Зонд гюйгенс


Зонд гюйгенс

Космический аппарат «Гюйгенс» — зонд, созданный Европейским космическим агентством и названный в честь голландского астронома XVII века Христиана Гюйгенса, — 14 января 2005 года опустился на поверхность Титана, крупнейшего спутника Сатурна.

Парашютный спуск в атмосфере занял 2 часа 28 минут и завершился первой в истории мягкой посадкой, совершенной во внешней Солнечной системе. Во время спуска «Гюйгенс» измерял температуру, плотность, химический и изотопный состав и другие параметры атмосферы спутника. Мы решили рассказать о пяти неожиданных открытиях «Гюйгенса».

Атмосфера Титана

Потенциально обитаемый спутник Сатурна Титан обладает толстой азотной атмосферой, которая долгое время не позволяла увидеть поверхность. Нижние слои атмосферы Титана, как и на Земле, делятся на тропосферу и стратосферу. В тропосфере температура с высотой падает.

До высоты 50 км простирается обширная тропопауза, где температура остается практически постоянной. А затем температура начинает расти. Такие инверсии температуры препятствуют развитию вертикальных движений воздуха. Они обычно возникают из-за совместного действия двух факторов — подогрева воздуха снизу от поверхности и подогрева сверху благодаря поглощению солнечного излучения. На Титане температура уверенно растет, по крайней мере, до 150 км.


Однако на высотах более 500 км «Гюйгенс» неожиданно обнаружил целую серию температурных инверсий, каждая из которых определяет отдельный слой атмосферы. Их происхождение пока остается неясным. Атмосферу Титана, как и земную, составляет азот. Второй по значимости газ — метан. Его можно сравнить с водяным паром в земной атмосфере. Кроме того, в атмосфере Титана были обнаружены сложные органические соединения, образующиеся при распаде метана под действием солнечного ультрафиолетового излучения. Это дает специалистам основание сравнивать атмосферу самого крупного спутника Сатурна с первичной атмосферой Земли.

Предположительно, у самой поверхности Титана наблюдается сильная турбулентность атмосферы: зонд неожиданно сильно раскачался перед самой посадкой. Однако точно подтвердить это пока невозможно.

Зонд гюйгенс

Поверхность Титана

Данные зонда позволили определить характер поверхности Титана. Она оказалась не твердой и не слишком мягкой: это не лед, но и не толстый слой осевшего аэрозоля. По механическим свойствам поверхность напоминает мягкую глину, слегка утрамбованный снег или песок, покрытый тонкой пленкой углеводородного вещества толщиной до нескольких сантиметров.


Последние 90 м полета «Гюйгенса» показали, что поверхность относительно ровная, но не совершенно гладкая. После посадки аппарат зарегистрировал признаки испарения метана. Это говорит о том, что почва могла быть пропитана метаном. Например, это могло оказаться побережье метанового моря или реки. Кроме того, аппарат обнаружил асимметрию северного и южного полушарий Титана. В северном полушарии площадь жидких поверхностей на 20% больше, чем в южном полушарии. Это может быть связано либо с топографической асимметрией, либо с сезонными изменениями на Титане.

Зонд гюйгенс

Погода на Титане

Интерпретация данных с зонда «Гюйгенс» рассказала и о погоде на Титане: климат планеты схож с земным климатом в доисторическую эпоху. На планете бывают сильные бури. Когда концентрация метана в средних слоях атмосферы достигает 80%, начинают образовываться восходящие потоки со скоростью около 70 км в час. В результате этого процесса в атмосфере спутника возникает густая облачность. Уровень осадков на Титане может доходить до трех центнеров на квадратный метр поверхности в час, а дождевые капли из сжиженных углеводородов достигают размера до одного см.

Космический зонд позволил исследовать и титановые облака: их верхняя часть состоит из метанового льда, а нижняя — из жидких метана и азота. Температура на планете составляет 179 градусов ниже нуля, и практически постоянно стелется метановый туман.


Зонд гюйгенс

Водоемы Титана

Метановые осадки питают многочисленные ручьи, озера и источники, обнаруженные на снимках, сделанных «Гюйгенсом» на Титане. Водоемы, заполненные метаном, расположены в северных широтах планеты. В настоящий момент, это первый случай обнаружения водоемов вне Земли. Их размеры разнятся от километра до сотен километров.

Один из них, получивший неофициальное название «море Кракена», превосходит в размерах Каспийское море. Снимки показывают, что поверхность «суши» прорезана многочисленными извилистыми каналами, а на некоторых изображениях видны даже следы выхода рек из берегов, следы «наводнений». Кроме того, низкочастотные радиосигналы, зарегистрированные «Гюйгенсом», могут свидетельствовать о наличии на крупнейшем спутнике Сатурна подземного океана, состоящего из жидкой воды.

Зонд гюйгенс

Море Кракена.

Жизнь на Титане

Благодаря наличию атмосферы вопрос о возможности жизни на Титане в настоящее время остается открытым. Титан во многом подобен ранней Земле 4,6 млрд лет назад, поэтому нельзя исключить того, что на планете имеется немало предпосылок для возникновения жизни. Под действием света метан превращается в этан, ацетилен, этилен, в соединении с азотом — в соли цианистой кислоты, которые являются кирпичиками для аминокислот. Анализ данных, полученных с помощью «Гюйгенса», позволяет строить гипотезы о наличии примитивных видов биологической жизни на Титане.


Согласно им, «жизненные формы дышат атмосферой этой крупнейшей луны Сатурна и потребляют находящиеся на поверхности Титана химические соединения, получая тем самым необходимую энергию». Однако, как подчеркивают ученые, данные о динамике водорода и ацетилена в атмосфере Титана являются лишь признаками существования жизни, а не ее подтверждением.

