Запуск реактора


работа ядерного реактора

Ядерный реактор работает слаженно и четко. Иначе, как известно, будет беда. Но что там творится внутри? Попытаемся сформулировать принцип работы ядерного (атомного) реактора кратко, четко, с остановками.

По сути, там творится тот же процесс, что и при ядерном взрыве. Только вот взрыв происходит очень быстро, а в реакторе все это растягивается на длительное время. В итоге все остается целым и невредимым, а мы получаем энергию. Не столько, чтобы все вокруг сразу разнесло, но вполне достаточную для того, чтобы обеспечить электричеством город.

 

Градирни АЭС
Градирни АЭС

 

Прежде чем понять, как идет управляемая ядерная реакция, нужно узнать, что такое ядерная реакция вообще.

Ядерная реакция – это процесс превращения (деления) атомных ядер при взаимодействии их с элементарными частицами и гамма-квантами.


Ядерные реакции могут проходить как с поглощением, так и с выделением энергии. В реакторе используются вторые реакции.

Ядерный реактор – это устройство, назначением которого является поддержание контролируемой ядерной реакции с выделением энергии.

Часто ядерный реактор называют еще и атомным. Отметим, что принципиальной разницы тут нет, но с точки зрения науки правильнее использовать слово «ядерный». Сейчас существует множество типов ядерных реакторов. Это огромные промышленные реакторы, предназначенные для выработки энергии на электростанциях, атомные реакторы подводных лодок, малые экспериментальные реакторы, используемые в научных опытах. Существуют даже реакторы, применяемые для опреснения морской воды.

 

Реактор
Реактор

 

История создания атомного реактора

Первый ядерный реактор был запущен в не таком уж и далеком 1942 году. Произошло это в США под руководством Ферми. Этот реактор назвали «Чикагской поленницей».

В 1946 году заработал первый советский реактор, запущенный под руководством Курчатова. Корпус этого реактора представлял собой шар семи метров в диаметре. Первые реакторы не имели системы охлаждения, и мощность их была минимальной. К слову, советский реактор имел среднюю мощность 20 Ватт, а американский – всего 1 Ватт. Для сравнения: средняя мощность современных энергетических реакторов составляет 5 Гигаватт. Менее чем через десять лет после запуска первого реактора была открыта первая в мире промышленная атомная электростанция в городе Обнинске.


 

Первый в мире ядерный реактор
Первый в мире ядерный реактор

 

Принцип работы ядерного (атомного) реактора

У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем, отражатель нейтронов, теплоноситель, система управления и защиты. В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232).  Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель). Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций — пар вращает турбину, а энергия движения преобразуется в электрическую энергию.

Приведем ниже схему работы ядерного реактора.

 


Схема ядерного реактора на АЭС
Схема ядерного реактора на АЭС

 

Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

Здесь нужно упомянуть коэффициент размножения нейтронов. Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.

 

Цепная реакция
Цепная реакция

 

Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо. ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни.


ссеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.

 

ТВЭЛы, помещенные в топливную кассету
ТВЭЛы, помещенные в топливную кассету

 

Как запускают ядерный реактор?

С самим принципом работы мы разобрались, но как запустить и заставить реактор функционировать? Грубо говоря, вот он — кусок урана, но ведь цепная реакция не начинается в нем сама по себе. Дело в том, что в ядерной физике существует понятие критической массы.

 

Ядерное топливо
Ядерное топливо

 

Критическая масса – это необходимая для начала цепной ядерной реакции масса делящегося вещества.

При помощи ТВЭЛов и управляющих стержней в ректоре сначала создается критическая масса ядерного топлива, а потом реактор в несколько этапов выводится на оптимальный уровень мощности.


В данной статье мы постарались дать Вам общее представление об устройстве и принципе работы ядерного (атомного) реактора. Если у Вас остались вопросы по теме или в университете задали задачу по ядерной физике – обращайтесь к специалистам нашей компании. Мы, как обычно, готовы помочь Вам решить любой насущный вопрос по учебе. А пока мы этим занимаемся, Вашему вниманию очередное образовательное видео!

 

Источник: Zaochnik-com.ru

Как устроена АЭС?

Любая станция – это закрытая зона вдалеке от жилого массива. На ее территории находятся несколько зданий. Самое главное сооружение – здание реактора, рядом с ним расположен машинный зал, из которого реактором управляют, и здание безопасности.

Схема АЭС невозможна без ядерного реактора. Атомный (ядерный) реактор – это устройство АЭС, которое призвано организовать цепную реакцию деления нейтронов с обязательным выделением энергии при этом процессе. Но каков принцип работы АЭС?

Вся реакторная установка помещается в здание реактора, большую бетонную башню, которая скрывает реактор и в случае аварии удержит в себе все продукты ядерной реакции. Эту большую башню называют контейнтмент, герметичная оболочка или гермозона.

Гермозона в новых реакторах имеет 2 толстые бетонные стенки – оболочки.
Внешняя оболочка толщиной в 80 см обеспечивает защиту гермозоны от внешних воздействий.


upravlenie-energosistemami

Внутренняя оболочка толщиной в 1 метр 20 см имеет в своем устройстве специальные стальные тросы, которые увеличивают прочность бетона почти в три раза и не дадут конструкции рассыпаться. С внутренней стороны она выложена тонким листом специальной стали, которая призвана служить дополнительной защитой контейнтмента и в случае аварии не выпустить содержимое реактора за пределы гермозоны.

Такое устройство атомной станции позволяет выдержать падение самолета весом до 200 тонн, 8 бальное землетрясение, торнадо и цунами.

Впервые герметичная оболочка была сооружена на американской АЭС Коннектикут Янки в 1968 году.

Полная высота гермозоны – 50-60 метров.

Из чего состоит атомный реактор?

