Второй закон кеплера утверждает что


В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами. Очень непросто наблюдать гравитационное взаимодействие и между различными окружающими нас телами, даже если их массы составляют многие тысячи килограмм. Однако именно гравитация определяет поведение «больших» объектов, таких, как планеты, кометы и звезды, именно гравитация удерживает всех нас на Земле.

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства.

Закономерности движения планет с давних пор привлекали внимание людей. Изучение движения планет и строения Солнечной системы и привело к созданию теории гравитации – открытию закона всемирного тяготения.

С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Первая попытка создания модели Вселенной была предпринята Птолемеем (~ 140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды.


Второй закон кеплера утверждает что
Рисунок 1.24.1. Условное изображение наблюдаемого движения Марса на фоне неподвижных звезд

Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника. В системе Коперника траектории планет оказались более простыми. Немецкий астроном Иоганн Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы. Кеплер использовал результаты наблюдений за движением планет датского астронома Тихо Браге.

Первый закон Кеплера (1609 г.):

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием, точка A, наиболее удаленная от Солнца – афелием. Расстояние между афелием и перигелием – большая ось эллипса.


Второй закон кеплера утверждает что
Рисунок 1.24.2. Эллиптическая орбита планеты массой m << M. a – длина большой полуоси, F и F’ – фокусы орбиты

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым.

Второй закон Кеплера (1609 г.):

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рис. 1.24.3 иллюстрирует 2-й закон Кеплера.

Второй закон кеплера утверждает что
Рисунок 1.24.3. Закон площадей – второй закон Кеплера

Второй закон Кеплера эквивалентен закону сохранения момента импульса. На рис. 1.24.3 изображен вектор импульса тела и его составляющие и Площадь, описываемая радиус-вектором за малое время Δt, приближенно равна площади треугольника с основанием rΔθ и высотой r:

Второй закон кеплера утверждает что


Здесь – угловая скорость.

Момент импульса L по абсолютной величине равен произведению модулей векторов и :

Из этих отношений следует:

Поэтому, если по второму закону Кеплера , то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии и афелии направлены перпендикулярно радиус-векторам и из закона сохранения момента импульса следует:

Третий закон Кеплера (1619 г.):

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

Второй закон кеплера утверждает что

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %.

На рис. 1.24.4 изображены две орбиты, одна из которых – круговая с радиусом R, а другая – эллиптическая с большой полуосью a. Третий закон утверждает, что если R = a, то периоды обращения тел по этим орбитам одинаковы.

Второй закон кеплера утверждает что
Рисунок 1.24.4. Круговая и эллиптическая орбиты. При R = a периоды обращения тел по этим орбитам одинаковы

Второй закон кеплера утверждает что

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений. Законы Кеплера нуждались в теоретическом обосновании. Решающий шаг в этом направлении был сделан Исааком Ньютоном, открывшим в 1682 году закон всемирного тяготения:

где M и m – массы Солнца и планеты, R – расстояние между ними, G = 6,67·10–11 Н·м2/кг2 – гравитационная постоянная. Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, уже говорилось, что сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T2 ~ R3, где Т – период обращения, R – радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:


Если T2 ~ R3, то

Свойство консервативности гравитационных сил позволяет ввести понятие потенциальной энергии. Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m, находящегося на расстоянии r от неподвижного тела массы M, равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях (рис. 1.24.5).

Второй закон кеплера утверждает что
Рисунок 1.24.5. Вычисление потенциальной энергии тела в гравитационном поле

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам. Работа гравитационной силы на малом перемещении есть:

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ ΔAi на малых перемещениях:

В пределе при Δri → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение

Знак «минус» указывает на то, что гравитационные силы являются силами притяжения.

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость υ, его полная механическая энергия равна


Второй закон кеплера утверждает что

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6).

При E = E1 < 0 тело не может удалиться от центра притяжения на расстояние r > rmax. В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Второй закон кеплера утверждает что
Рисунок 1.24.6. Диаграмма энергий тела массой m в гравитационном поле, создаваемом сферически симметричным телом массой M и радиусом R

При E = E2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории.


При E = E3 > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

Эту скорость необходимо набрать, чтобы преодолеть притяжение Земли и вывести тело (например, спутник) на орбиту Земли.