Зонд гюйгенс

Источник: planetologia.ru

«Оранжевое небо, оранжевое моpе…» Эти слова из «Оранжевой песни» отлично описывают мир крупнейшего спутника Сатурна Титана. А перед вами — подтверждающая это утверждение фотография. Она была получена ровно 15 лет назад во время спуска зонда «Гюйгенс» с высоты около 5 километров. Может показаться, что Титан совсем небольшой (раз при съемке с такой высоты он целиком попал в кадр), но на самом деле это оптический обман, вызванный тем, что снимок был сделан через объектив типа «рыбий глаз», сильно исказивший реальную перспективу. А радиус Титана составляет 2175 км (то есть он всего в два с половиной раза меньше Земли).


Атмосфера Титана примерно на 95% состоит из прозрачного азота. Остальные 5% почти целиком приходятся на метан, еще есть немного водорода и — в следовых количествах — другие углеводороды, нитриды, гелий и аргон. Аэрозоли из этих веществ и придают тамошнему «воздуху» оранжевый цвет.

Титан — единственный спутник в Солнечной системе, у которого есть своя атмосфера. Что интересно, она массивнее земной (примерно на 20%), а из-за меньшего тяготения простирается гораздо дальше (почти до высоты 600 км). Давление у поверхности почти на 60% больше земного.

Атмосфера плотно окутывает Титан — в видимом диапазоне его поверхность снаружи почти совсем не видна. Но общие оценки, сделанные на основе наблюдений с Земли и с «Вояджеров», указывали, что на его поверхности и в атмосфере некоторые вещества могут находиться в жидком состоянии. Как мы знаем благодаря сверхуспешной миссии «Кассини-Гюйгенс», эти предположения подтвердились. Так что теперь Титан — второе после Земли космическое тело с «гидросферой» из морей, озер и рек (подробнее см.: Кратерообразные озера на Титане могли образоваться из-за фреатических взрывов, «Элементы», 20.09.2019). Правда, плещется в них не вода, а смесь углеводородов.


Миссия «Кассини-Гюйгенс» стартовала к Сатурну в 1997 году. Двойное название неслучайно — в ней участвовали два аппарата: автоматическая межпланетная станция (АМС) «Кассини» и прикрепленный к ней небольшой спускаемый зонд «Гюйгенс», предназначенный для изучения Титана. Семилетний путь до окрестностей Сатурна они проделали вместе, прибыв к нему 1 июля 2004 года — в этот день после торможения «Кассини» вышла на орбиту Сатурна. Спустя полгода, 25 декабря 2004 года, зонд отделился и через 20 дней вошел в атмосферу Титана. Его работа завершилась почти сразу после успешной посадки, а «Кассини» продолжила изучать газовый гигант, его спутники и кольца еще 13 лет: программа была завершена в 2017 году, принеся множество важнейших открытий. О некоторых из них можно прочитать в картинке дня Большой финал «Кассини» и в статье Три чуда системы Сатурна. Обработка данных миссии еще продолжается. Например, недавно было закончено составление полной карты поверхности Титана на основе данных радара и ИК-спектрометра «Кассини», см.: Составлена полная геоморфологическая карта Титана («Элементы», 11.12.2019).

Уже во время полета выяснилось, что часть миссии с участием «Гюйгенса» под угрозой. На маленьком зонде (его диаметр всего 1,3 метра) невозможно установить большую и достаточно мощную антенну для передачи данных сразу на Землю.


этому «Гюйгенс» должен был передавать сигнал на «Кассини», которая затем бы ретранслировала его на Землю. Но в модуль приема сигнала на станции закралась программная ошибка: не учитывался эффект Доплера, который изменяет длину волны из-за относительного движения источника и приемника сигнала. Из-за этой ошибки «Кассини» не смогла бы понять, что «Гюйгенс» что-то передает. К счастью, ее удалось компенсировать, проработав траектории аппаратов, при которых искажение сигнала из-за эффекта Доплера минимизировалось.

Итак, 14 января 2005 года наступила активная фаза долгого путешествия «Гюйгенса». Он вошел в атмосферу Титана, тормозя сначала при помощи теплозащитного экрана, а затем — последовательно выпускавшимися тремя парашютами. В процессе спуска проводились анализы атмосферы, велась съемка происходящего. На высоте около 10 км оранжевый туман стал рассеиваться, и зонд смог получить первые изображения поверхности Титана. Весь спуск длился примерно 2,5 часа, на поверхности зонд проработал еще около получаса. Сильно дольше трех часов он бы в любом случае не протянул из-за небольшой емкости элементов питания.

Область, в которую он опускался, оказалась богата разными формами рельефа, которые отличались друг от друга как цветом, так и структурой: сверху и слева находится светлая относительно ровная возвышенность, а справа — изрезанный горный хребет. В центре изображения — там, куда должен был сесть «Гюйгенс», — расположено большое относительно ровное темное пятно. Когда он приземлился, оказалось, что это участок рыхлой поверхности, напоминающей плотный снег или мокрый песок, покрытый круглыми отшлифованными «камнями», напоминающими гальку. Эти «камни», скорее всего, состоят из водяного льда, а вся поверхность, по-видимому, является дном высохшего метанового водоема.


На Титане, как и на Земле, есть смены времен года, но только разные сезоны длятся по 7,5 лет (поскольку Сатурн делает один оборот вокруг Солнца примерно за 30 лет). В полушарии, где наступает лето, все водоемы со временем высыхают, а метан переносится атмосферными течениями в зимнее полушарие, где выпадает в виде осадков, образуя новые водоемы.

Острые пики и отвесные склоны горного хребта в правой части фото указывают на то, что он достаточно молодой. Атмосфера Титана обеспечивает высокие темпы эрозии и за продолжительное время ветры и метановые дожди должны заметно сглаживать любые неровности. Значит, этот хребет образовался недавно по геологическим меркам, а на Титане есть тектоническая активность.

