Виды спектра


Свет — это поток электромагнитных волн, длина которых находится в диапазоне от 4 • 10-7 — 8 • 10-7 м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц.  Эти заряженные частицы входят в состав атомов, из которых состоит вещество. Но следует знать, как устроен атом, чтобы достоверно сказать что-то о механизме излучения.  Ясно лишь, что внутри атома нет света. Подобно тому, как струна начинает звучать лишь после удара молоточка, атомы «рождают» свет только после их возбуждения. Для того, чтобы атом начал излучать, ему необходимо передать определенную энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.
Приведем пример наиболее простого и распространенного вида излучения — это тепловое излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов или молекул излучающего тела.


м выше температура тела, тем быстрее движутся в нем атомы. При столкновении быстрых атомов или молекул друг с другом часть их кинетической энергии идет на возбуждение атомов, которые затем излучают свет и переходят в невозбужденное состояние. Естественным тепловым источником излучения является Солнце, а искусственным — обычная лампа накаливания. Лампа — очень удобный, но малоэкономичный источник. Только 12 процентов всей энергии, которая выделяется в нити лампы электрическим током, могут быть преобразованы в энергию света.  К естественному тепловому источнику света относится пламя. Крупинки сажи (не успевшие сгореть частицы топлива) раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет. Энергия, необходимая атомам для излучения света, может заимствоваться также и из нетепловых источников. Например, при разряде в газах. Здесь электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают неупругие соударения с атомами. При этом часть кинетической энергии электронов идет на возбуждения атомов. Возбужденные атомы выделяют энергию в виде световых волн. Можно наблюдать, как разряд в газе сопровождается свечением. Этот процесс называется электролюминесценцией.
Северное сияние – это одно из проявлений электролюминесценции в природе. Солнце испускает потоки заряженных частиц, которые захватываются магнитным полем Земли. Они возбуждают атомы верхних слоев атмосферы у магнитных полюсов Земли, из-за чего эти слои светятся.

ектролюминесценция используется в трубках для рекламных надписей. Бомбардировка твердого тела электронами вызывает его свечение. Это явление называется катодолюминесценцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизора. Технология изготовления ламп дневного света была разработана под руководством Вавилова Сергея Ивановича. Основные научные труды Вавилова посвящены физической оптике, и в первую очередь фотолюминесценции.  Также под его руководством был развит метод люминесцентного анализа химического состава веществ. При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. При этом источник света остаётся холодным, ведь он имеет температуру окружающей среды. Такое явление называется хемилюминесценцией. Каждый из вас знаком с этим явлением.  Летом в лесу можно ночью увидеть насекомое — светлячка. На теле у него «светится» маленький зеленый «фонарик». Если возьмете светлячка в руки, вы не обожжетесь. Светящееся пятнышко на его спинке имеет почти ту же температуру, что и окружающий воздух. Свойством светиться обладают и другие живые организмы: бактерии, насекомые, многие рыбы, обитающие на большой глубине. Часто светятся в темноте кусочки гниющего дерева. Падающий на вещество свет частично поглощается. И некоторые тела сами начинают светиться под действием падающего на них излучения. Это и есть фотолюминесценция.

ет, падая на некоторое вещество, возбуждает в нем атомы. Тем самым увеличивается их внутренняя энергия. И после этого они высвечиваются сами. Например, елочные игрушки покрывают светящимися красками, и они излучают свет после их облучения. Излучаемый при фотолюминесценции свет имеет большую длину волны, чем свет, возбуждающий свечение. Это можно наблюдать экспериментально. Явление фотолюминесценции используется в лампах дневного света. Внутреннюю поверхность разрядной трубки покрывают веществами, способными ярко светиться под действием коротковолнового излучения газового разряда. Теперь легко объяснить, почему лампы дневного света примерно в три – четыре раза экономичнее обычных ламп накаливания.  Как исследуются излучения различных источников?   Ни один из источников не дает монохроматического света, имеющего строго определенную длину волны. Доказательством сказанного утверждения являются опыты по разложению света в спектр с помощью призмы, а также опыты по интерференции и дифракции. Та энергия, которую несет с собой свет, распределена по волнам всех длин, входящим в состав светового пучка.  Можно также сказать, что энергия распределена по частотам, так как между длиной волны и частотой существует простая связь: скорость света определяется как произведение длины световой волны на частоту излучения.
Плотность потока электромагнитного излучения, или интенсивность, определяется энергией, приходящейся на все частоты. Чтобы охарактеризовать распределение излучения по частотам, следует ввести новую величину: интенсивность, приходящуюся на единичный интервал частот.