Чтобы понять принцип работы ядерного реактора, а значит и принцип работы АЭС, нужно разобраться в составляющих реактора.shema2


  • Активная зона. Это зона, куда помещается ядерное топливо (тепловыделитель) и замедлитель. Атомы топлива (чаще всего топливом выступает уран) совершают цепную реакцию деления. Замедлитель призван контролировать процесс деления, и позволяет провести нужную по скорости и силе реакцию.
  • Отражатель нейтронов. Отражатель окружает активную зону. Состоит он из того же материала, что и замедлитель. По сути это короб, главное назначение которого – не дать нейтронам выйти из активной зоны и попасть в окружающую среду.
  • Теплоноситель. Теплоноситель должен вобрать в себя тепло, которое выделилось при делении атомов топлива, и передать его другим веществам. Теплоноситель во многом определяет то, как устроена АЭС. Самый популярный теплоноситель на сегодня – вода.
    Система управления реактором. Датчики и механизмы, которые приводят реактор АЭС в действие.

Топливо для АЭС

На чем работает АЭС? Топливо для АЭС – это химические элементы, обладающие радиоактивными свойствами. На всех атомных станциях таким элементом выступает уран.

Устройство станций подразумевает, что АЭС работают на сложном составном топливе, а не на чистом химическом элементе. И чтобы из природного урана добыть урановое топливо, которое загружается в ядерный реактор, нужно провести множество манипуляций.

Обогащенный уран

Уран состоит из двух изотопов, то есть в его составе есть ядра с разной массой. Назвали их по количеству протонов и нейтронов изотоп -235 и изотоп-238. Исследователи 20 века начали добывать из руды 235й уран, т.к. его легче было разлагать и преобразовывать. Выяснилось, что такого урана в природе всего 0,7 % (остальные проценты достались 238му изотопу).


toplivo_0

Что делать в этом случае? Уран решили обогащать. Обогащение урана это процесс, когда в нем остается много нужных 235х изотопов и мало ненужных 238х. Задача обогатителей урана – из 0.7% сделать почти 100% урана-235.

Обогатить уран можно с помощью двух технологий – газодиффузионной или газоцентрифужной. Для их использования уран, добытый из руды, переводят в газообразное состояние. В виде газа его и обогащают.

Урановый порошок

Обогащенный урановый газ переводят в твердое состояние – диоксид урана. Такой чистый твердый 235й уран выглядит как большие белые кристаллы, которые позже дробят в урановый порошок.

Урановые таблетки

Урановые таблетки – это твердые металлические шайбы, длиной в пару сантиметров. Чтобы из уранового порошка слепить такие таблетки, его перемешивают с веществом – пластификатором, он улучшает качество прессования таблеток.

Прессованные шайбы запекают при температуре 1200 градусов по Цельсию более суток, чтобы придать таблеткам особую прочность и устойчивость к высоким температурам. То, как работает АЭС, напрямую зависит от того, насколько хорошо спрессовали и запекли урановое топливо.


43498585

Запекают таблетки в молибденовых ящиках, т.к. только этот металл способен не расплавиться при «адских» температурах свыше полутора тысяч градусов. После этого урановое топливо для АЭС считается готовым.

Что такое ТВЭЛ и ТВС?

Активная зона реактора внешне выглядит как огромный диск или труба с дырками в стенках (в зависимости от типа реактора), раз в 5 больше человеческого тела. В этих дырках находится урановое топливо, атомы которого и проводят нужную реакцию.

Просто так закинуть топливо в реактор невозможно, ну, если вы не хотите получить взрыв всей станции и аварию с последствиями на пару близлежащих государств. Поэтому урановое топливо помещается в ТВЭЛы, а потом собирается в ТВС. Что значат эти аббревиатуры?

  • ТВЭЛ – тепловыделяющий элемент (не путать с одноименным названием российской компании, которая их производит). По сути это тонкая и длинная циркониевая трубка, сделанная из сплавов циркония, в которую помещаются урановые таблетки. Именно в ТВЭЛах атомы урана начинают взаимодействовать друг с другом, выделяя тепло при реакции.

Цирконий выбран материалом для производства ТВЭЛов благодаря его тугоплавкости и антикоррозийности.

Тип ТВЭЛов зависит от типа и строения реактора. Как правило, строение и назначение ТВЭЛов не меняется, разными могут быть длина и ширина трубки.5787788834e88

В одну циркониевую трубку автомат загружает более 200 урановых таблеток. Всего в реакторе одновременно работают около 10 миллионов урановых таблеток.
ТВС – тепловыделяющая сборка. Работники АЭС называют ТВС пучками.

По сути это несколько ТВЭЛов, скрепленных между собой. ТВС – это готовое атомное топливо, то, на чем работает АЭС. Именно ТВС загружаются в ядерный реактор. В один реактор помещаются около 150 – 400 ТВС.
В зависимости от того, в каком реакторе ТВС будет работать, они бывают разной формы. Иногда пучки складываются в кубическую, иногда в цилиндрическую, иногда в шестиугольную форму.

Одна ТВС за 4 года эксплуатации вырабатывает столько же энергии как при сжигании 670 вагонов угля, 730 цистерн с природным газом или 900 цистерн, груженных нефтью.
Сегодня ТВС производят в основном на заводах России, Франции, США и Японии.

Чтобы доставить топливо для АЭС в другие страны, ТВС запечатывают в длинные и широкие металлические трубы, из труб выкачивают воздух и специальными машинами доставляют на борта грузовых самолетов.

Весит ядерное топливо для АЭС запредельно много, т.к. уран – один из самых тяжелых металлов на планете. Его удельный вес в 2,5 раза больше, чем у стали.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так:
После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

pervaya_v_mire_aes6

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов:
Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство.
Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.4

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.