В подтверждение этому «Гюйгенс» обнаружил тяжелый изотоп аргона 40Ar, который образуется в результате распада калия в недрах. Поскольку он был обнаружен в атмосфере, должны быть и процессы, которые выводят его из глубин. Основным кандидатом на роль такого процесса сейчас считается криовулканизм. Активность на поверхности означает, что ядро спутника еще теплое и вполне возможно существование подповерхностного водного океана. То есть, как и большинство спутников Сатурна, Титан может иметь твердую корку (скорее всего, из водяного льда), под которой находится жидкая вода, подогреваемая теплом ядра.


Хотя в явном виде «Гюйгенс» жидкость на Титане не нашел (это, как уже говорилось выше, было сделано «Кассини» через несколько лет в ходе подробного исследования Титана с орбиты), он заметил следы ее активного движения по поверхности. Они есть на светлой возвышенности в верхней части снимка. Там прослеживаются формы рельефа, похожие на русла рек и на темные долины с крутыми склонами. Первые указывают на то, что по возвышенности протекали потоки жидкости; вторые, вероятно, образовались за счет эрозии при выпадении метановых дождей.

И хотя «Гюйгенс» не встретил ни оранжевых верблюдов, ни, тем более, поющих оранжевых человечков, можно сказать, что на Титане раздавались «оранжевые песни»: на борту «Гюйгенса» был установлен сонар, который за счет измерения параметров распространения звука давал информацию о составе атмосферы и ее температуре.

Фото с сайта esa.int.

Александр Яровитчук

Источник: elementy.ru

Зонд гюйгенс

15 сентября в 14:54 по Москве (11:54 по UTC) завершается без одного месяца 20-летняя миссия Кассини — орбитальной «половинки» автоматической межпланетной станции Кассини-Гюйгенс (миссия посадочного зонда «Гюйгенс» завершилась ещё 14 января 2005 года, спустя час после посадки на Титан). Это была всего 4-я миссия к Сатурну после Пионера-11 и двух Вояджеров, и единственная в которой аппарат выходил на его орбиту. Следующая миссия в систему Сатурна должна состояться не раньше 2029 года.


В ходе своей миссии аппарат сделал 293 оборота вокруг Сатурна, среди которых выполнил 162 прохода вблизи его спутников и открыл 7 новых из них, передал на Землю 453 048 фотографий в составе 635 Гбайт научных данных и стал источником для 3 948 научных публикаций. Им были обнаружены океан на Энцеладе, а также океан, 3 моря и сотни малых озёр на Титане. В данном проекте участвовало около 5 тысяч человек из 27 стран, а его общая стоимость составила 3,9 млрд $ в которые начальные доли распределялись как: 2,6 млрд $ от американского агентства NASA, 500 млн $ от европейского ESA и 160 млн $ от итальянского ASI.

Конструкция Кассини

Зонд гюйгенс

Аппарат Кассини-Гюйгенс в процессе испытаний. Круглая оранжевая часть на переднем фоне — Гюйгенс, осуществивший посадку на Титан, белая часть — 4-метровая антенна/радар Кассини

Зонд, названный в честь Джованно Кассини (открывшего со 2-го по 5-й спутники Сатурна) имеет целых 6,8 м в высоту и 4 м в ширину при сухом весе в 2150 кг (это был третий по массе межпланетный зонд после пары советских «Фобосов»). Сатурн достигает только 1,1% от солнечной энергии, доступной нам на орбите Земли, поэтому зонд питается 3 РИТЭГами таких же огромных размеров как и сам аппарат — они имеют 32,7 кг плутония-238 (это в 3,6 раз больше чем было у обоих Вояджеров на старте, в 6,8 раз больше чем есть у Кьюриосити и видимо больше всего плутония доступного NASA на данный момент: 1, 2). Аппарат имеет 1630 отдельных электронных компонентов и 22 тыс. проводных соединений при общей длине кабелей в 14 км, а управляется — дублированными 16-битными компьютерами 1750A (ещё один такой управлял ракета-носителем Titan IV выводившим аппарат на орбиту). Научное оборудование включает в себя 12 инструментов сгруппированные в три группы, которые предназначены для 27 отдельных научных исследований:

Датчики оптического диапазона:

1) Композитный инфракрасный спектрометр, включающий в себя камеры 3 диапазонов (CIRS); 2) широкоугольная и узкоугольная (диаметром в 33 см) камеры видимого диапазона с набором из нескольких фильтров для разных цветов и ПЗС-матрицами разрешением 1024×1024 пикселей. (ISS); 3) ультрафиолетовый спектрометр, включающий в себя 4 телескопа (UVIS); 4) картографирующий спектрометр видимого и инфракрасного диапазона, разбивающий видимый им свет на 352 спектральных участка (VIMS);

Датчики магнитных полей и заряженных частиц:

5) плазменный спектрометр (CAPS); 6) анализатор космической пыли фиксирующий частицы от микрон до нанометров (CDA); 7) масс-спектрометр ионов и нейтральных частиц (INMS); 8) магнетометр, размещённый на 11-метровой диэлектрической стреле, предназначенной для снижения влияния приборов аппарата на этот датчик (MAG); 9) инструмент визуализации магнитосферы, состоящий из трёх сенсоров ионов и заряженных частиц, расположенных в разных плоскостях (MIMI); 10) детектор радио и плазменных волн имеющий три приёмника разных частот (RPWS);

Датчики радиоволн:

11) 4-метровый в диаметре радар, предназначенный для картографии спутников Сатурна (Radar); 12) научная радио подсистема заключающаяся в использовании основной 4-метровой антенны для наблюдения Сатурна, его колец и спутников на просвет радиоволнами (RSS). Задержка сигнала у Сатурна составляет 68-84 минут в одну сторону.