у величину называют спектральной плотностью интенсивности излучения. Обозначим ее через (и от ню) I(v) . Тогда интенсивность излучения, приходящегося на небольшой спектральный   интервал (дельта ню) , равна их произведению. Суммируя подобные   выражения по всем частотам спектра, мы получим плотность потока излучения (и) I . Спектральную плотность потока излучения можно найти с помощью опыта.  Для этого надо с помощью призмы получить спектр излучения, например электрической дуги, и измерить плотность потока излучения, приходящегося на небольшие спектральные интервалы шириной (дельта ню). На глаз оценить распределение энергии нельзя. Глаз обладает избирательной чувствительностью к свету: максимум его чувствительности лежит в желто — зеленой области спектра. Если воспользоваться очень черным телом, то оно будет поглощать свет всех длин волн. При этом энергия излучения, то есть света, вызывает нагревание тела. Поэтому достаточно измерить температуру тела и по ней судить о количестве поглощенной в единицу времени энергии.
В этом опыте обычным термометром не воспользуешься, он имеет слишком   малую чувствительность. Нужны более чувствительные приборы. Здесь можно взять электрический термометр сопротивления. Чувствительный элемент, который выполнен в виде тонкой металлической пластины, надо покрыть тонким слоем сажи, почти полностью поглощающей свет любой длины волны.

к как пластина прибора чувствительна к нагреванию, то ее следует поместить в то или иное место спектра.  Каждому цвету в спектре соответствует своя частота световой волны. По нагреванию черной пластины прибора можно судить о плотности потока излучения, приходящегося на данный интервал частот. Перемещая пластину вдоль спектра, обнаружили, что большая часть энергии приходится на красную часть спектра. По результатам этих опытов нужно построить кривую зависимости спектральной плотности интенсивности излучения от частоты. По оси абсцисс будем откладывать значения частот, а по оси ординат -спектральную плотность интенсивности излучения. Полученная кривая дает наглядное представление о распространении энергии в видимой части спектра.  
Для точного исследования спектров узкая щель и призма будут очень простыми приспособлениями. Необходимы приборы, четко и хорошо разделяющие волны различной длины, не допускающие перекрытия отдельных участков спектра. Такие приборы называют спектральными аппаратами. Их основной частью является призма или дифракционная решетка. 
Рассмотрим схему устройства призменного спектрального аппарата.  Исследуемое излучение поступает вначале в часть прибора, называемую коллиматором. Коллиматор представляет собой трубу, на одном конце которой имеется ширма с узкой щелью, а на другом – собирающая линза (эль-1). Щель находится на фокусном расстоянии от линзы. Поэтому расходящийся световой    пучок, попадающий на линзу из щели, выходит из нее  параллельным пучком и падает на призму (пэ).

к как разным частотам соответствуют различные показатели преломления, то из призмы выходят параллельные пучки, не совпадающие по направлению.  Они падают на линзу (эль-2). На фокусном расстоянии этой линзы располагается экран – матовое стекло или фотопластинка. Линза (эль-2) фокусирует параллельные пучки лучей на экране, и вместо одного изображения щели получается целый ряд изображений.  Каждой частоте (точнее, узкому спектральному интервалу) соответствует свое изображение. Все эти изображения вместе и образуют спектр. Описанный прибор называется спектрографом. Если вместо второй линзы и экрана используется зрительная труба для визуального наблюдения спектров, то прибор называется спектроскопом.  Призмы и другие детали спектральных аппаратов  можно изготовить как из стекла, так и из других прозрачных материалов, например из кварца, каменной соли. Спектральный состав излучения веществ можно разделить на три типа.  Первый тип – это непрерывные спектры. Примером является солнечный спектр или спектр дугового фонаря. В спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу. Распределение энергии по частотам, то есть спектральная плотность интенсивности излучения, для различных тел различно. При повышении температуры максимум спектральной плотности излучения смещается в сторону коротких волн.