Второй закон кеплера утверждает что

Второй закон кеплера утверждает что

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

Второй закон кеплера утверждает что


Второй закон кеплера утверждает что

Рис. 1.24.7 иллюстрирует космические скорости. Если скорость космического корабля равна υ1 = 7.9·103 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих υ1, но меньших υ2 = 11,2·103 м/с, орбита корабля будет эллиптической. При начальной скорости υ2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

Второй закон кеплера утверждает что
Рисунок 1.24.7. Космические скорости. Указаны скорости вблизи поверхности Земли. 1: υ = υ1 – круговая траектория; 2: υ1 < υ < υ2 – эллиптическая траектория; 3: υ = 11,1·103 м/с – сильно вытянутый эллипс; 4: υ = υ2 – параболическая траектория; 5: υ > υ2 – гиперболическая траектория; 6: траектория Луны

Третья космическая скорость равна примерно 16,6·103 м/сек (при запуске на высоте 200 км над земной поверхностью) и необходима для преодоления гравитации сначала Земли, а затем и Солнца и выхода за пределы Солнечной системы. Сейчас два искусственных спутника развили такую скорость Пионер-10 и Пионер-11, запущенные 2 марта 1972 и 6 апреля 1973 года соответственно. В данный момент аппараты покинули пределы Солнечной системы.


Источник: questions-physics.ru

Первый закон Кеплера

Это эллипсический закон.

В нашей системе планеты осуществляют оборот по эллипсу. К тому же, Солнце находится на одном из фокусов данной кривой.

Форму эллипса и его сходство с окружностью определяют эксцентриситетом. Это выражение сечения конуса в числовой мере. Более того, именно он указывает на степень отклонения от окружности.

Его вычисляют делением промежутка от центра до фокуса эллипса на большую полуось. Если расстояние равно нулю, соответственно эллипс будет являться окружностью.

Первый закон Кеплера

Открытие и использование закона всемирного тяготения в астрономии является доказательством первого закона Кеплера. Закон всемирного тяготения установил то, что каждый объект во Вселенной притягивает другой объект по определённой линии. Которая, помимо всего прочего, соединяет центры их масс. Но в то же время является пропорциональной массе каждого объекта, и обратно пропорциональной квадрату расстояния между этими объектами. Разработал закон всемирного тяготения Ньютон.

Первый закон Кеплера взаимосвязан с ньютоновскими законами.

Во втором законе Ньютон утверждал и доказывал, что ускорение объекта является пропорциональной равнодействующей всех сил. Которые прилагаются к объекту. Кроме того, ускорение также является обратно пропорциональным массе объекта.

Второй кеплеровский закон

По другому, его называют законом площадей. Он сообщает, что каждая планета движется в определённой плоскости. Которая, к тому же, простирается через центр Солнца. Вдобавок радиус-вектор, объединяющий планету и Солнце, заметает собой равные площади за равные промежутки времени.

Второй закон Кеплера

В Солнечной системе планеты движутся вокруг Солнца совсем непостоянно. Например, от самой ближней точки орбиты до главной звезды наблюдается большая скорость, чем от самой дальней точки.

Действительно, мы наблюдаем такое явление в начале года. Видимое движение Солнца проходит быстрее, нежели в другое время. Так как Земля в это время расположена на ближнем пункте орбиты. Кстати, её называют перигелий. А прямо противоположную точку, то есть самую отдаленную-афелий.

Третий закон Кеплера

Часто называют его название гармоничный закон. Он подразумевает, что период вращения планеты в квадрате вокруг Солнца относится, как куб большой полуоси орбиты планеты.

По правилам силы гравитации, закон Кеплера не совсем точен. Помимо всего прочего, в нём должна учитываться масса планеты.

Гармоничный закон с учётом закона тяготения актуально применять для измерения массы космического объекта. Но только, если установлены их орбиты.

Третий закон Кеплера

Третий закон Кеплера показывает связь между промежутком от планеты до звезды и периодом обращения по орбите.

Проще говоря, чем планета ближе к Солнцу, тем быстрее она крутится.

Источник: zen.yandex.ru

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник — объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами — Сатурна и Юпитера — он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса — тетраэдр (правильный четырехгранник) и т. д.* Шесть сфер планет, пять вписанных между ними правильных многогранников — казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. По меткому замечанию современного британского биолога Дж. Холдейна (J. B. S. Haldane), «идея Вселенной как геометрически совершенного произведения искусства оказалась еще одной прекрасной гипотезой, разрушенной уродливыми фактами». Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге (Tycho Brahe, 1546–1601), Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника (см. Принцип Коперника) и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Наша задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон** описывает геометрию траекторий планетарных орбит. Возможно, вы помните из школьного курса геометрии, что эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек — фокусов — равна константе. Если это слишком сложно для вас, имеется другое определение: представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, — это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно — Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было, я бы сказал, прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности (причем это заблуждение мне и сегодня приходится раз за разом развеивать среди своих студентов). Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца. В формальном виде я его формулировку уже приводил, а чтобы лучше понять его физический смысл, вспомните свое детство. Наверное, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты кружатся вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать всё сначала — накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести из законов механики Ньютона, закона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам — гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним — и угловые скорости галактик в целом (см. также Темная материя). Меня радует, что труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

Источник: elementy.ru

Законы

На смену геоцентрической Птолемеевой системе мира пришла система гелиоцентрического типа, созданная Коперником. Еще позже, Кеплер выявил законы движения планет вокруг Солнца.