Примечание: по ссылкам доступны 3D-модели каждого инструмента и схемы их положения на аппарате.

Через тернии к Сатурну

Вес орбитального и посадочного зондов был слишком велик чтобы их можно было напрямую запустить к Сатурну (с 350 кг Гюйгенса общий вес аппарата составлял 2,5 тонны) — даже с учётом того что Titan IV на котором летел Кассини-Гюйгенс имела на 40% большую полезную нагрузку чем Titan IIIE на котором летели Вояджеры. Поэтому аппаратам пришлось немало поскитаться по Солнечной системе, набирая скорость гравитационными манёврами для встречи с Сатурном: после старта 15 октября 1997 года, 5,7-тонная связка из двух аппаратов заправленных 2978 кг топлива отправились на встречу с Венерой. Выполнив у неё 2 гравитационных манёвра 26 апреля 1998 года и 24 июня 1999 года (в которых они пролетали всего в 234 и 600 км от планеты соответственно), они 18 августа 1999 года вернулись ненадолго к Земле (пролетев от нас в 1171 км) после чего отправились уже к Юпитеру.

Зонд гюйгенс
Снимок Луны сделанный узкоугольной камерой аппарата в ближнем ультрафиолете, с дистанции около 377 тыс. км и выдержкой в 80 мкс.

Пролетая сквозь пояс астероидов, аппарат встретился 23 января с астероидом Мазурский: к сожалению дистанция составляла 1,6 млн км, да и сам астероид был размерами всего 15×20 км, так что фотография составила меньше 10 на 10 пикселей. 30 декабря 2000 года Кассини-Гюйгенс встретился с Юпитером и своим собратом — Галилео, миссия которого уже приближалась к финалу (свою миссию он завершил почти 14 лет назад таким же самоотверженным подвигом, который собирается сейчас совершить Кассини). Этот 4-й по счёту гравитационный манёвр наконец придал двум аппаратам достаточную скорость для встречи с Сатурном 1 июля 2004 года, к этому времени он уже пропутешествовал 3,4 млрд км.

Чтобы не терять понапрасну время — команда миссии использовала радиоантенны аппарата для уточнения эффекта Шапиро (замедление распространения радиосигнала при движении его в поле гравитации тяжёлого объекта). Точность измерений удалось увеличить с предыдущих результатов в 1/1000 у Викингов и Вояджеров до 1/51000. Опубликованные 10 октября 2003 года результаты полностью совпадали с предсказаниями общей теории относительности.

Зонд гюйгенс
На графике отчётливо видны пики встреч с планетами (после которых у аппарата прибавляется скорость), длинный спуск с небольшим изломом у Юпитера (когда аппарат летел на встречу Сатурну, постепенно разменивая кинетическую энергию на потенциальную, выбираясь из «гравитационного колодца» Солнца), и серия волн в конце (когда аппарат вышел на орбиту Сатурна, и начал вращаться на его орбите).

Долгожданная встреча и основная миссия

27 мая 2004 года Кассини впервые с декабря 1998 года включил свой основной двигатель для придания аппарату импульса в 34,7 м/с, который был нужен для коррекции траектории, которая провела его 11 июня в 2068 км от Фебы — очень удалённого спутника Сатурна, который предположительно образовался в поясе Койпера и был в дальнейшем был захвачен гравитационным притяжением Сатурна. Из-за огромного радиуса орбиты этого спутника (составляющего в среднем около 12,5 млн км) — это была единственная встреча Кассини с этим спутником.

1 июля основной двигатель аппарата был включен ещё раз (уже на 96 минут), чтобы сбросить 626 м/с скорости для выхода на орбиту Сатурна. В тот же день была открыта Мефона и переоткрыта Паллена, которая была обнаружена ещё на одном из снимков Вояджера-2, но так как её не было на остальных снимках, орбиту небесного тела не удалось установить и на 25 лет оно получило обозначение S/1981 S 14. Уже на следующий день Кассини выполнил первый пролёт мимо Титана, 24 октября был открыт ещё один спутник (Полидевк), а 24 декабря был сброшен посадочный зонд Гюйгенс.

14 января 2005 года Кассини выступил в роли ретранслятора для посадочного зонда (о нём речь пойдёт ниже), а на следующий день аппарат максимально сблизился с Титаном и с помощью своего радара обнаружил 440-километровый кратер на его поверхности. 6 мая был обнаружен спутник Дафнис, который обитает на краю щели Килера:

Зонд гюйгенс

На краях 42-километровой щели были обнаружены волны вызванные весьма слабым притяжением Дафниса (вес которого составляет всего 77 млрд тонн, что создаёт притяжение в 25-100 тыс. раз ниже земного):

image

Экватор Сатурна и плоскость его колец наклонены на 27° относительно эклиптики, так что мы можем наблюдать оба полюса Сатурна также как и наблюдать его кольца с верхней и нижней стороны. Но так как они наблюдаются под большим углом и с огромных дистанций (1,2-1,66 млрд км в зависимости от взаимного положения Земли и Сатурна) — разглядеть там что-нибудь было просто невозможно, так что скажем шестиугольник Сатурна — был обнаружен только пролетающими мимо Вояджерами.

Зонд гюйгенс

Фотография Сатурна в естественных цветах, состоящая из 36 снимков Кассини сделанных 19 января 2007 года тремя фильтрами (красным, зелёным и синим). Выдержка снимков сделана с расчётом на видимость тёмных областей колец, поэтому поверхность Сатурна получилась сильно переэкспонированной.

В 2005 году было установлено что через гейзеры Энцелада его ежесекундно покидает около 250 кг водяного пара со скоростью до 600 м/с. В 2006 году учёным удалось установить что именно они являются источником материала для предпоследнего и самого широкого — кольца E.