кие спектры дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Но для получения непрерывного спектра нужно нагреть тело до высокой температуры.
Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами. Примером непрерывного спектра в природе является радуга.
Следующий тип — линейчатые спектры. Это самый фундаментальный, основной тип спектров. Чтобы его получить, кусочек асбеста смочим раствором обыкновенной поваренной соли и внесем в пламя газовой горелки. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия. Эту желтую линию дают пары натрия.
Вещества в газообразном атомарном состоянии дают линейчатые спектры. Изолированные атомы излучают строго определенные длины волн. 
Полосатый спектр состоит из отдельных полос, разделенных темными промежутками.  Каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. Они создаются молекулами, не связанными или слабо связанными друг с другом. Для наблюдения полосатых спектров, также как и для наблюдения линейчатых спектров, используют свечение паров в пламени или свечение газового разряда.
Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны; их энергия определенным образом распределена по длинам волн. 
Поглощение света веществом также зависит от длины волны.

ли пропустить белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения. Линейчатые спектры играют особо важную роль в спектральном анализе, потому что их структура прямо связана со строением атома. Наблюдая спектры, ученные получили возможность «заглянуть» внутрь атома, открыть процессы, происходящие в микромире.  Длины волн (или частоты) линейчатого спектра какого-либо вещества зависят только от свойств атомов этого вещества, но совершенно не зависят от способов возбуждения свечения атомов. Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго определенный набор длин волн. На этом основан спектральный анализ — метод определения химического состава вещества по его спектру. Подобно отпечаткам пальцев у людей линейчатые спектры имеют неповторимую индивидуальность.  Это очень чувствительный метод. Яркость спектральных линий зависит и от массы вещества, и от способа возбуждения свечения, поэтому количественный анализ состава вещества по его спектру затруднен. Так, при низких температурах многие спектральные линии вообще не появляются.

этому, чтобы проводить и количественный спектральный анализ, необходимо соблюдение стандартных условий возбуждения свечения. В настоящее время составлены таблицы спектров для каждого вещества. С помощью спектрального анализа были открыты многие новые элементы. Элементам часто давали названия в соответствии с цветом наиболее интенсивных линий спектра. Рубидий дает тёмно-красные, рубиновые линии. Небесно-голубой цвет имеет основные линии спектра цезия.
Так с помощью спектрального анализа выяснили химический состав Солнца и звезд. Звезды состоят из тех же самых химических элементов, которые имеются и на Земле. Любопытен тот факт, что гелий сначала открыли на солнце и лишь после нашли в атмосфере Земли. Слово "гелий" в переводе означает "солнечный". Спектральный анализ является основным и универсальным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии. Также с помощью спектрального анализа определяют химический состав руд и минералов, состав сложных органических смесей. Спектральный анализ можно проводить как по спектрам испускания, так и по спектрам поглощения. Именно линии спектра поглощения в спектре Солнца и звезд позволяют исследовать химический состав этих небесных тел. Ярко светящаяся поверхность Солнца — фотосфера — дает непрерывный спектр. Солнечная атмосфера поглощает избирательно свет от фотосферы, что приводит к появлению линий поглощения на фоне непрерывного спектра фотосферы.
Сама атмосфера солнца излучает свет.

время солнечных затмений, когда солнечный диск закрыт Луной, происходит "обращение" линий спектра. На месте линий поглощения в солнечном спектре появляются линии излучения. В астрофизике спектральный анализ имеет очень важное значение. Можно даже утверждать, что на спектральном анализе строится вся вычислительная часть этой науки. Здесь определяют химический состав звезд, газовых облаков, находят по спектрам многие другие физические характеристики этих объектов: температуру, давление, скорость движения, магнитную индукцию.
 

