растительным покровом будут, таким образом, уменьшены. Совместное действие растительного покрова летом и снежного зимой уменьшает годовую амплитуду температуры по сравнению с обнаженной поверхностью.
Крайние пределы колебания температуры поверхности суши следующие. В пустынях субтропиков температура может подняться до +80°, на снежной поверхности Антарктиды может опуститься до -90°.
На водной поверхности моменты наступления максимума и минимума температуры в суточном и годовом ходе смещаются по сравнению с сушей. Суточный максимум наступает около 15—16 час, минимум через 2—3 час после восхода Солнца. Годовой максимум температуры поверхности океана приходится в северном полушарии на август, годовой минимум — на февраль. Максимальная наблюдавшаяся температура поверхности океана около 27°, поверхности внутренних водных бассейнов 45°; минимальная температура соответственно —2 и —13°.
Тепловой режим атмосферы. Изменение температуры воздуха определяется несколькими причинами: солнечной и земной радиацией, молекулярной теплопроводностью, испарением и конденсацией водяных паров, адиабатическими изменениями и переносом тепла с массой воздуха.
Для нижних слоев атмосферы непосредственное поглощение солнечной радиации имеет небольшое значение, гораздо существеннее поглощение ими длинноволновой земной радиации. Молекулярной теплопроводностью нагревается воздух, непосредственно прилегающий к земной поверхности. При испарении воды затрачивается тепло, а следовательно, воздух охлаждается, при конденсации водяных паров тепло выделяется, и воздух нагревается.
Большое влияние на распределение температуры воздуха имеет адиабатическое изменение ее, т. е. изменение температуры без теплообмена с окружающим воздухом. Поднимающийся воздух расширяется; на расширение затрачивается работа, что приводит к понижению температуры. При опускании воздуха происходит обратный процесс. Сухой или не насыщенный водяными парами воздух адиабатически охлаждается каждые 100 м подъема на 1°. Воздух, насыщенный водяными парами, охлаждается при подъеме на меньшую величину (в среднем на 0°,6 на 100 м подъема), так как в этом случае происходит конденсация водяных паров, которая сопровождается выделением тепла.
Особенно большое влияние на тепловой режим атмосферы имеет перенос тепла вместе с массой воздуха. В результате общей циркуляции атмосферы все время происходит как вертикальное, так и горизонтальное перемещение воздушных масс, захватывающее всю толщу тропосферы и проникающее даже в нижнюю стратосферу. Первое называется конвекцией, второе — адвекцией. Это основные процессы, определяющие фактическое распределение температуры воздуха над поверхностью суши и моря и на разных высотах. Адиабатические процессы являются лишь физическим следствием изменения температуры в движущемся по законам циркуляции атмосферы воздухе. О роли переноса тепла вместе с массой воздуха можно судить по тому, что количество тепла, получаемое воздухом в результате конвекции, в 4000 раз больше, чем тепла, получаемого при излучении с земной поверхности, и в 500000 раз больше,
чем тепла, получаемого молекулярной теплопроводностью. На основании уравнения состояния газов температура с высотой должна понижаться. Однако при особых условиях нагревания и охлаждения воздуха температура может повышаться с высотой. Такое явление называется инверсией температуры. Инверсия возникает при сильном охлаждении земной поверхности в результате излучения, при стекании холодного воздуха в понижения, при нисходящем движении воздуха в свободной атмосфере, т. е. над уровнем трения. Температурные инверсии играют большую роль в циркуляции атмосферы и сказываются на погоде и климате. Суточный и годовой ход температуры воздуха зависят от хода солнечной радиации. Однако наступление максимума и минимума температуры запаздывает по отношению к максимуму и минимуму солнечной радиации. После полудня приток тепла от Солнца начинает уменьшаться, но температура воздуха некоторое время продолжает подниматься, потому что убыль солнечной радиации восполняется излучением тепла с земной поверхности. Ночью понижение температуры продолжается до восхода Солнца в связи с земным излучением тепла (рис. 11). Аналогичная закономерность относится и к годовому ходу температуры. Амплитуда колебаний температуры воздуха меньше, чем земной поверхности, причем с удалением от поверхности амплитуда колебаний естественно уменьшается, а моменты максимума и минимума температуры все больше и больше запаздывают. Величина суточных колебаний температуры уменьшается с увеличением широты места и с увеличением облачности и осадков. Над водной поверхностью амплитуда значительно меньше, чем над сушей.