  1. PWR (pressurized water reactors) — водо-водяной реактор (реактор с водой под давлением). В странах СНГ такие реакторы называют аббревиатурой ВВЭР. В качестве теплоносителя и замедлителя в них используется обычная вода. Водо-водяные реакторы самые распространенные в мире (около 62% от всех реакторов).
    Водо-водяные реакторы дешевы и удобны, т.к. вода не воспламеняется, не затвердевает, и ее использование относительно безопасно.
  2. BWR (boiling water reactor) — кипящий реактор или кипящий водо-водяной реактор. Принцип действия АЭС на таком реакторе очень похож на то, как работает АЭС на ВВЭР. Кипящий реактор также использует обычную воду, его особенность в только том, что пар генерируется сразу в активной зоне. В водо-водяном реакторе сначала нагревается вода, которая позже, спустя несколько этапов, переводится в пар, в кипящих реакторах тепло сразу отдается кипящей воде, которая мгновенно становится горячим паром.Кипящие реакторы достаточно распространены, их 20% от всех атомных реакторов мира.
  3. LWGR (light water graphite reactor) — графито-водный реактор, ГВР, ВРГ или уран-графитовый реактор. В качестве замедлителя в таком типе реактора используется графит, в качестве теплоносителя – обычная вода. Схема работы АЭС, запущенной впервые в мире, основывалась на графито-водном реакторе. Сегодня такие реакторы используют редко, большинство из них расположены в России.kurskaya_aes
  4. PHWR (pressurised heavy water reactor) — тяжеловодный реактор. В таких реакторах в качестве теплоносителя и замедлителя используется тяжелая вода (D2O), по-другому ее называют тяжеловодородной водой или оксидом дейтерия.

С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

Несколько фактов об атомных реакторах…

Интересно, что один реактор АЭС строят не менее 3х лет!
Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.

Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.

Водо-водяной реактор

Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор.
Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.

Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.tes

Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.

Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.

Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.

То, как работают АЭС далее, уже хорошо известно — вода второго контура в парогенераторах превращается в пар, пар вращает турбину, а турбина приводит в движение электрогенератор, который вырабатывает электроэнергию.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности.
Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.tes2

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

  • Первый барьер – прочность урановых таблеток. Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления. Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
  • Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
  • Третий барьер – прочный стальной корпус реактора, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
  • Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

aesЕсли, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

Туры в Чернобыль и Припять

Источник: ChernobylGuide.com

Пожалуй, ни для кого не секрет, что атомные электростанции (АЭС) — это самые мощные источники для получения энергии в наши дни. По количеству выделенной энергии они сильно превосходят гидроэлектростанции (ГЭС) и тем более превосходят угольные электростанции. Еще один большой плюс АЭС в том, что производство получается практически безотходным. Однако, мало кто знает, как работает АЭС. Что ж, давайте разбираться!

Немного о ядерном реакторе

Непосредственно энергию получают в ядерных реакторах, находящихся на территории АЭС. Энергия выделяется за счет химической реакции, протекающей в реакторе — реакции деления ядер урана-235. Уран-235 — это разновидность радиоактивного элемента урана. Место, где протекает деление ядер, называется активной зоной реактора. На самом деле, в активной зоне находится смесь, состоящая из урана-235 и урана-238. Просто в природном виде уран находится именно в виде смеси атомов урана-235 и урана-238. Такое решение позволяет избежать очистки урана-235 от урана-238 и тем самым удешевляет выработку энергии. Но что происходит с атомами урана в активной зоне?

Ядерное деление

Атом урана-235 делится при облучении нейтронами (маленькими тяжелыми частицами). Именно так и была проведена первая реакция ядерного деления. В реакторах используется контролируемая реакция деления урана. Нейтрон на большой скорости врезается в ядро атома урана, раскалывая его на две части и выбивая другие нейтроны. Эти нейтроны вылетают на огромной скорости и врезаются в соседние ядра урана, выбивая нейтроны и из них. Таким образом, чем больше ядер урана поделилось, тем больше их еще поделится. Так запускается цепная реакция.

Схема реакции деления атомов урана-235

Снова о ядерном реакторе

Но как можно контролировать подобную цепную реакцию? Ведь в случае неконтролируемого деления выделение энергии также будет неконтролируемым, и реактор перегреется. Дело в том, что уран-238, также находящийся в активной зоне реактора, не принимает участия в делении. Однако, он способен захватывать некоторые выделяющиеся нейтроны — в частности те, которые вылетают на слишком большой скорости. Медленные же нейтроны уран-238 не поглощает. Но с уменьшением числа быстрых нейтронов реакция будет сама замедляться. Это предотвращают использованием специальных графитовых стержней. Проходя через графит, нейтроны замедляются настолько, чтобы не быть захваченными атомами урана-238; но при этом они еще способы выбивать другие нейтроны из атомов урана-235. А для контроля за скоростью реакции используют стержни из бора, элемента, хорошо поглощающего нейтроны. Если реакция ускоряется, то эти стержни вводят в активную зону, и они поглощают нейтроны, тем самым замедляя реакцию. И наоборот, если реакция замедлилась, стержни из бора вынимают из активной зоны, количество нейтронов в ней увеличивается, и реакция ускоряется. Температуру реактора также позволяет контролировать вода, охлаждая его из резервуаров в случае перегрева.

Вид на стержни из бора в активной зоннзоне реактора сверху

Источник: zen.yandex.ru

В этой главе

• Нормальный или быстрый запуск.

• Тот, кого стоит бояться: помощник капитана.

• Называйте его «инженер».

• Прощаясь с берегом.

Есть два вида запуска реактора: нормальный и быстрый. Во время быстрого запуска происходит перезапуск реактора после того, как он был приостановлен. Это похоже на запуск двигателя вашего автомобиля после заправки. Все температурные показатели находятся в пределах нормы, механизм «привык» к работе, поэтому в какой-то степени быстрый запуск довольно прост. Он требует определенных навыков и опыта от подводников, но его проще произвести, чем нормальный запуск.

Нормальный запуск — процедура, которая используется при запуске реактора после длительного перерыва в работе. Она производится в соответствии с Процедурой № 5 Руководства по эксплуатации атомного реактора и Операционной инструкции № 27. Процедура № 5 — это что-то вроде общего положения, в котором объясняется, почему те или иные вещи делаются именно таким образом. Она все равно имеет законную силу, по крайней мере, в подводном флоте, и её нарушение может привести в лучшем случае к «дисквалификации».