Зонд гюйгенс

22 июля 2006 года аппарат пролетел над северными широтами Титана и на радарной карте сделанной аппаратом впервые были обнаружены тёмные области, свидетельствующие о том, что в этих местах на поверхности находятся метановые озёра. За выполненные аппаратом 127 пролётов этого спутника были в подробностях изучены множество участков его поверхности, на некоторых из которых наблюдались динамические изменения. Среди таковых было море Лигеи, имеющее размеры в 420×350 км и среднюю глубину около 50 м с максимумом более 200 м (максимальная глубина регистрируемая радаром):

Зонд гюйгенс

Наиболее вероятной причиной таких измерений считаются волны, твёрдые тела под или над поверхностью или пузыри в толще жидкости (которые влияют на отражающую способность поверхности).

30 мая 2007 года был обнаружен 2-километровый спутник Анфа, а 10 сентября аппарат прошёл всего в 1600 км от Япета, но уже при передаче снимков в компьютер аппарата попала частица космических лучей, которая вызвала его переход в безопасный режим. К счастью снимков при этом потеряно не было. Незадолго до этого события пришло видео-поздравление Артура Кларка с этим событием (согласно одному из его известнейших романов — «2001: Космическая одиссея» — на поверхности Япета находился один из монолитов).

Карта Япета с разрешением 400 м на пиксель (оригинал 5 Мбайт):

Зонд гюйгенс

Примерно 40% поверхности этого спутника занимают тёмные области имеющие альбедо в 10 раз меньше светлых областей. Сейчас источником столь большой разницы считается эффект разделения пыли и льда, когда лёд испаряется с темных областей и осаждается на светлых, тем самым светлые области — становятся ещё светлее, а тёмные — темнее. Причиной того что остальные спутники ведут себя «нормально» заключается в том, что они имеют меньшую продолжительность дня, за которую поверхность не успевает достаточно прогреться.

Продление и миссия «Кассини — равноденствие»

С 1 июля 2008 года началась расширенная 27-месячная миссия Кассини, в которую включили 21 дополнительный пролёт Титана, 8 Тефии, 7 Энцелада, 6 Мимаса и по одному пролёту Дионы, Реи и Елены.

15 августа 2008 года было открыт Эгеон, который хоть и был назван в честь чудовища со 100 руками и 50 головами, но был практически безобидным «камешком» 500 м в диаметре (он был настолько мал что его размеры пришлось устанавливать по яркости, так что точную форму этого спутника мы не знаем). А 9 октября Кассини выполнил свой самый опасный манёвр — пролёт всего в 25 км от Энцелада (и это на скорости в 17,7 км/с!). На столь рискованный шаг команда миссии пошла ради прямого анализа состава водяного пара его гейзеров.

В ходе своих 23-х пролётов Энцелада за всё время миссии (в 10-ти из которых аппарат приближался на дистанцию меньше 100 км) было установлено, что pH подповерхностного океана составляет 11-12 единиц (что является малопригодным для земных форм жизни), но в выделениях гейзеров также были обнаружены азот (4±1%), углекислый газ (3,2±0,6%), метан (1,6±0,6%) а также следы аммиака, ацетилена, синильной кислоты и пропана (что говорит об активном образовании под поверхностью Энцелада органических веществ). К сожалению аппарат не содержит специальных приборов для регистрации сложной органики (так как об нахождении таковой аппаратом во время планирования миссии даже не могли предположить), так что ответ на вопрос «возможно ли существование жизни под поверхностью Энцелада?» Кассини оставил для своих последователей.

К 26 июля 2009 года был открыт последний из обнаруженных Кассини спутников — 300-метровый S/2009 S 1, который был обнаружен благодаря 36-километровой тени которую он отбрасывает на дальний край кольца B по которому пролегает его орбита:

Зонд гюйгенс

Второе продление и миссия «Кассини — солнцестояние»

В феврале 2010 года было принято решение о дополнительном продлении миссии, которое началось уже в сентябре, и должно было продлиться до мая 2017 года, когда должна была решиться окончательная судьба аппарата. В неё были включены ещё 54 пролёта Титана и 11 пролётов Энцелада.

Усилия Кассини и его команды сумевшей добиться выделения дополнительно около 400 млн $ на следующие 7 лет миссии (доведшие стоимость программы почти до 4 млрд $) оказались не напрасны: уже в декабре 2010 года в ходе пролёта Энцелада аппарат установил наличие у него океана под северным полюсом (в дальнейшем было установлено что океан не ограничивается только полярной областью). В том же году на поверхности Сатурна снова появилось Большое белое пятно — огромный шторм который появляется в атмосфере Сатурна примерно каждые 30 лет (Кассини с этим весьма повезло, и такие шторма ему удалось зарегистрировать дважды — в 2006 и 2010 годах). 25 октября 2012 аппарат зафиксировал мощный разряд внутри него, который поднял температуру стратосферных слоёв атмосферы на 83°C выше нормы. Таким образом этот вихрь стал самым горячим среди штормов в Солнечной системе, обойдя даже Большое красное пятно Юпитера.

«День когда Земля улыбнулась» — проект организованный 19 июля 2013 года руководителем команды визуализации Кассини, в ходе которого Кассини сделал снимок всей системы Сатурна в которую также попали Земля, Луна, Венера и Марс. Всего было сделано 323 фотографии, из которых 141 далее была использованы для составления мозаики:

Зонд гюйгенс

Земля находится в нижнем правом углу, а оригинал без подписей — здесь (4,77 Мбайт).