Если бы земная поверхность была однородна, а атмосфера и гидросфера неподвижны, то распределение тепла по поверхности определялось бы только поступлением солнечной радиации, и температура воздуха постепенно убывала бы от экватора к полюсам, оставаясь одинаковой на каждой параллели. Такая температура называется солярной.
Действительные температуры зависят от характера поверхности и межширотного обмена тепла и существенно отличаются от солярных Средние годовые температуры на разных широтах в градусах показаны в табл. 1.
Наглядное представление о распределении температуры воздуха на земной поверхности показывают карты изотерм — линий, соединяющих пункты с одинаковыми температурами (рис. 12, 13).
Как видно из карт, изотермы сильно отклоняются от параллелей, что объясняется рядом причин: неодинаковым нагреванием суши и моря, наличием теплых и холодных морских течений, влиянием общей циркуляции атмосферы (например, западным переносом в умеренных широтах), влиянием рельефа (барьерное влияние на движение воздуха горных систем, скопление холодного воздуха в межгорных котловинах и др.), величиной альбедо (например, большим альбедо снежно-ледовой поверхности Антарктиды и Гренландии).
Абсолютный максимум температуры воздуха на Земле наблюдается в Африке (Триполи) — около +58°. Абсолютный минимум отмечен в Антарктиде (—88°).
На основании распределения изотерм выделяют тепловые пояса на земной поверхности. Тропики и полярные круги, ограничивающие пояса с резкой сменой режима освещенности (см. гл. 1), являются в первом приближении и границами смены теплового режима. Так как действительные температуры воздуха отличаются от солярных, то за тепловые пояса принимают характерные изотермы. Такими изотермами являются: годовая 20° (граница резко выраженных сезонов года и малой амплитуды температуры), самого теплого месяца 10° (граница распространения леса) и самого теплого месяца 0° (граница вечного мороза).
Между годовыми изотермами 20° обоих полушарий расположен жаркий пояс, между годовой изотермой 20° и изотермой самого
теплого месяца 10° — два умеренных пояса, между изотермами самого теплого месяца 10 и 0° — два холодных пояса и от изотермы самого теплого месяца 0° до полюсов — два пояса мороза.
—Источник—
Богомолов, Л.А. Общее землеведение/ Л.А. Богомолов [и д.р.]. – М.: Недра, 1971.- 232 с.
Предыдущая глава ::: ::: Следующая глава
Источник: big-archive.ru
Строение атмосферы
По вертикали А. имеет слоистую структуру, определяемую гл. обр. особенностями вертикального распределения темп-ры (рис.), которое зависит от географич. положения, сезона, времени суток и т. д. Нижний слой А. – тропосфера – характеризуется падением темп-ры с высотой (примерно на 6 °C на 1 км), его высота от 8–10 км в полярных широтах до 16–18 км в тропиках. Благодаря быстрому убыванию плотности воздуха с высотой в тропосфере находится ок. 80% всей массы А. Над тропосферой располагается стратосфера – слой, который характеризуется в общем повышением темп-ры с высотой. Переходный слой между тропосферой и стратосферой называется тропопаузой. В нижней стратосфере до уровня ок. 20 км темп-ра мало меняется с высотой (т. н. изотермич. область) и нередко даже незначительно уменьшается. Выше темп-ра возрастает из-за поглощения УФ-радиации Солнца озоном, вначале медленно, а с уровня 34–36 км – быстрее. Верхняя граница стратосферы – стратопауза – расположена на выс. 50–55 км, соответствующей максимуму темп-ры (260–270 К). Слой А., расположенный на выс. 55–85 км, где темп-ра снова падает с высотой, называется мезосферой, на его верхней границе – мезопаузе – темп-ра достигает летом 150–160 К, а зимой 200–230 К. Над мезопаузой начинается термосфера – слой, характеризующийся быстрым повышением темп-ры, достигающей на выс. 250 км значений 800–1200 К. В термосфере поглощается корпускулярная и рентгеновская радиация Солнца, тормозятся и сгорают метеоры, поэтому она выполняет функцию защитного слоя Земли. Ещё выше находится экзосфера, откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от А. к межпланетному пространству.
Состав атмосферы
До выс. ок. 100 км А. практически однородна по химич. составу и ср. молекулярная масса воздуха (ок. 29) в ней постоянна. Вблизи поверхности Земли А. состоит из азота (ок. 78,1% по объёму) и кислорода (ок. 20,9%), а также содержит малые количества аргона, диоксида углерода (углекислого газа), неона и др. постоянных и переменных компонентов (см. Воздух).