Операционная инструкция № 27 — очень детализированный список клапанов. Хотя он и расположен более чем на 30 страницах, операторы реактора знают его так хорошо, что могут процитировать отрывок любой длины. Один из старших офицеров-подводников знал эту Инструкцию настолько хорошо, что однажды они устроили что-то наподобие аттракциона: младший офицер открывал Инструкцию в любом месте, а старший цитировал любой абзац из нее. Он мог делать это часами, и, хотя пива хватало на небольшую вечеринку, он делал поразительно мало ошибок.

Нормальный запуск реактора «по книге»

Итак, как вам запустить атомный реактор? Во-первых, откройте глаза, когда вас спящего встряхнул старший вахтенный офицер. На часах 1:45. Вы заснули на столе в вахтенной комнате полчаса назад после того, как проработали над предстартовым списком весь день. Вы встаете, напяливаете свою гимнастерку и перешнуровываете морские ботинки. Затем вы насыпаете 2 ложки кофе в чашку, размешиваете и заглатываете его перед тем, как идти в хвостовую часть подлодки в машинное отделение.

Ваша смена закончится в 7:00, когда офицеров вызывают к помощнику капитана. Вахтенные в реакторном отсеке сменяются в 7:30, когда вы поднимаетесь в парус, занимаете позицию дежурного офицера и выводите подлодку из порта. К тому моменту, когда вы вернетесь на свое спальное место, подлодка уже погрузится под воду. Это будет после ужина.

ХО вовсе не означает «обнимаю и целую»[1]

Помощник капитана — второй по старшинству на подлодке. Он выполняет всю тяжелую работу за капитана, позволяя ему уделить больше внимания тактическим замыслам. Все обязанности, которые, как вы думали, выполняются капитаном, на самом деле выполняются помощником капитана. Капитан находится в своей каюте в глубоком раздумье, в то время как помощник капитана «тушит пожар». Капитан прибывает на борт подлодки в 10:00, обедает с офицерами и отправляется играть в гольф с адмиралом.

А помощник капитана просыпается рано, просматривает целую кипу бумаг и отчитывает по 5 офицеров к тому времени, как начинается совещание офицеров в 7:00. На совещании офицеров все главы подразделений (главный инженер, навигатор, офицер вооружений и офицер службы снабжения) и младшие офицеры подразделений, которые докладывают главам подразделений, садятся за стол в вахтенной комнате и просматривают список приказов помощника капитана. Если вам пришлось выбирать человека на роль помощника капитана, вы постараетесь вспомнить самого неприятного человека, которого вы только знаете, но вы наделяете его при этом большим авторитетом.

На одной подлодке помощника капитана ненавидели и боялись. Офицеры о нем очень плохо отзывались. В последний день пребывания на подлодке помощника капитана, в иностранном порту посреди очень напряженной операции, когда он сходил на берег, где его ждал автомобиль, офицеры едва сдерживали слёзы.

Наблюдая за этим молодым курсантом, я спросил одного из офицеров, что происходит.

«Вы ненавидели помощника капитана?» — спросил я.

«Он был моим вторым отцом», — фыркнул лейтенант и оттолкнул меня со своего пути. Человек никогда не забывает свою первую любовь и своего первого помощника капитана.

Помощник капитана — моряк на все руки. Будучи старшим офицером реакторного отсека, он, наверное, когда-то был и инженером, перед тем как стать помощников капитана. Он заставляет инженера «бегать и прыгать», чтобы все бумаги касательно реактора были в порядке. У него есть свои подчинённые, и каждый младший офицер докладывает помощнику капитана обо всем, что тот хочет знать. Каждая записка по пути к капитану корректируется помощником капитана.

Экскурсия перед вахтой

Вернёмся к реактору: вы находите старшего вахтенного офицера и просите его объявить по переговорному устройству 1МС и послать кого-нибудь, чтобы тот пробежал по спальным секциям вахтенных и собрал всех в задней части подлодки на запуск реактора.

Как только вы пошли в инженерные помещения, вы начали свою экскурсию перед вахтой. Вы практически живете в хвостовой части подлодки, поэтому любое из ряда выходящее событие вам сразу видно. Вы убеждаетесь в том, что вахтенные внимательно следят за работой систем. Они заняли спои позиции, все с заспанными глазами, и морщинах и небритые. На мгновение вас охватывает чувство восхищения моряками-атомщиками этой подлодки. Какие это люди, они встали посреди ночи, чтобы запустить реактор, и не было слышно ни одной жалобы. Все они уверенные в себе профессионалы.

Когда вы проходите мимо щелей и углов силовой установки на своем пути на нижний уровень машинного отделения, вы вспоминаете строку Хемингуэя, которую любил коверкать один из младших офицеров: «Спустился вниз посмотреть, как обстоят дела. Дела были плохи». Вы улыбаетесь про себя, поднимаясь по лестнице на верхний уровень машинного отделения, и оказываетесь в компании вахтенного контролёра машинного отделения и вахтенных верхнего уровня машинного отделения.

Вахтенный контролёр машинного отделения — начальник, который является высокопрофессиональным моряком-атомщиком. Он может управляться с вахтой и без вас, но ему, скорее всего, не захочется этого делать. Вы стоите между бортовыми турбинными генераторами и обсуждаете запуск реактора и его состояние. Он отвечает, что все номинально и готово к запуску. Вы говорите, что встретитесь с ним через 5 минут в комнате управления реактором.

Вы подходите к двери в комнату управления реактором. Это священное место, но оно непохоже на обиталище высших священников во дворце. Здесь люди не повышают голоса. Никто не входит сюда без разрешения офицера-атомщика этой комнаты, если только он не главный инженер, помощник капитана, капитан или старший вахтенный офицер.

Имя ему «инж.»

Инж. — универсальное сокращенное наименование главного инженера, или инженера, в ВМФ. Офицеров на посту инженера за все три года плавания называют не иначе как «инж.».

Иногда кажется, что люди даже забывают настоящее имя инженера. Если позвоните ему домой и ответит его жена, то вы все равно попросите к телефону «инжа». Она поймёт. Никого не удивит, что даже его дети называют его так. На борту некоторых подлодок, если инженер чересчур надоедлив, его могут называть «динж» (долбаный инженер).