Параллельно с этим в NASA стартовала кампания «Помаши Сатурну» в ходе которой было собрано 1600 фотографий, из которых 12 ноября была собрана мозаика, которая в тот же день вышла на обложке газеты «Нью-Йорк таймс» (осторожно, оригинал весит 25,6 Мбайт):

Зонд гюйгенс

С 2012 по 2016 год аппарат фиксировал изменения цвета шестиугольника Сатурна (фото от 2013 и 2017 года, оригинал 6 Мбайт):

Зонд гюйгенс

«Гюйгенс»

Посадочный зонд, названный в честь Христиана Гюйгенса (открывшего Титан в 1655 году, на который зонд осуществил посадку), представляет собой 318-килограммовый аппарат диаметром 2,7 метра с 6 наборами инструментов:

1) передатчик постоянной частоты предназначенный для измерения скорости ветра по доплеровскому эффекту (Doppler Wind Experiment — DWE);
2) датчики физических свойств атмосферы измеряющие плотность, давление и электрическое сопротивление атмосферы, а также датчики ускорений по всем трём осям позволяющий в купе с предыдущим прибором устанавливать плотность атмосферы (Huygens Atmospheric Structure Instrument — HASI);
3) камеры видимого и инфракрасного спектров, параллельно с получением картинок занимающиеся измерением спектра и освещённости на текущей высоте аппарата (Descent Imager/Spectral Radiometer — DISR);
4) пиролизёр аэрозольных частиц выполняющий нагрев проб взятых с двух различных высот, и перенаправлял их в следующий прибор (Aerosol Collector and Pyrolyser — ACP);
5) газовый хромато-масс-спектрометр измеряющий состав и концентрацию отдельных составляющих атмосферы Титана, а на последнем этапе — ещё и испарённого нагревателем верхнего слоя грунта (Gas Chromatograph Mass Spectrometer — GCMS);
6) набор приборов для измерения свойств поверхности, в которые входит акустический датчик измеряющий плотность/температуру атмосферы на последних 100 м спуска по свойствам отражённого поверхностью звука (Surface-Science Package — SSP).

Зонд гюйгенс

Гюйгенс отделился от Кассини 24 декабря 2004 года, и к 14 января добрался до атмосферы Титана. Спуск в атмосфере занял 2 часа и 27 минут, в ходе которого в действие последовательно вступали тепловая защита аппарата и три его парашюта, а после посадки он ещё 72 минуты передавал данные с поверхности (пока зонд Кассини выполнявший роль ретранслятора сигнала не ушёл за горизонт).

Зонд гюйгенс
Международная кооперация зонда Гюйгенс

Десятка крупнейших открытий Гюйгенса:

1) В ходе проведения измерений состава атмосферы с высоты 1400 км до самой поверхности, было установлено что слои атмосферы выше 500 км оказались теплее и плотнее ожидаемого, а средняя температура здесь составила -100°C с перепадами в 10-20°C, на высоте в 250 км температура достигала максимума в -87°C (чуть выше минимума на Земле), и далее падала до -203°C на высоте 44 км. На поверхности было слегка теплее (-180°C) при давлении в 1,47 атмосфер.

2) Западные ветра на высоте 120 км достигали 430 км/ч, на высоте в 60 км аппарат попал в сильную турбулентность, после чего скорость ветра стала стабильно снижаться с 108 км/ч на 55 км, до 36 км/ч на высоте 30 км и 14 км/ч на 20 км. На высоте в 7 км направление ветра поменялось и дальше на зонд действовал лишь лёгкий ветерок в 1-3,5 км/ч. За время спуска аппарат снесло на 165,8 км относительно изначальной точки.

3) Солнечный свет должен был разрушать атмосферный метан в течении десятков млн лет, и учёных интересовал источник его пополнения. Измерения показали, что на высоте выше 40 км основу атмосферы составляет азот с небольшими вкраплениями метана, далее концентрация метана начинает подниматься и достигает ≈5% на высоте 7 км. Это стало первым косвенным доказательством наличия на Титане криовулканизма. На поверхности планеты GCMS также обнаружил следы более сложных углеводородов, таких как этан, циан и бензол.

4) Спускаясь в атмосфере, аппарат обнаружил наличие аргона-36 и 38, а также криптона и ксенона в атмосфере. Учёные предположили, что азот и благородные газы попали в атмосферу Титана в процессе его формирования, однако соотношение аргон-36/азот оказалось в миллион раз меньше того, что есть в атмосфере Солнца. Это говорит о том что азот попал в атмосферу Титана не в чистом виде, а в виде каких-то азотсодержащих соединений.

5) В атмосфере Титана обнаружилась 0,05% концентрация радиоактивного аргона-40, который также косвенно доказывал наличие криовулканизма (так как период его полураспада составлял 1,3 млн лет, и за время существования атмосферы он должен был почти весь распасться).

6) Коричневая дымка Титана, скрывающая его поверхность, оказалась аэрозолем метана, этана и цианистого водорода (весьма ядовитого вещества). Дымка обнаруживалась на всех высотах, с заметными концентрациями на высотах в 80, 30 и 21 км, а также метановые облака на высотах в 16 и 8 км.

7) На высотах 130-35 км и 25-20 км были взяты две пробы атмосферных аэрозолей. Было установлено, что их основными составляющими являются углерод и азот. Последующее воспроизведение свойств аэрозолей на Земле позволило установить, что на 80 км их основой является цианистый водород, на высоте 44 км им является этан, а на высоте 8 км основу его составляет метан.

Зонд гюйгенс

Свет Солнца и заряженные частицы Сатурна приводят к распаду молекул азота и метана, которые за счёт своей химической активности присоединяются к другим молекулам в атмосфере, образуя тем самым более сложные структуры вплоть до полиароматических углеводородов (которые удалось зафиксировать в атмосфере и на поверхности). Более крупные молекулы имеют большую плотность, и постепенно концентрируются в нижних слоях атмосферы, тем самым способствуя образованию там ещё больших по размерам молекул.