Кроме того, А. содержит небольшие количества озона, оксидов азота, аммиака, радона и др. Относит. содержание осн. составляющих воздуха постоянно во времени и однородно в разных географич. районах. Содержание водяного пара и озона переменно в пространстве и времени; несмотря на малое содержание, их роль в атмосферных процессах весьма существенна.
Выше 100–110 км происходит диссоциация молекул кислорода, углекислого газа и водяного пара, поэтому молекулярная масса воздуха уменьшается. На выс. ок. 1000 км начинают преобладать лёгкие газы – гелий и водород, а ещё выше А. Земли постепенно переходит в межпланетный газ.
Наиболее важная переменная компонента А. – водяной пар, который поступает в А. при испарении с поверхности воды и влажной почвы, а также путём транспирации растениями. Относит. содержание водяного пара меняется у земной поверхности от 2,6% в тропиках до 0,2% в полярных широтах. С высотой оно быстро падает, убывая наполовину уже на выс. 1,5–2 км. В вертикальном столбе А. в умеренных широтах содержится ок. 1,7 см «слоя осаждённой воды». При конденсации водяного пара образуются облака, из которых выпадают осадки атмосферные в виде дождя, града, снега.
Важной составляющей атмосферного воздуха является озон, сосредоточенный на 90% в стратосфере (между 10 и 50 км), ок. 10% его находится в тропосфере. Озон обеспечивает поглощение жёсткой УФ-радиации (с длиной волны менее 290 нм), и в этом – его защитная роль для биосферы. Значения общего содержания озона меняются в зависимости от широты и сезона в пределах от 0,22 до 0,45 см (толщина слоя озона при давлении $p=$ 1 атм и темп-ре $T=$ 0 °C). В озоновых дырах, наблюдаемых весной в Антарктике с нач. 1980-х гг., содержание озона может падать до 0,07 см. Оно увеличивается от экватора к полюсам и имеет годовой ход с максимумом весной и минимумом осенью, причём амплитуда годового хода мала в тропиках и растёт к высоким широтам. Существенной переменной компонентой А. является углекислый газ, содержание которого в атмосфере за последние 200 лет выросло на 35%, что объясняется в осн. антропогенным фактором. Наблюдается его широтная и сезонная изменчивость, связанная с фотосинтезом растений и растворимостью в морской воде (согласно закону Генри, растворимость газа в воде уменьшается с ростом её темп-ры).
Важную роль в формировании климата планеты играет атмосферный аэрозоль – взвешенные в воздухе твёрдые и жидкие частицы размером от нескольких нм до десятков мкм. Различаются аэрозоли естественного и антропогенного происхождения. Аэрозоль образуется в процессе газофазных реакций из продуктов жизнедеятельности растений и хозяйств. деятельности человека, вулканич. извержений, в результате подъёма пыли ветром с поверхности планеты, особенно с её пустынных регионов, а также образуется из космич. пыли, попадающей в верхние слои А. Бóльшая часть аэрозоля сосредоточена в тропосфере, аэрозоль от вулканич. извержений образует т. н. слой Юнге на выс. ок. 20 км. Наибольшее количество антропогенного аэрозоля попадает в А. в результате работы автотранспорта и ТЭЦ, химич. производств, сжигания топлива и др. Поэтому в некоторых районах состав А. заметно отличается от обычного воздуха, что потребовало создания спец. службы наблюдений и контроля за уровнем загрязнения атмосферного воздуха.
Эволюция атмосферы
Совр. А. имеет, по-видимому, вторичное происхождение: она образовалась из газов, выделенных твёрдой оболочкой Земли после завершения формирования планеты ок. 4,5 млрд. лет назад. В течение геологич. истории Земли А. претерпевала значит. изменения своего состава под влиянием ряда факторов: диссипации (улетучивания) газов, преим. более лёгких, в космич. пространство; выделения газов из литосферы в результате вулканич. деятельности; химич. реакций между компонентами А. и породами, слагающими земную кору; фотохимич. реакций в самой А. под влиянием солнечного УФ-излучения; аккреции (захвата) материи межпланетной среды (напр., метеорного вещества). Развитие А. тесно связано с геологич. и геохимич. процессами, а последние 3–4 млрд. лет также с деятельностью биосферы. Значит. часть газов, составляющих совр. А. (азот, углекислый газ, водяной пар), возникла в ходе вулканич. деятельности и интрузии, выносившей их из глубин Земли. Кислород появился в заметных количествах ок. 2 млрд. лет тому назад как результат деятельности фотосинтезирующих организмов, первоначально зародившихся в поверхностных водах океана.
