Закон всемирного тяготения гравитационная постоянная


1. Силы, с которыми все тела притягиваются друг к другу, называют силами всемирного тяготения или гравитационными силами.

Закон всемирного тяготения был установлен Ньютоном, и он утверждает, что тела притягиваются друг к другу с силой, модуль которой прямо пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними.

​( F=Gfrac{m_1m_2}{r^2} )​

где ​( m_1 )​ и ​( m_2 )​ — массы тел, ​( r )​ — расстояние между телами, ​( G )​ — постоянная всемирного тяготения или гравитационная постоянная.

Значение гравитационной постоянной установлено опытным путём, оно равно ​( G )​ = 6,67·10-11 Нм2/кг2. Смысл её заключается в следующем: два тела, каждое массой 1 кг, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 6,67·10-11 Н.

Значение гравитационной постоянной свидетельствует о том, что силы тяготения между телами малы. Они становятся заметными при больших значениях масс взаимодействующих тел. Например, притяжение шарика к Земле можно наблюдать без специальных приборов, а притяжение Земли к такому же шарику мы не можем наблюдать непосредственно.


Закон всемирного тяготения справедлив для тел, размерами которых можно пренебречь по сравнению с расстоянием между ними (для материальных точек). Закон применим также к шарам, в этом случае расстоянием между телами является расстояние между центрами шаров.

2. Все тела притягиваются к Земле. Силу притяжения тела к Земле называют силой тяжести ​( (F_т) )​.

По второму закону Ньютона сила равна произведению массы тела и ускорения, с которым оно движется под действием этой силы. Ускорение, с которым движется тело под действием силы тяжести, называется ускорением свободного падения и обозначается буквой ​( g )​. Ускорение свободного падения не зависит от массы тела. Соответственно, сила тяжести рассчитывается но формуле: ​( F_т=mg )​.

3. Закон всемирного тяготения позволяет получить формулу для вычисления значения ускорения свободного падения. С одной стороны, сила тяжести равна ( F_т=mg ), с другой стороны, сила притяжения тела к Земле может быть вычислена, исходя из закона всемирного тяготения: ​( F_т=Gfrac{M_Зm}{R^2} )​, где ​( M_З )​ — масса Земли, ​( m )​ — масса тела, ​( r )​ — радиус Земли. Приравнивая правые части записанных равенств, получим: ( mg=Gfrac{M_Зm}{R^2} ) или ( g=Gfrac{M_З}{R^2} ).


Полученная формула позволяет вычислить ускорение свободного падения тела, находящегося на поверхности Земли. Она наглядно показывает, что значение ускорения свободного падения зависит от расстояния тела до центра Земли. Именно поэтому оно на экваторе больше, чем на полюсах.

По этой формуле можно вычислить ускорение свободного падения на любой планете, подставив вместо массы Земли массу соответствующей планеты, а вместо радиуса
Земли радиус планеты.

4. Если тело находится на высоте ​( h )​ относительно поверхности Земли, то ускорение свободного падения определяется равенством ​( g=Gfrac{M_З}{(R_З+h)^2} )​. Из приведенного равенства понятно, что чем дальше тело находится от центра Земли, тем меньше ускорение свободного падения. Например, на высоте 18 км, на которой летают современные истребители, оно равно 9,72 м/с2.

5. Пользуясь законом всемирного тяготения, можно вычислить скорость, которую необходимо сообщить телу для того, чтобы оно стало спутником Земли. Эта скорость
называется первой космической скоростью.

Центростремительное ускорение ​( a )​ спутнику массой ​( m )​ обеспечивает сила тяготения ​( F_т )​, которая по второму закону Ньютона равна ​( F_т=ma )​. Сила тяготения ​( F_т=Gfrac{M_Зm}{R^2} )​, центростремительное ускорение равно ​( a=frac{v^2}{R} )​, где ​( v )​ — линейная скорость спутника, ​( R )​ — радиус Земли. Откуда следует: ​( Gfrac{M_Зm}{R^2}=mcdotfrac{v^2}{R} )​ или ​( g=frac{v^2}{R} )​. Отсюда ​( v=sqrt{gR} )​, т.е. первая космическая скорость равна 7,9 км/с. Первый в мире искусственный спутник Земли был запущен в СССР в 1957 г.