После многолетних наблюдений за планетами появились три закона Кеплера. Рассмотрим их в статье.

Первый

Согласно первому закону Кеплера, все планеты нашей системы движутся по замкнутой кривой, называемой эллипсом. Наше светило располагается в одном из фокусов эллипса. Всего их два: это две точки внутри кривой, сумма расстояний от которых до любой точки эллипса постоянна. После длительных наблюдений ученый смог выявить, что орбиты всех планет нашей системы располагаются почти в одной плоскости. Некоторые небесные тела двигаются по орбитам-эллипсам, близким к окружности. И только Плутон с Марсом двигаются по более вытянутым орбитам. Исходя из этого, первый закон Кеплера получил название закона эллипсов.

Второй закон

Изучение движения тел позволяет ученому установить, что скорость планеты больше в тот период, когда она находится ближе к Солнцу, и меньше тогда, когда она находится на максимальном расстоянии от Солнца (это точки перигелия и афелия).

Второй закон Кеплера говорит о следующем: каждая планета перемещается в плоскости, проходящей через центр нашего светила. В одно и то же время радиус-вектор, соединяющий Солнце и исследуемую планету, описывает равные площади.

Таким образом, ясно, что тела движутся вокруг желтого карлика неравномерно, а имея в перигелии максимальную скорость, а в афелии – минимальную. На практике это видно по движению Земли. Ежегодно в начале января наша планета, во время прохождения через перигелий, перемещается быстрее. Из-за этого движение Солнца по эклиптике происходит быстрее, чем в другое время года. В начале июля Земля движется через афелий, из-за чего Солнце по эклиптике перемещается медленнее.

Третий закон

По третьему закону Кеплера, между периодом обращения планет вокруг светила и ее средним расстоянием от него устанавливается связь. Этот закон ученый применил ко всем планетам нашей системы.

Объяснение законов

Законы Кеплера смогли объяснить только после открытия Ньютоном закона тяготения. По нему физические объекты принимают участие в гравитационном взаимодействии. Оно обладает всеобщей универсальностью, которой подвержены все объекты материального типа и физические поля. По утверждению Ньютона, два неподвижных тела действуют взаимно друг с другом с силой, пропорциональной произведению их веса и обратно пропорциональной квадрату промежутков между ними.

Возмущенное движение

Движением тел нашей Солнечной системы управляет сила притяжения желтого карлика. Если бы тела притягивались только силой Солнца, то планеты совершали бы движения вокруг него точно по законам движения Кеплера. Данный вид перемещения называют невозмущенным или кеплеровским.

В действительности все объекты нашей системы притягиваются не только нашим светилом, но и друг другом. Поэтому ни одно из тел не может перемещаться точно по эллипсу, гиперболе или по кругу. Если тело отклоняется во время движения от законов Кеплера, то это называется возмущениями, а само движение – возмущенным. Именно оно считается реальным.

Орбиты небесных тел не являются неподвижными эллипсами. Во время притяжения другими телами, происходит изменение эллипса орбиты.

Вклад И. Ньютона

Исаак Ньютон смог вывести из законов движения планет Кеплера закон всемирного тяготения. Для решения космическо-механических задач Ньютон использовал именно всемирное тяготение.

После Исаака прогресс в области небесной механики заключался в развитии математической науки, применяемой для решения уравнений, выражающих законы Ньютона. Этот ученый смог установить, что гравитация планеты определяется расстоянием до нее и массой, а вот такие показатели, как температура и состав, не оказывают никакого влияния.

В своей научной работе Ньютон показал, что третий кеплеровский закон не совсем точен. Он показал, что при подсчетах важно учитывать массу планеты, так как движение и вес планет связаны. Это гармоническая комбинация показывает связь между кеплеровскими законами и законом тяготения, выявленным Ньютоном.

Астродинамика

Применение законов Ньютона и Кеплера стало основой появления астродинамики. Это раздел небесной механики, изучающий движение космических тел, созданных искусственно, а именно: спутников, межпланетных станций, различных кораблей.