По данным о химич. составе карбонатных отложений получены оценки количества углекислого газа и кислорода в А. геологического прошлого. На протяжении фанерозоя (последние 570 млн. лет истории Земли) количество углекислого газа в А. изменялось в широких пределах в соответствии с уровнем вулканич. активности, темп-рой океана и уровнем фотосинтеза. Большую часть этого времени концентрация углекислого газа в А. была значительно выше современной (до 10 раз). Количество кислорода в А. фанерозоя существенно изменялось, причём преобладала тенденция к его увеличению. В А. докембрия масса углекислого газа была, как правило, больше, а масса кислорода – меньше по сравнению с А. фанерозоя. Колебания количества углекислого газа оказывали в прошлом существенное влияние на климат, усиливая парниковый эффект при росте концентрации углекислого газа, благодаря чему климат на протяжении осн. части фанерозоя был гораздо теплее по сравнению с совр. эпохой.
Атмосфера и жизнь
Без А. Земля была бы мёртвой планетой. Органич. жизнь протекает в тесном взаимодействии с А. и связанными с ней климатом и погодой. Незначительная по массе по сравнению с планетой в целом (примерно миллионная часть), А. является непременным условием для всех форм жизни. Наибольшее значение из атмосферных газов для жизнедеятельности организмов имеют кислород, азот, водяной пар, углекислый газ, озон. При поглощении углекислого газа фотосинтезирующими растениями создаётся органич. вещество, используемое как источник энергии подавляющим большинством живых существ, включая человека. Кислород необходим для существования аэробных организмов, для которых приток энергии обеспечивается реакциями окисления органич. вещества. Азот, усваиваемый некоторыми микроорганизмами (азотофиксаторами), необходим для минер. питания растений. Озон, поглощающий жёсткое УФ-излучение Солнца, значительно ослабляет эту вредную для жизни часть солнечной радиации. Конденсация водяного пара в А., образование облаков и последующее выпадение атмосферных осадков поставляют на сушу воду, без которой невозможны никакие формы жизни. Жизнедеятельность организмов в гидросфере во многом определяется количеством и химич. составом атмосферных газов, растворённых в воде. Поскольку химич. состав А. существенно зависит от деятельности организмов, биосферу и А. можно рассматривать как часть единой системы, поддержание и эволюция которой (см. Биогеохимические циклы) имела большое значение для изменения состава А. на протяжении истории Земли как планеты.
Радиационный, тепловой и водный балансы атмосферы
Солнечная радиация является практически единств. источником энергии для всех физич. процессов в А. Главная особенность радиац. режима А. – т. н. парниковый эффект: А. достаточно хорошо пропускает к земной поверхности солнечную радиацию, но активно поглощает тепловое длинноволновое излучение земной поверхности, часть которого возвращается к поверхности в форме встречного излучения, компенсирующего радиац. потерю тепла земной поверхностью (см. Атмосферное излучение). В отсутствие А. ср. темп-ра земной поверхности была бы –18 °C, в действительности она 15 °C. Приходящая солнечная радиация частично (ок. 20%) поглощается в А. (гл. обр. водяным паром, каплями воды, углекислым газом, озоном и аэрозолями), а также рассеивается (ок. 7%) на частицах аэрозоля и флуктуациях плотности (рэлеевское рассеяние). Суммарная радиация, достигая земной поверхности, частично (ок. 23%) отражается от неё. Коэф. отражения определяется отражат. способностью подстилающей поверхности, т. н. альбедо. В среднем альбедо Земли для интегрального потока солнечной радиации близко к 30%. Оно меняется от нескольких процентов (сухая почва и чернозём) до 70–90% для свежевыпавшего снега. Радиац. теплообмен между земной поверхностью и А. существенно зависит от альбедо и определяется эффективным излучением поверхности Земли и поглощённым ею противоизлучением А. Алгебраич. сумма потоков радиации, входящих в земную атмосферу из космич. пространства и уходящих из неё обратно, называется радиационным балансом.