Вахтенный инженер

Он является своего рода представителем инженера и осуществляет управление реактором. Когда работа реактора и парового генератора приостановлена, то инженер реакторного отсека становится дежурным инженером. Когда происходит запуск реактора или реактор достиг критической массы, то назначают вахтенного инженера, и он обычно несет вахту в хвостовой части подлодки. Вахтенный инженер никогда не покинет машинного отделения.

Вахтенный инженер несёт ответственность за безопасность реактора и за общую безопасность в хвостовой части подлодки. Из всего, что он делает, обязанности вахтенного инженера во время затопления являются одними из самых важных, потому что умелое обращение с аварийными выключателями может спасти подлодку от того, чтобы повторить судьбу «Трэшера».

Входим в комнату управления реактором

Перед дверью в комнату управления реактором висит цепь на уровне пояса. Вы снимаете цепь, но не входите внутрь, пока не скажете: «Вхожу в комнату управления реактором».

Ваш любимый оператор реактора отзовётся: «Понял вас, входите». Он держит руку в воздухе и смотрит на панель управления реактором. Вы «даете ему пять», встаёте перед панелью управления реактором и смотрите на показания приборов. Не говоря ни слова, он протягивает вам через плечо большой блокнот, Вы просматриваете записи показаний температуры, давления и уровня мощности. После нескольких лет вы можете читать эти записи с такой же легкостью, как выражение лица вашей подружки. Состояние реактора оценивается как номинальное.

Номинальный уровень

Когда говорят, что что-то находится в номинальном состоянии, это значит, что:

• для этих показателей существует определенный безопасный диапазон,

• данный показатель находится внутри данного диапазона.

Номинальный и нормальный — не одно и то же, на подлодки нет ничего нормального. В конце концов, какой нормальный человек запрет себя в железной трубе со 120 другими потеющими моряками, будет погружаться на глубину нескольких сот метров на месяцы и добровольно находиться в опасной близости от ядерного оружия?

Наступило время рассмотреть приборы панели управления паровой установкой, располагающиеся слева. Вы бросаете взгляд на приборы и киваете офицеру, обеспечивающему движение судна. Справа от панели расположена панель управления электроустановкой. Оператор электроустановки выглядит сонным, поэтому вы толкаете его и просите кого-нибудь принести кофе. Он вам очень благодарен. Вы снова смотрите на приборы и проверяете записи оператора электроустановки. Установка внутри и снаружи комнаты управления реактором находится в номинальном состоянии. Вы подходите к креслу вахтенного инженера, которое представляет собой стул на длинных ножках (такие вы можете увидеть у стойки бара), расположенный около стола/книжной полки. Над столом висит огромный схематический чертёж расположения трубопроводов реактора. С помощью чёрного карандаша обозначены клапаны, которые закрыты или открыты в процессе выполнения той или иной инструкции. Красным обозначены клапаны с надписью «опасность», обычно они закрыты. Вы просматриваете опасные клапаны в журнале записей вахтенного инженера. А сейчас мы рассмотрим предполагаемую критическую позицию.

Расчётное критическое состояние

Расчётное критическое состояние — вычисление объема негативной реактивности в активной зоне реактора из-за наличия ксенона, образовавшегося за время последней приостановки реактора. Вы обращаетесь к графикам, которые показывают ресурс реактора (использованное количество часов работы на полную мощность), количество часов работы с момента последней приостановки, а также «биографию» реактора до приостановки. Всё это сказывается на объеме ксенона, содержащегося в активной зоне реактора. Вы также принимаете во внимание температуру реактора. График даст вам информацию о том, насколько нужно вынуть контрольные тяги из активной зоны реактора, чтобы создать критическую массу внутри него. Если реактор не достиг критической массы, то Инструкция по выполнению операций № 27 требует от вас проверки вычислений расчетного критического состояния или исправности ядерного оборудования. Если ядерное оборудование неисправно, а вы продолжаете вынимать контрольные тяги из активной зоны реактора, то вы можете сделать так, что реактор в мгновение достигнет критической массы (см. Главу 6, в которой описаны другие виды аварий реактора).

Группа контрольных тяг — несколько тяг, которые соединены с инвертором. Например, внешнее кольцо контрольных тяг — группа 3. Среднее кольцо — группа 2, а 6 центральных контрольных тяг составляют 1-ю группу.

На определенном этапе жизни активной зоны реактора вы начинаете поднимать вверх группу 3. Вы оставляете группу 2 на дне реактора, а 1-ю вы вытягиваете до достижения критической массы. Фраза «я контролирую реактор с помощью группы 1» означает, что вы контролируете температуру активной зоны реактора с помощью группы 1. В дальнейшем группы 2 и 3 меняются местами — группа 2 наверху, а 3-я группа на дне активной зоны реактора. Таким образом топливо в реакторе сжигается равномерно.

Звоним инженеру домой

Вы проверяете расчётное критическое состояние и отмечаете его в журнале. Если бы инженер находился на борту, он бы тоже её отметил. Иногда инженер просит присылать ему домой по факсу распечатку расчетного критического состояния, но так как вы опытный офицер-инженер, он просто просит позвонить ему и рассказать, как обстоят дела. Вы смотрите на часы: часы подводника показывают 2:15. Вы поднимаете трубку телефона и набираете домашний номер инженера. Вы докладываете обстановку, и заспанный инженер говорит, что он рекомендует запускать реактор.

Рядом с вами звонит телефон. «Вахтенный инженер», — произносите вы.

«Дежурный офицер», — доносится из трубки. Это ваш сосед по комнате и по рабочей комнате Кит, который в стельку напивается в портах, когда команда сходит на берег, но всегда такой же собранный, как адмирал. Когда-нибудь он дослужится до высокого звания. «Время звонить капитану. Ты получил разрешение?»

«Инженер рекомендует запускать реактор. Вахтенные секции три заступили на вахту в хвостовой части судна. Запроси разрешение на запуск реактора».

«Есть, запросить разрешение на запуск реактора», — отвечает он, соблюдая все формальности.