8) Изначально аппаратом должно было быть получено 700 фотографий, но из-за ошибок при проектировании — была получена только половина из них: уже в ходе тестов во время полёта было установлено, что программная ошибка могла привести к тому, что Кассини мог потерять частоту передачи сигнала Гюйгенса, который должен был двигаться относительно него во время посадки. Программный код уже невозможно было переписать, поэтому траекторию посадки Гюйгенса пересчитали так, чтобы в процессе посадки он двигался перпендикулярно Кассини (чтобы минимизировать относительные скорости аппаратов). Для этого Гюйгенс пришлось сбрасывать месяцем позже, чем ранее планировалось.

Но уже по факту посадки обнаружилась другая напасть: у зонда было две системы связи, но так как объём данных связанных с фотографиями был довольно велик — они передавались одновременно через оба канала, без дублирования. Из-за программной ошибки Кассини не слушал один из каналов, из-за чего половина фотографий была просто потеряна.

Однако и полученных 350 фотографий (среди которых 3 камеры зонда сделали и несколько стерео) оказалось достаточно: на них были обнаружены русла высохших рек 100 м глубиной с весьма крутыми склонами, свидетельствовавшими о быстрых потоках, бушевавших в этих местах. Место посадки представляло собой русло реки, усыпанное галькой диаметром 10-15 см.

Зонд гюйгенс

9) Учёных интересовало происходят ли на Титане грозы, и каков их характер. Поэтому на аппарат были установлены радиоприёмники сверхнизкой частоты, для регистрации резонанса Шумана. И хотя ни одной молнии аппаратом зафиксировано не было, датчики зафиксировали сигнал на частоте в 36 Гц, а также ионосферный проводящий слой, простирающийся на высотах от 140 до 40 км с пиком в районе 60 км. Это свидетельствовало о том что нижний отражающий слой не совпадал с поверхностью планеты (как на Земле), а находился на глубине в 55-80 км под её поверхностью.

Зонд гюйгенс

Модель строения Титана Доминика Фортреса из университетского колледжа Лондона, сделанная им на основе данных Гюйгенса и Кассини. Лёд VI изображённый здесь — хоть и тает при 81°C, но не имеет ничего общего с лёд-девять Курта Воннегута, и не представляет для нас угрозы, так что титанианские формы жизни можно не бояться, даже если они там есть).

10) Найти место посадки зонда оказалось довольно сложным делом, так как хотя камера бокового обзора Гюйгенса и могла регистрировать детали поверхности на дистанции до 450 км, но радары Кассини совершенно не видели те особенности рельефа, которые были запечатлены камерами Гюйгенса. Этот эффект получивший название «призрачных дюн» и оказался связан с поверхностными отложениями углеводородов, которые не отражают радиосигналов. Тем самым Кассини фактически смотрит «сквозь» них, обнаруживая только слои грязного льда находящихся ниже поверхности планеты, и имеющие менее выраженный рельеф.

Это позволило учёным установить что наиболее вероятным кандидатом на строительный материл для дюн Титана являются гранулы углеводородов и/или нитрилов с небольшим содержанием водяного льда и характерными размерами в 0,1-0,3 мм (близкие по размерам к земному песку), источником перемещения которого, в условиях весьма медленного ветра у поверхности — является сальтация.

«Грандиозный финал»

В мае 2017 года решалась дальнейшая судьба аппарата: к завершению второй продлённой миссии у него осталось очень мало топлива, и были рассмотрены 19 возможных вариантов завершения миссии, среди которых были столкновение с Сатурном, его основными кольцами или ледяными спутниками, увод с орбиты Сатурна на гелиоцентрическую орбиту или стабильную орбиту вокруг Титана/Фебы (и даже вариант столкновения с Меркурием). В итоге было принято решение направить аппарат в атмосферу Сатурна, чтобы таким образом обезопасить спутники Сатурна от их возможного биологического загрязнения. Для осуществления этой задачи аппарат выполнил 22 апреля манёвр вблизи Титана, который перенаправил его в 2000-километровый промежуток между Сатурном и его ближайшим кольцом.

С тех пор он совершил 21 виток на дистанции всего в 1600-4000 км от сатурианских облаков, всё время приближаясь к атмосфере Сатурна, и на данный момент находится на своём последнем 22-м витке. Аппарат сделает свои последние снимки за пару часов до вхождения в атмосферу, после чего развернёт свою 4-метровую антенну по направлению к Земле, и будет передавать данные о составе сатурианской атмосферы со своих спектрометров до тех пор, пока сможет парировать атмосферные возмущения. Вскоре после потери с ним связи он разрушится, и сгорит в плотных слоях атмосферы Сатурна — где-то там, в созвездии Змееносца за 1,4 млрд км от нас.

Источник: habr.com

Цели, поставленные перед зондом

Макет зонда «Гюйгенс»Крупнейший спутник Сатурна, Титан, давно привлекает внимание людей, ведь это единственная, кроме Земли, планета Солнечной системы, на поверхности которой существует  жидкость (хотя это и не вода, а жидкие углеводороды, в основном метан и этан), и единственным спутником, имеющим плотную атмосферу. Титан был открыт в 1655 году  голландским астрономом Христианом Гюйгенсом¸ его имя носит зонд Европейского космического агентства, исследовавший эту далекую планету.

Зонд «Гюйгенс» и АМС «Кассини» отправились в далекое путешествие к Сатурну 15 октября 1997 года. 25 декабря 2004 года исследовательский зонд расстыковался с носителем, 14 января 2005 года аппарат «Гюйгенс» успешно приземлился на поверхности Титана в области Ксанаду, совершив первую (и пока единственную) мягкую посадку во внешней Солнечной системе. Аппарат приземлился на твердую поверхность, хотя его конструкция предусматривала и посадку на поверхность моря.