Преобразования солнечной радиации после её поглощения А. и земной поверхностью определяют тепловой баланс Земли как планеты. Гл. источник тепла для А. – земная поверхность; теплота от неё передаётся не только в виде длинноволнового излучения, но и путём конвекции, а также выделяется при конденсации водяного пара. Доли этих притоков теплоты равны в ср. 20%, 7% и 23% соответственно. Сюда же добавляется ок. 20% теплоты за счёт поглощения прямой солнечной радиации. Поток солнечной радиации за единицу времени через единичную площадку, перпендикулярную солнечным лучам и расположенную вне А. на ср. расстоянии от Земли до Солнца (т. н. солнечная постоянная), равен 1367 Вт/м2, изменения составляют 1–2 Вт/м2 в зависимости от цикла солнечной активности. При планетарном альбедо ок. 30% средний по времени глобальный приток солнечной энергии к планете составляет 239 Вт/м2. Поскольку Земля как планета испускает в космос в среднем такое же количество энергии, то, согласно закону Стефана – Больцмана, эффективная темп-ра уходящего теплового длинноволнового излучения 255 К (–18 °C). В то же время ср. темп-ра земной поверхности составляет 15 °C. Разница в 33 °C возникает за счёт парникового эффекта.
Водный баланс А. в целом соответствует равенству количества влаги, испарившейся с поверхности Земли, количеству осадков, выпадающих на земную поверхность. А. над океанами получает больше влаги от процессов испарения, чем над сушей, а теряет в виде осадков 90%. Избыток водяного пара над океанами переносится на континенты воздушными потоками. Количество водяного пара, переносимого в А. с океанов на континенты, равно объёму стока рек, впадающих в океаны.
Движение воздуха
Земля имеет шарообразную форму, поэтому к её высоким широтам приходит гораздо меньше солнечной радиации, чем к тропикам. Вследствие этого между широтами возникают большие температурные контрасты. На распределение темп-ры в существенной мере влияет также взаимное расположение океанов и континентов. Из-за большой массы океанич. вод и высокой теплоёмкости воды сезонные колебания темп-ры поверхности океана значительно меньше, чем суши. В связи с этим в средних и высоких широтах темп-ра воздуха над океанами летом заметно ниже, чем над континентами, а зимой – выше.
Неодинаковый разогрев А. в разных областях земного шара вызывает неоднородное по пространству распределение атмосферного давления. На уровне моря распределение давления характеризуется относительно низкими значениями вблизи экватора, увеличением в субтропиках (поясá высокого давления) и понижением в средних и высоких широтах. При этом над материками внетропич. широт давление зимой обычно повышено, а летом понижено, что связано с распределением темп-ры. Под действием градиента давления воздух испытывает ускорение, направленное от областей с высоким давлением к областям с низким, что приводит к перемещению масс воздуха. На движущиеся воздушные массы действуют также отклоняющая сила вращения Земли (сила Кориолиса), сила трения, убывающая с высотой, а при криволинейных траекториях и центробежная сила. Большое значение имеет турбулентное перемешивание воздуха (см. Турбулентность в атмосфере).
С планетарным распределением давления связана сложная система воздушных течений (общая циркуляция атмосферы). В меридиональной плоскости в среднем прослеживаются две или три ячейки меридиональной циркуляции. Вблизи экватора нагретый воздух поднимается и опускается в субтропиках, образуя ячейку Хэдли. Там же опускается воздух обратной ячейки Феррела. В высоких широтах часто прослеживается прямая полярная ячейка. Скорости меридиональной циркуляции порядка 1 м/с или меньше. Из-за действия силы Кориолиса в большей части А. наблюдаются зап. ветры со скоростями в средней тропосфере ок. 15 м/с. Существуют сравнительно устойчивые системы ветров. К ним относятся пассаты – ветры, дующие от поясов высокого давления в субтропиках к экватору с заметной вост. составляющей (с востока на запад). Достаточно устойчивы муссоны – воздушные течения, имеющие чётко выраженный сезонный характер: они дуют с океана на материк летом и в противоположном направлении зимой. Особенно регулярны муссоны Индийского ок. В средних широтах движение воздушных масс имеет в осн. зап. направление (с запада на восток). Это зона атмосферных фронтов, на которых возникают крупные вихри – циклоны и антициклоны, охватывающие мн. сотни и даже тысячи километров. Циклоны возникают и в тропиках; здесь они отличаются меньшими размерами, но очень большими скоростями ветра, достигающего ураганной силы (33 м/с и более), т. н. тропические циклоны. В Атлантике и на востоке Тихого ок. они называются ураганами, а на западе Тихого ок. – тайфунами. В верхней тропосфере и нижней стратосфере в областях, разделяющих прямую ячейку меридиональной циркуляции Хэдли и обратную ячейку Феррела, часто наблюдаются сравнительно узкие, в сотни километров шириной, струйные течения с резко очерченными границами, в пределах которых ветер достигает 100–150 и даже 200 м/с.