Кит может быть вашим соседом по комнате на борту и на суше, и вы знаете, что он думает, прежде чем сделает что-либо, но вы должны соблюсти все формальности.

Просматривая инструкции

Пока вы ждёте, вы просматриваете инструкции. Это книга толщиной 12 сантиметров. Бумага — произведение инженерного искусства, она похожа на материал, из которою делаются конверты для доставки документов на большие расстояния. Вы открываете Инструкцию № 27 и просматриваете несколько абзацев. Слова знакомы вам так же, как слова Библии знакомы священнику.

Телефон звонит снова. «Вахтенный инженер».

«Это дежурный офицер. Запускайте реактор».

«Есть, запустить реактор», — отвечаете вы и кладёте трубку.

Вы берёте микрофон системы внутренней коммуникации 2МС с подставки, нажимаете кнопку и слушаете, как ваш голос, подобно гласу Бога, разносится по машинному отделению. Вы прибавляете громкость, чтобы вас было слышно сквозь шум турбин. Ваш голос звучит громче, потому что подлодка похожа на могилу, все отверстия закрыты. «Вахтенный контролёр машинного отделения, зайдите в комнату управления реактором».

Вы встаете и снимаете с шеи цепочку с ключом безопасности реактора. С его помощью вы открываете ящик под книжной полкой. Внутри него находятся три предохранителя, каждый размером с фонарик. Вы закрываете ящик и вешаете ключ обратно себе на шею. Вахтенный контролёр машинного отделения стоит перед дверью в комнату управления реактором вместе с офицером, отвечающим за движение судна.

«Разрешите войти в комнату управления реактором».

«Разрешаю». Вы передаете предохранители вахтенному контролёру машинного отделения и обращаетесь к нему формально.

«Вахтенный контролёр машинного отделения, вставьте предохранители в разъемы А, Б и В инвертора и отключите прерыватели, приостанавливающие работу реактора».

«Есть, поместить предохранители в разъемы А, Б и В инвертора и отключить прерыватели, приостанавливающие работу реактора». Он исчезает в передней части комнаты на несколько минут. Вы делаете запись в журнале вахтенного инженера и поднимаете глаза от бумаги, как только вахтенный контролёр машинного отделения возвращается. «Разрешите войти в комнату управления реактором».

«Разрешаю».

«Сэр, предохранители вставлены в разъёмы А, Б и В. Прерыватели А, Б и В, приостанавливающие работу реактора, выключены».

«Понял вас, спасибо, и удачного вам запуска».

Он хлопает оператора реактора по голове. «Следите за этим парнем, сэр. Никаких неполадок не должно быть за мою вахту».

Оператор реактора изрыгнул ругательство, не отрывая глаз от панели управления реактором. Вы занимаете позицию позади оператора реактора, откуда можете видеть всю панель. Вы делаете ещё одну запись в журнале вахтенного инженера: начинаем нормальный запуск реактора.

«Оператор реактора, начать нормальный запуск реактора».

«Есть, начать нормальный запуск реактора».

Вы берёте микрофон системы внутренней коммуникации 2МС и объявляете: «Начать нормальный запуск реактора».

Запускаем насосы

Оператор реактора встаёт и берёт в руку рычаг запуска основных охлаждающих насосов. «Запуск основного насоса № 4 на малой скорости». Он поднимает вверх Т-образный рычаг, и насос запускается. Загорается сигнальная лампочка, и индикатор давления подскакивает. «Запуск основного насоса № 3 на малой скорости». Он запускает следующий насос. Теперь 2 насоса работают на малой скорости в каждой из охлаждающих петель, раньше в каждой петле работало по одному насосу. «Работают два насоса на малой скорости».

«Понял вас».

«Контрольные тяги группы 3 зафиксированы», — объявляет оператор реактора. Он перемещает рычаг с надписью «инвертер» в позицию В. Затем он перемещает ручку переключателя управления тягами в центре нижней наклонной секции из положения «12 часов» в положение «9 часов». Одновременно он вытягивает ручку из панели примерно на 5 сантиметров. «Подключаю напряжение фиксатора к инвертору В».

Вы смотрите на дисплей напряжения фиксатора. Оно удваивается, когда ток с фиксатора из инвертора В течёт по направлению к держателю контрольных тяг группы 3. Перед этим держатели находились и открытом положении, но как только на них подали напряжение, когда ручка выключателя была выдвинута из панели, электромагниты каждого держателя зарядились и держатель надавил на резьбовую часть контрольной тяги. Чтобы убедиться в том, что держатели зафиксировались на резьбе, оператор вводит тяги внутрь реактора. Тяги в это время уже находятся на дне, но он вращает держатели до тех пор, пока они «поймают» резьбу.

«Тяги группы 3 зафиксированы».

«Понял вас».

«Поднимаю тяги в верхнюю часть активной зоны реактора», — объявляет он. Он встаёт и поворачивает ручку вправо.

Вы не сможете создать критическую массу в реакторе с помощью тяг группы 3. если только не произойдёт какой-нибудь серьёзной аварии, но вы всё равно смотрите на панель управления реактором, как ястреб.

«Лампочка, сигнализирующая, что тяги группы 3 оторвались от дна реактора, погасла», — сообщает оператор реактора.

Лампочка внешнего кольца нижних контрольных тяг гаснет, как только тяги перестают касаться дна реактора.

Показатели цифрового датчика повышаются, когда тяга поднимается вверх, когда группа тяг находится на высоте 60, 75, 87 сантиметров, пока, наконец, тяги не достигают вершины реактора. Одновременно вы наблюдаете за показателями уровня нейтронов и уровнем запуска реактора. Ничего особенного не происходит ни с одной из этих шкал. Если реактор был приостановлен в течение долгого времени, то уровень нейтронов будет настолько низок, что вам придется проводить запуск реактора по принципу «вытянуть и ждать». Вместо того, чтобы вытянуть тяги из активной зоны реактора, оператор вытягивает тяги на 3 секунды, а потом смотрит на показатели приборов остальные 57 секунд. Вы повторяете эту процедуру в течение следующих 5 часов, пока уровень реактора не возвратится в обычный диапазон.