ПРИМЕРЫ ЗАДАНИЙ


Часть 1

1. Сила тяготения между двумя телами уменьшится в 2 раза, если массу каждого тела

1) увеличить в √2 раз
2) уменьшить в √2 раз
3) увеличить в 2 раза
4) уменьшить в 2 раза

2. Массу каждого из двух однородных шаров увеличили в 4 раза. Расстояние между ними тоже увеличили в 4 раза. Сила тяготения между ними

1) увеличилась в 64 раза
2) увеличилась в 16 раз
3) увеличилась в 4 раза
4) не изменилась

3. В вершинах прямоугольника расположены тела одинаковой массы. Со стороны какого тела на тело 1 действует наибольшая сила?

Закон всемирного тяготения гравитационная постоянная

1) со стороны тела 2
2) со стороны тела 3
3) со стороны тела 4
4) со стороны всех тел одинаковая

4. Закон всемирного тяготения справедлив

A. Для всех тел
Б. Для однородных шаров
B. Для материальных точек

Правильный ответ

1) А
2) только Б
3) только В
4) и А, и Б

5. На ящик массой 5 кг, лежащий на полу лифта, движущегося с ускорением ​( a )​ вертикально вниз, действует сила тяжести


1) равная 50 Н
2) большая 50 Н
3) меньшая 50 Н
4) равная 5 Н

6. Сравните значения силы тяжести ​( F_э )​, действующей на груз на экваторе, с силой тяжести ( F_м ), действующей на этот же груз на широте Москвы, если груз находится на одной и той же высоте относительно поверхности Земли.

1) ​( F_э=F_м )​
2) ( F_э>F_м )​
3) ( F_э<F_м )​
4) ответ может быть любым в зависимости от массы тел

7. Сила тяжести, действующая на космонавта на поверхности Луны,

1) больше силы тяжести, действующей на него на поверхности Земли
2) меньше силы тяжести, действующей на него на поверхности Земли
3) равна силе тяжести, действующей на него на поверхности Земли
4) больше силы тяжести, действующей на него на поверхности Земли на экваторе, и меньше силы тяжести, действующей на него, на поверхности Земли на полюсе

8. Сила тяжести, действующая на тело, зависит от

А. Географической широты местности
Б. Скорости падения тела на поверхность Земли

Правильный ответ

1) только А
2) только Б
3) ни А, ни Б
4) и А, и Б

9. Какое(-ие) из утверждений верно(-ы)?

Сила тяжести, действующая на тело у поверхности некоторой планеты, зависит от


А. Массы планеты.
Б. Массы тела.

1) только А
2) только Б
3) ни А, ни Б
4) и А, и Б

10. Первая космическая скорость зависит

A. От радиуса планеты
Б. От массы планеты
B. От массы спутника

Правильный ответ

1) только А
2) только Б
3) только А и Б
4) А, Б, В

11. Установите соответствие между физической величиной (левый столбец) и формулой, выражающей её взаимосвязь с другими величинами (правый столбец). В ответе запишите подряд номера выбранных ответов

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A. Сила тяжести
Б. Ускорение свободного падения на поверхности Земли
B. Закон всемирного тяготения

ФОРМУЛА
1) ​( F=Gfrac{m_1m_2}{r^2} )​
2) ​( F_т=mg )​
3) ​( g=Gfrac{M_З}{(R_З+h)^2} )​
4) ​( g=Gfrac{M_З}{R^2} )​

12. Среди приведённых утверждений выберите два правильных и запишите их номера в таблицу

1) Гравитационная постоянная показывает, с какой силой притягиваются друг к другу два тела массой 1 кг.
2) Значение силы тяжести, действующей на тело, зависит от скорости его движения.
3) Ускорение свободного падения зависит от массы и радиуса планеты.
4) При увеличении расстояния между телами в 3 раза сила тяготения между ними уменьшается в 9 раз.
5) Изменение массы одного из взаимодействующих тел не влияет на значение силы тяготения.