Перед  зондом «Гюйгенс» стояли пять основных задач:

  • Определение физических характеристик атмосферы Титана (плотности, давления, температуры и пр.) в зависимости от высоты;
  • измерение процентного соотношения компонентов атмосферы;
  • исследование химических и фотохимических процессов в атмосфере, их влияния на молекулы органических веществ, а также процессов формирования и состава аэрозолей;
  • изучение метеорологии далекой планеты, в том числе, физики облаков, грозовых разрядов и общей циркуляции атмосферы;
  • исследование физического состояния, топографии и состава поверхности Титана.

Приборы, установленные на зонде «Гюйгенс»

Научные эксперименты «Гюйгенс» проводил с помощью шести приборов:

  • инструмент, определяющий структуру атмосферы (Huygens Atmospheric Structure Instrument, HASI) — выполнял измерения физических и электрических характеристик атмосферы Титана;
  • доплеровского измерителя скорости и сноса (Doppler Wind Experiment, DWE), этот инструмент изучал направление и силу ветров на Титане;
  • формирователя изображений при спуске/спектрального радиометра (Descent Imager/Spectral Radiometer, DISR). Прибор отвечал за видеотрансляцию спуска и исследовал уровень освещённости;
  • газового хроматографа/масс-спектрометра (Gas Chromatograph/Mass Spectrometer, GC/MS). Прибор идентифицировал и измерял химический состав атмосферы далекой планеты;
  • коллектора аэрозолей и пиролизера (Aerosol Collector and Pyrolyser, ACP), анализировавшего атмосферные аэрозольные частицы;
  • набора инструментов для изучения поверхности (Surface-Science Package, SSP), определявшего свойства поверхности.

Посадка на Титан

Поверхность Титана с высоты 16,2 кмПоскольку Титан имеет плотную атмосферу, зонд спускался на парашютах, на что ушло 2 часа 27 минут 50 секунд. При столкновении с поверхностью планеты «Гюйгенс» имел скорость  4,4 м/с, что привело к кратковременным перегрузкам, в 15 раз превосходящим ускорение свободного падения на Земле. Это не прошло бесследно, в результате столкновения из строя вышел один из сенсоров, но через несколько минут он вернулся к работе.

Зонд не передавал данные сразу на Землю, полученная информация отправлялась АМС «Кассини», осуществлявшей ее дальнейшую передачу. Отправлено было более 500 мегабайт данных, в их числе около 350 фотографий. В планах миссии была передача 700 снимков, но сбой в программе (вероятно, результат ошибки при разработке) привел к потере половины изображений, переданных аппаратом «Гюйгенс».

Сигналы зонда принимались АМС «Кассини» на протяжении спуска в течение 147 минут 13 секунд, с поверхности Титана ещё 72 минуты 13 секунд до ухода орбитального аппарата из зоны досягаемости радиосигнала. Еще некоторое время сигналы «Гюйгенса»  получал австралийский радиотелескоп, хотя они были слишком слабы чтобы использовать их как канал передачи информации.

Результаты работы зонда

Поверхность Титана в месте посадки зонда «Гюйгенс»При спуске зонда скорость ветра на высоте от девяти до шестнадцати километров составляла примерно 26 км/ч, звук ветра был записан при помощи внешнего микрофона.

На высоте 18 — 19 км приборами аппарата «Гюйгенс». была обнаружена плотная метановая дымка (скопления облаков), атмосферное давление там составило примерно 380 миллиметров ртутного столба. На начальном этапе спуска температура атмосферы составила −202 °C, а на поверхности планеты оказалось немного «теплей»: −179 °C.

Интерпретация данных, полученных зондом, сделанная ученым из Кёльнского университета Тоцуо Токано, предполагает, что верхнюю часть облаков составляет метановый лед, а нижнюю жидкий метан и азот.

Фотографии Титана, сделанные при спуске зонда «Гюйгенс», ошеломляют. Поверхность Титана имеет сложный рельеф, на ней четко видны русла рек, озера и даже моря! Самый крупный «водоем», море Кракена, по площади превосходит Каспийское море.  Зонд опустился на темный участок, предполагалось, что это жидкость, однако это оказалась твердая поверхность. На фотографиях с места приземления видны камни размером до 15 сантиметров, имеющие следы действия жидкости.

Свойства грунта были изучены с помощью пенетрометра и первоначально грунт был интерпретирован как тонкая корка однородной консистенции с мягкой основой. Позже результаты, полученные зондом, были переосмыслены, видимо, сначала он ударился о гальку, а уже затем вошел в грунт, по консистенции похожий на влажный песок или плотный снег.

При этом из грунта выделялся метан (его выбросы были зарегистрированы приборами зонда). 

Неожиданные открытия

Одной из первых неожиданностей стало существование на Титане второго, нижнего, слоя ионосферы, лежащего между 40 и 140 км (максимум электропроводности на высоте 60 км).

Жёлтая метановая дымка, которая так мешает наблюдать поверхность Титана, присутствует в атмосфере на всех высотах, хотя первоначально ожидалось, что ниже 60 км атмосфера будет практически прозрачной.

Полной неожиданностью для учёных оказалось то, что на высоте около 80 км в атмосфере Титана царит практически мёртвый штиль — сюда не проникают ни ветры, дующие ниже 60 км, ни турбулентные движения, наблюдаемые вдвое выше. Причины такого странного замирания движений пока не удаётся объяснить. Основу атмосферы Титана, как и на Земле, составляет азот. Второй по значимости газ — метан (CH4) — занимает место, в чём-то подобное водяному пару в земной атмосфере. А в нижних слоях атмосферы могут даже образовываться метановые облака. 

Источник: allmars.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.