Оператор реактора отпускает рычаг управления, только когда группа тяг достигает вершины активной зоны реактора. «Фиксирую группу 2», — говорит оператор реактора. Он переключает инвертор в положение Б и переводит переключатель в позицию «9 часов», вынимая его из панели. «Подаю напряжение на группу 2. Группа 2 зафиксирована».

«Понял вас». Группа 2 останется на дне активной зоны реактора, и она зафиксирована, чтобы в случае встряски они не подпрыгнули и не спровоцировали скачок мощности.

«Фиксирую группу 1». Он переводит переключатель инвертора в положение А и повторяет процедуру фиксации. «Вывожу группу 1 для достижения критической массы».

Вы в напряжении вглядываетесь в шкалу уровня нейтронов и шкалу уровня запуска.

«Лампа, показывающая, что группа 1 оторвалась от дна реактора, погасла».

Первое покачивание стрелки уровня запуска реактора

Как только группа 1 выйдет за пределы активной зоны реактора, стрелка датчика уровня запуска реактора сдвинется с нулевой отметки и установится на уровне 0,2 декады в минуту. Оператор продолжает вытягивать тягу, пока стрелка не остановится на отметке 1 декада в минуту, и потом отпускает рычаг. Уровень запуска опускается до 0. Он вытягивает тягу снова, и уровень повышается до 1 декады в минуту. Стрелка на приборе, показывающем уровень нейтронов, постепенно поднимается, каждые несколько минут показывая изменения уровня на порядок (сначала 10–9, 10–8, 10–7 и так далее). Наконец, когда уровень запуска реактора достиг значения 10–1 в минуту, оператор переводит переключатель контрольных тяг в нейтральное положение. Уровень запуска реактора стабилизируется в районе 0,3 декады в минуту.

«Реактор достиг критической массы», — объявляет он, делая пометку в своем журнале. Расчетное значение критического состояния показало, что критическая масса будет достигнута на расстоянии 60 сантиметров. На самом деле это произошло на высоте 56,88 сантиметра. Совсем неплохо.

Вы берёте микрофон системы коммуникации 1МС, который расположен рядом с микрофоном 2МС. Теперь ваше объявление слышно во всех помещениях на борту подлодки.

«Реактор, — здесь вы делаете театральную паузу, — достиг критической массы!» Вы делаете ещё одну запись, и запуск продолжается.

«Вывожу группу 1 для перехода в рабочий режим», — говорит оператор реактора. Он опять хватает рычаг управления контрольными тягами и доводит уровень запуска до 1 декады в минуту. Уровень содержания нейтронов в активной зоне реактора медленно достигает рабочего уровня. Стрелка промежуточного режима тоже начинает подниматься, два режима совпадают на второй декаде. «Селекторный канальный переключатель уровня источника в стартовом режиме, приостановка отключена», — говорит он, вращая большой переключатель на панели.

«Понял вас», — подтверждаете вы. На этом этапе атомное оборудование снабжается энергией от селекторного канального переключателя уровня источника. Если бы на чувствительный детектор нейтронов питание подавалось значительно дольше, то он бы отказал из-за бомбардировки нейтронами. На этом этапе уже не может поступить сигнал на автоматическую приостановку реактора от датчика уровня начального запуска. Теперь защита осуществляется датчиком уровня промежуточного запуска. Если уровень превысит 9 декад в минуту, то реактор автоматически приостановится.

Теперь радиоактивности в реакторе достаточно, так что оператор мог вынуть контрольные тяги и установить уровень на отметке 1,5 декады в минуту. Когда он отпускает рычаг, то уровень падает до 1 декады в минуту. Теперь реактор начнет «просыпаться» сам, а вы просто наблюдаете за тем, как его уровень постепенно перейдет из стартового в промежуточный. В конце промежуточного режима находится рабочий режим. В рабочем режиме реактор способен повышать температуру охлаждающей жидкости.

Ближе к концу промежуточного режима уровень разогрева падает до 0. Оператор реактора вытягивает контрольные тяги и смотрит за показаниями приборов.

«Реактор вошёл в рабочий режим», — говорит он. Вы повторяете эти слова по системе коммуникации 2МС. «Нагрев основной охлаждающей жидкости до температуры зелёной зоны», — объявляет он.

Теперь, когда реактор вошел в рабочий режим, поднятие контрольных тяг повышает мощность реактора, вследствие чего происходит нагревание охлаждающей жидкости. Средняя температура охлаждающей жидкости или Тср сейчас составляет 182 °C.

«Стабилизирую уровень разогрева реактора», — говорит он и кладет график поверх журнала записей.

Разогреваем активную зону реактора

В течение следующих 30 минут, оператор разогревает активную зону реактора. Стрелка Тср постепенно поднимается. Датчик уровня мощности реактора показывает между 0 и 5 % по мере того, как реактор разогревается.

«Тср находится в зелёной зоне, сэр», — докладывает он.

«Понял вас. — Вы берёте переговорное устройство 2МС. — Вахтенный контролёр машинного отделения, зайдите в комнату управления реактором».

Вахтенный контролёр машинного отделения спрашивает разрешения зайти в комнату управления реактором. Вы знаком разрешаете ему войти, и вместе с ним смотрите на панель управления реактором. Затем отдаете ему приказ на запуск паровой установки: «Вахтенный контролёр машинного отделения, запустить основные паровые установки 1 и 2. Впустить пар в машинное отделение, разогреть основные паровые колодки, создать вакуум в основных конденсаторах по правому и левому борту, запустить турбины по правому и левому борту и прогреть основные двигатели по правому и левому борту».

Единственный раз вахтенный контролёр машинного отделения не повторяет приказ. Это исключение стало традицией.

Он исчезает, чтобы направиться в переднюю часть подлодки. Пока вы ждете, вы знаете, что он и вахтенные верхнего уровня машинного отделения открывают клапаны, через которые пар из паровых котлов сможет пройти и достигнуть больших перегородок перекрывающих клапаны MS-1 и MS-2. Это понизит перепад давления в клапанах, и их будет легче открыть. Когда разница в давлении становится менее 3,3 атм, вахтенный контролёр машинного отделения и вахтенные верхнего уровня машинного отделения начнут открывать клапана MS-1 и MS-2. Открытие каждого клапана займёт добрых 5 минут.