Климат и погода
Различие в количестве солнечной радиации, приходящей на разных широтах к разнообразной по физич. свойствам земной поверхности, определяет многообразие климатов Земли. От экватора до тропич. широт темп-ра воздуха у земной поверхности в ср. 25–30 °C и мало меняется в течение года. В экваториальном поясе обычно выпадает много осадков, что создаёт там условия избыточного увлажнения. В тропич. поясах количество осадков уменьшается и в ряде областей становится очень малым. Здесь располагаются обширные пустыни Земли.
В субтропич. и средних широтах темп-ра воздуха значительно меняется в течение года, причём разница между темп-рами лета и зимы особенно велика в удалённых от океанов областях континентов. Так, в некоторых районах Вост. Сибири годовая амплитуда темп-ры воздуха достигает 65 °C. Условия увлажнения в этих широтах весьма разнообразны, зависят в осн. от режима общей циркуляции А. и существенно меняются от года к году.
В полярных широтах темп-ра остаётся низкой в течение всего года, даже при наличии её заметного сезонного хода. Это способствует широкому распространению ледового покрова на океанах и суше и многолетнемёрзлых пород, занимающих в России св. 65% её площади, в осн. в Сибири.
За последние десятилетия стали всё более заметны изменения глобального климата. Темп-ра повышается больше в высоких широтах, чем в низких; больше зимой, чем летом; больше ночью, чем днём. За 20 в. ср.-годовая темп-ра воздуха у земной поверхности в России выросла на 1,5–2 °C, причём в отд. районах Сибири наблюдается повышение на неск. градусов. Это связывается с усилением парникового эффекта вследствие роста концентрации малых газовых примесей.
Погода определяется условиями циркуляции А. и географич. положением местности, она наиболее устойчива в тропиках и наиболее изменчива в средних и высоких широтах. Более всего погода меняется в зонах смены воздушных масс, обусловленных прохождением атмосферных фронтов, циклонов и антициклонов, несущих осадки и усиление ветра. Данные для прогноза погоды собираются на наземных метеостанциях, морских и воздушных судах, с метеорологич. спутников. См. также Метеорология.
Оптические, акустические и электрические явления в атмосфере
При распространении электромагнитного излучения в А. в результате рефракции, поглощения и рассеяния света воздухом и разл. частицами (аэрозоль, кристаллы льда, капли воды) возникают разнообразные оптич. явления: радуга, венцы, гало, мираж и др. Рассеяние света обусловливает видимую высоту небесного свода и голубой цвет неба. Дальность видимости предметов определяется условиями распространения света в А. (см. Атмосферная видимость). От прозрачности А. на разл. длинах волн зависят дальность связи и возможность обнаружения объектов приборами, в т. ч. возможность астрономич. наблюдений с поверхности Земли. Для исследований оптич. неоднородностей стратосферы и мезосферы важную роль играет явление сумерек. Напр., фотографирование сумерек с космич. аппаратов позволяет обнаруживать аэрозольные слои. Особенности распространения электромагнитного излучения в А. определяют точность методов дистанционного зондирования её параметров. Все эти вопросы, как и мн. другие, изучает атмосферная оптика. Рефракция и рассеяние радиоволн обусловливают возможности радиоприёма (см. Распространение радиоволн).
Распространение звука в А. зависит от пространственного распределения темп-ры и скорости ветра (см. Атмосферная акустика). Оно представляет интерес для зондирования А. дистанц. методами. Взрывы зарядов, запускаемых ракетами в верхнюю А., дали богатую информацию о системах ветров и ходе темп-ры в стратосфере и мезосфере. В устойчиво стратифицированной А., когда темп-ра падает с высотой медленнее адиабатического градиента (9,8 К/км), возникают т. н. внутренние волны. Эти волны могут распространяться вверх в стратосферу и даже в мезосферу, где они затухают, способствуя усилению ветра и турбулентности.