Астродинамика занимается расчетами орбит космических кораблей, а также определяет, по каким параметрам производить пуск, на какую орбиту выводить, какие необходимо провести маневры, планированием гравитационного воздействия на корабли. И это далеко не все практические задачи, которые ставятся перед астродинамикой. Все полученные результаты применяются при выполнении самых разных космических миссий.

С астродинамикой тесно связана небесная механика, которая изучает движение естественных космических тел под действием силы тяготения.

Орбиты

Под орбитой понимают траекторию движения точки в заданном пространстве. В небесной механике принято считать, что траектория тела в гравитационном поле другого тела обладает значительно большей массой. В прямоугольной системе координат, траектория может иметь форму конического сечения, т.е. быть представлена параболой, эллипсом, кругом, гиперболой. При этом фокус будет совпадать с центром системы.

На протяжении длительного времени считалось, что орбиты должны быть круглыми. Довольно долго ученые пытались подобрать именно круговой вариант перемещения, но у них не получалось. И только Кеплер смог объяснить, что планеты перемещаются не по круговой орбите, а по вытянутой. Это позволило открыть три закона, которые смогли описать движение небесных тел по орбите. Кеплер открыл следующие элементы орбиты: форму орбиты, ее наклон, положение плоскости орбиты тела в пространстве, размер орбиты, привязку по времени. Все эти элементы определяют орбиту независимо от ее формы. При расчетах основной координатной плоскостью может быть плоскость эклиптики, галактики, планетарного экватора и т.д.

Многочисленные исследования показывают, что по геометрической форме орбиты могут быть эллиптическими и округлыми. Есть деление на замкнутые и незамкнутые. По углу наклона орбиты к плоскости земного экватора, орбиты могут быть полярными, наклонными и экваториальными.

По периоду обращения вокруг тела, орбиты могут быть синхронными или солнечно-синхронными, синхронно-суточными, квазисинхронными.

Как говорил Кеплер, все тела имеют определенную скорость движения, т.е. орбитальную скорость. Она может быть постоянной на протяжении всего обращения вокруг тела или же изменяться.

Источник: FB.ru

Первый закон Кеплера (закон эллипсов)

Планеты Солнечной системы движутся по эллиптическим орбитам. В одном из фокусов которой находится Солнце.

Второй закон кеплера утверждает что

Согласно первому закону Кеплера, все планеты нашей системы движутся по замкнутой кривой, называемой эллипсом. Наше светило располагается в одном из фокусов эллипса. Всего их два: это две точки внутри кривой, сумма расстояний от которых до любой точки эллипса постоянна.

После длительных наблюдений ученый смог выявить, что орбиты всех планет нашей системы располагаются почти в одной плоскости. Некоторые небесные тела двигаются по орбитам-эллипсам, близким к окружности. И только Плутон с Марсом двигаются по более вытянутым орбитам. Исходя из этого, первый закон Кеплера получил название закона эллипсов.

Второй закон Кеплера (закон площадей)

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Второй закон кеплера утверждает что

Второй закон Кеплера говорит о следующем: каждая планета перемещается в плоскости, проходящей через центр нашего светила. В одно и то же время радиус-вектор, соединяющий Солнце и исследуемую планету, описывает равные площади. Таким образом, ясно, что тела движутся вокруг желтого карлика неравномерно, а имея в перигелии максимальную скорость, а в афелии – минимальную.

На практике это видно по движению Земли. Ежегодно в начале января наша планета, во время прохождения через перигелий, перемещается быстрее. Из-за этого движение Солнца по эклиптике происходит быстрее, чем в другое время года. В начале июля Земля движется через афелий, из-за чего Солнце по эклиптике перемещается медленнее.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит.

Второй закон кеплера утверждает что

По третьему закону Кеплера, между периодом обращения планет вокруг светила и ее средним расстоянием от него устанавливается связь.  Третий закон Кеплера выполняется как для планет, так и для спутников, с погрешно­стью не более 1 %.

На основании этого закона можно вычис­лить продолжительность года (время полного оборота вокруг Солнца) любой планеты, если известно её расстояние до Солнца. И наобо­рот — по этому же закону можно рассчитать орбиту, зная период обращения.

Дальнейшее развитие

И хотя законы Кеплера имели относительно невысокую погрешность, все же они были получены эмпирическим способом. Теоретическое же обоснование отсутствовало. Данная проблема позже была решена Исааком Ньютоном, который в 1682-м году открыл закон всемирного тяготения.

Законы Кеплера стали важнейшим этапом в понимании и описании движения планет.

Видео


Источник: asteropa.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.