«Датчик показывает открытие клапана MS-2», — говорит оператор реактора. Лампочка на его панели сменила форму с продолговатой на круглую. Через несколько минут он объявляет об открытии клапана MS-1.

Поднимается шум. Паровая колодка начинает нагреваться, и вода в ней, образовавшаяся в результате конденсации, выдувается наружу давлением пара. Шум, который вы слышите, это вахтенный контролёр машинного отделения, и вахтенные верхнего уровня машинного отделения продувают паровые сифоны, устройства, которые не допускают конденсат — капли воды — в паровые колодки. После 10 минут продувания колодок вахтенный контролёр машинного отделения и вахтенные нижнего уровня машинного отделения создают вакуум в конденсаторах.

Они запускают основные насосы системы подачи морской воды по правому и левому борту, а потом используют давление пара вспомогательной паровой системы, чтобы выкачать воздух из конденсаторов. Конденсация пара вызывает вакуум: пар занимает гораздо больший объем, чем жидкость, поэтому в конденсаторах и возникает ваккум. Но в начале цикла в трубах содержится очень много воздуха, а воздух не конденсируется. С помощью специальных устройств с вентиляционными трубами, выдувателей воздуха, пар пропускается через эти трубы для создания низкого давления. Вследствие этого воздух высасывается из конденсаторов и поступает в машинное отделение. Как раз эти выдуватели воздуха и сделают машинное отделение радиоактивным, как если бы вы использовали реактор, в котором вода находится в кипящем состоянии, или если бы у вас произошла утечка охлаждающей жидкости из первичной во вторичную петлю охлаждения.

Скоро вахтенный контролёр машинного отделения возвращается на верхний уровень машинного отделения и начинает раскручивать турбинный генератор по левому борту. Вы услышите, когда турбина начинает вращаться. Сначала она громыхает. Затем рычит, стонет и кричит, как реактивный самолет, Звук поднимается до оглушительного визга и, наконец, превращается в вой, пока частота не поднимается до пронзительного свиста.

Вахтенный контролёр машинного отделения появляется в дверном проёме и говорит: «Турбинный генератор по левому борту запущен и готов принять нагрузку».

Переключаем электроустановку

Время переключить электроустановку. «Электрооператор, — говорите вы, — переключить электроустановку на половинную мощность от турбинного генератора». Оператор подтверждает получение приказа и затем подключает свой синхроскоп к прерывателю турбинного генератора. Он будет манипулировать напряжением и частотой в прерывателе вспомогательного турбинного генератора на его внешней шине питания. Две шины питания должны быть синхронизированы. Это значит, что переменный ток, напряжение которого то падает, то возрастает, должен иметь одинаковое значение с обеих сторон прерывателя. Измеритель сравнивает частоту переменного тока с обеих сторон прерывателя, а стрелка медленно поворачивается в сторону указателя «быстро». Если частота вспомогательного турбинного генератора будет выше, то генератор замедлится, когда примет на себя нагрузку. Когда стрелка становится в положение «12 часов», оператор электроустановки поворачивает ручку управления прерывателем, и прерыватель вспомогательного турбинного генератора закрывается. Он делает так, чтобы перераспределить нагрузку основного генератора на вспомогательный.

«Электроустановка работает на 50 % мощности и соединена с вспомогательным турбинным генератором».

Вы делаете такое же объявление по системе 2МС. Вахтенный контролёр машинного отделения исчез на нижнем уровне машинного отделения, чтобы запустить основной подающий насос. Уровень мощности парового генератора понижается с тех пор, как он открыл клапаны MS-1 и MS-2. Вы слышите, как запускают насос, и индикаторы уровня воды в паровом генераторе на панели управления паровым генератором опять вернулись в нормальное положение.

Вскоре вахтенный контролёр машинного отделения запускает турбину по правому борту и докладывает, что она готова принять нагрузку. После проделывания той же операции на панели управления электроустановкой оператор докладывает, что установка готова к работе на полную мощность.

Вы командуете оператору электроустановки открыть прерыватель берегового электропитания.

«Оператор электроустановки, — командуете вы, — отсоединить кабели берегового питания». Они электрик забираются в люк доступа к кабелям и отсоединяют их. Когда они закончили, вы связываетесь с дежурным офицером и докладываете, что береговое питание отключено. Затем вы спрашиваете разрешения на то, чтобы раскрутить вал для разогрева основных двигателей. Он разрешает.

Открываем дроссели

Вахтенный контролёр машинного отделения запускает турбины основных двигателей и передает управление ими офицеру, отвечающему за движение судна. В течение следующих 8 часов он будет открывать дроссели каждые несколько минут, чтобы поддерживать основные двигатели прогретыми. Так как в этом процессе задействовано сцепление, вал проворачивает винт на полоборота, но это допустимо, потому что большой нагрузки на швартовочные канаты при этом не возникает.

Вы закончили. Теперь реактор работает примерно на 18 % своей мощности, а Тср находится в зеленой зоне около 249 °C. Теперь вам остается только ждать, пока вас сменят, и вы сможете отправиться на собрание офицеров, а потом на мостик, чтобы вести подлодку в море. Вы зеваете и принимаете чашку кофе от вахтенных верхнего уровня машинного отделения.

Минимум того, что вам нужно знать:

• Помощник капитана — самый занятой человек на борту подлодки.

• Главный инженер несёт ответственность за работу ядерного реактора.

• Номинальный и нормальный — не одно и то же, на подлодке нет ничего нормального.

• Вахтенный инженер полностью несёт ответственность за безопасность реактора и за общую безопасность в хвостовой части подлодки.

• Отсоединение кабелей берегового питания — последний шаг перед тем, как подлодка становится полностью независимой от берега.

Следующая глава >

Источник: tech.wikireading.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.