Отрицательный заряд Земли и обусловленное им электрич. поле А. вместе с электрически заряженными ионосферой и магнитосферой создают глобальную электрич. цепь. Важную роль при этом играет образование облаков и грозового электричества. Опасность грозовых разрядов вызвала необходимость разработки методов грозозащиты зданий, сооружений, линий электропередач и связи. Особую опасность это явление представляет для авиации. Грозовые разряды вызывают атмосферные радиопомехи, получившие назв. атмосфериков (см. Свистящие атмосферики). Во время резкого увеличения напряжённости электрич. поля наблюдаются светящиеся разряды, возникающие на остриях и острых углах предметов, выступающих над земной поверхностью, на отд. вершинах в горах и др. (Эльма огни). А. всегда содержит сильно меняющееся в зависимости от конкретных условий количество лёгких и тяжёлых ионов, которые определяют электрич. проводимость А. Главные ионизаторы воздуха у земной поверхности – излучение радиоактивных веществ, содержащихся в земной коре и в А., а также космич. лучи. См. также Атмосферное электричество.
Влияние человека на атмосферу
В течение последних столетий происходил рост концентрации парниковых газов в А. вследствие хозяйств. деятельности человека. Процентное содержание углекислого газа возросло с 2,86 10–2 двести лет назад до 3,8·10–2 в 2005, содержание метана – с 0,7· 10–4 примерно 300–400 лет назад до 1,8·10–4 в нач. 21 в.; ок. 20% в прирост парникового эффекта за последнее столетие дали фреоны, которых практически не было в А. до сер. 20 в. Эти вещества признаны разрушителями стратосферного озона, и их производство запрещено Монреальским протоколом 1987. Рост концентрации углекислого газа в А. вызван сжиганием всё возрастающих количеств угля, нефти, газа и др. видов углеродного топлива, а также сведе́нием лесов, в результате чего уменьшается поглощение углекислого газа путём фотосинтеза. Концентрация метана увеличивается с ростом добычи нефти и газа (за счёт его потерь), а также при расширении посевов риса и увеличении поголовья крупного рогатого скота. Всё это способствует потеплению климата.
Для изменения погоды разработаны методы активного воздействия на атмосферные процессы. Они применяются для защиты с.-х. растений от градобития путём рассеивания в грозовых облаках спец. реагентов. Существуют также методы рассеяния туманов в аэропортах, защиты растений от заморозков, воздействия на облака с целью увеличения осадков в нужных местах или для рассеяния облаков в моменты массовых мероприятий.
Изучение атмосферы
Сведения о физич. процессах в А. получают прежде всего из метеорологических наблюдений, которые проводятся глобальной сетью постоянно действующих метеорологич. станций и постов, расположенных на всех континентах и на мн. островах. Ежедневные наблюдения дают сведения о темп-ре и влажности воздуха, атмосферном давлении и осадках, облачности, ветре и др. Наблюдения за солнечной радиацией и её преобразованиями проводятся на актинометрич. станциях. Большое значение для изучения А. имеют сети аэрологич. станций, на которых при помощи радиозондов выполняются метеорологич. измерения до выс. 30–35 км. На ряде станций проводятся наблюдения за атмосферным озоном, электрич. явлениями в А., химич. составом воздуха.
Данные наземных станций дополняются наблюдениями на океанах, где действуют «суда погоды», постоянно находящиеся в определённых районах Мирового ок., а также метеорологич. сведениями, получаемыми с н.-и. и др. судов.
Всё больший объём сведений об А. в последние десятилетия получают с помощью метеорологич. спутников, на которых установлены приборы для фотографирования облаков и измерения потоков ультрафиолетовой, инфракрасной и микроволновой радиации Солнца. Спутники позволяют получать сведения о вертикальных профилях темп-ры, облачности и её водозапасе, элементах радиац. баланса А., о темп-ре поверхности океана и др. Используя измерения рефракции радиосигналов с системы навигац. спутников, удаётся определять в А. вертикальные профили плотности, давления и темп-ры, а также влагосодержания. С помощью спутников стало возможным уточнить величину солнечной постоянной и планетарного альбедо Земли, строить карты радиац. баланса системы Земля – А., измерять содержание и изменчивость малых атмосферных примесей, решать мн. др. задачи физики атмосферы и мониторинга окружающей среды.
Источник: bigenc.ru