Часть 2

13. Человек на Земле притягивается к ней с силой 700 Н. С какой силой он притягивался бы к Марсу, находясь на его поверхности, если радиус Марса в 2 раза меньше радиуса Земли, а масса в 10 раз меньше, чем масса Земли?

Источник: fizi4ka.ru

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

    \[G=6,7\cdot {10}^{-11}\ {H\cdot m^2}/{{kg}^2\ }\]

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.


С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).


Если на тело действует сила тяжести, то тело совершает свободное падение. Вид траектории движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. Камень, брошенный в горизонтальном направлении, через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

    \[mg=G\frac{mM}{r^2}\]

откуда ускорение свободного падения:

   

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Источник: ru.solverbook.com

Кто открыл закон всемирного тяготения


Ни для кого не секрет, что закон всемирного тяготения был открыт великим английским ученым Исааком Ньютоном, по легенде гуляющим в вечернем саду и раздумывающем над проблемами физики. В этот момент с дерева упало яблоко (по одной версии прямо на голову физику, по другой просто упало), ставшее впоследствии знаменитым яблоком Ньютона, так как привело ученого к озарению, эврике. Яблоко, упавшее на голову Ньютону и вдохновило того к открытию закона всемирного тяготения, ведь Луна в ночном небе оставалась не подвижной, яблоко же упало, возможно, подумал ученый, что какая-то сила воздействует как на Луну (заставляя ее вращаться по орбите), так и на яблоко, заставляя его падать на землю.

Сейчас по заверениям некоторых историков науки вся эта история про яблоко лишь красивая выдумка. На самом деле падало яблоко или нет, не столь уж важно, важно, что ученый таки действительно открыл и сформулировал закон всемирного тяготения, который ныне является одним из краеугольных камней, как физики, так и астрономии.

Разумеется, и задолго до Ньютона люди наблюдали, как падающие на землю вещи, так и звезды в небе, но до него они полагали, что существует два типа гравитации: земная (действующая исключительно в пределах Земли, заставляющая тела падать) и небесная (действующая на звезды и Луну). Ньютон же был первым, кто объединил эти два типа гравитации в своей голове, первым кто понял, что гравитация есть только одна и ее действие можно описать универсальным физическим законом.

Определение закона всемирного тяготения


Согласно этому закону, все материальные тела притягивают друг друга, при этом сила притяжения не зависит от физических или химических свойств тел. Зависит она, если все максимально упростить, лишь от веса тел и расстояния между ними. Также дополнительно нужно принять во внимание тот факт, что на все тела находящиеся на Земле действует сила притяжения самой нашей планеты, получившая название – гравитация (с латыни слово «gravitas» переводиться как тяжесть).

Попробуем же теперь сформулировать и записать закон всемирного тяготения максимально кратко: сила притяжения между двумя телами с массами m1 и m2 и разделенными расстоянием R прямо пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

Формула закона всемирного тяготения

Ниже представляем вашему вниманию формулу закона всемирного тяготения.

формула закона всемирного тяготения

G в этой формуле это гравитационная постоянная, равная 6,67408(31)•10−11 эта величина воздействия на любой материальный объект силы гравитации нашей планеты.

Закон всемирного тяготения и невесомость тел

Открытый Ньютоном закон всемирного тяготения, а также сопутствующий математический аппарат позже легли в основу небесной механики и астрономии, ведь с помощью него можно объяснить природу движения небесных тел, равно как и явление невесомости. Находясь в космическом пространстве на значительном удалении от силы притяжения-гравитации такого большого тела как планета, любой материальный объект (например, космический корабль с астронавтами на борту) окажется в состоянии невесомости, так как сила гравитационного воздействия Земли (G в формуле закона тяготения) или какой-нибудь другой планеты, больше не будет на него влиять.

Источник: www.poznavayka.org


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.