Источник: infourok.ru

Виды излучений

Тепловое излучениеизлучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов (или молекул) излучающего тела. Тепловым источником является солнце, лампа накаливания и т. д.

Электролюминесценция (от латинского люминесценция — «свечение») – разряд в газе сопровождающийся свечением. Северное сияние есть проявление электролюминесценции. Используется в трубках для рекламных надписей.

Катодолюминесценция свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря ей светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция излучение света в некоторых химических реакциях, идущих с выделением энергии. Ее можно наблюдать на примере светлячка и других живых организмах, обладающих свойством светиться.

Фотолюминесценция свечение тел непосредственно под действием падающих на них излучений. Примером являются светящиеся краски, которыми покрывают елочные игрушки, они излучают свет после их облучения. Это явление широко используется в лампах дневного света.

Для того чтобы атом начал излучать, ему необходимо передать определенную энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Спектры

Непрерывные и линейчатые спектры   


Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектральный анализ

Спектральный анализ — совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др. В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральный анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения. Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта. Простейший спектральный аппарат — спектрограф.

Схема устройства призменного спектрографа


История

Тёмные линии на спектральных полосках были замечены давно (например, их отметил Волластон), но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Фраунгоферовы линии

            Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г.Кирхгоф и Р.Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а 1861 году — рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000—10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

 Спектр электромагнитных излучений

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны. При колебаниях, происходящих с частотами от 105 до 1012 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

Инфракрасное излучение. Электромагнитные излучения с длиной волны, меньшей 1-2 мм, но большей 8*10-7 м, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением.

Область спектра за красным его краем впервые экспериментально была исследована в 1800г. английским астрономом Вильямом Гершелем (1738 — 1822 гг.). Гершель поместил термометр с зачерненным шариком за красный край спектра и обнаружил повышение температуры. Шарик термометра нагревался излучением, невидимым глазом. Это излучение назвали инфракрасными лучами.

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Видимый свет. К видимому свету (или просто свету) относятся излучения с длиной волны примерно от 8*10-7 до 4*10-7 м, от красного до фиолетового света.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения. Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

Ультрафиолетовое излучение. В 1801 году немецкий физик Иоганн Риттер (1776 — 1810), исследуя спектр, открыл, что за

его фиолетовым краем имеется область, создаваемая невидимыми глазом лучами. Эти лучи воздействуют на некоторые химические соединения. Под действием этих невидимых лучей происходит разложения хлорида серебра, свечение кристаллов сульфида цинка и некоторых других кристаллов.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением. К ультрафиолетовому излучению относят электромагнитные излучения в диапазоне длин волн от 4*10-7 до 1*10-8 м.

Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека — загару.

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи. Если в вакуумной трубке между нагретым катодом, испускающим электрон, и анодом приложить постоянное напряжение в несколько десятков тысяч вольт, то электроны будут сначала разгоняться электрическим полем, а затем резко тормозиться в веществе анода при взаимодействии с его атомами. При торможении быстрых электронов в веществе или при переходах электронов на внутренних оболочках атомов возникают электромагнитные волны с длиной волны меньше, чем у ультрафиолетового излучения. Это излучение было открыто в 1895 году немецким физиком Вильгельмом Рентгеном (1845-1923). Электромагнитные излучения в диапазоне длин волн от 10-14 до 10-7 м называются рентгеновскими лучами.

Рентгеновские лучи невидимы глазом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний. Гамма-излучение. Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Гамма-излучение — самое коротковолновое электромагнитное излучение (<10-10 м). Его особенностью являются ярко выраженные корпускулярные свойства. Поэтому гамма-излучение обычно рассматривают как поток частиц — гамма-квантов. В области длин волн от 10-10 до 10-14 и диапазоны рентгеновского и гамма-излучений перекрываются, в этой области рентгеновские лучи и гамма-кванты по своей природе тождественны и отличаются лишь происхождением.

 

Источник: www.sites.google.com

Физика, 11 класс

Урок 19. Излучение и спектры

Перечень вопросов, рассматриваемых на уроке:

1) виды излучения и их источники;

2) спектры химических веществ, спектральный анализ;

3) практическое применение спектрального анализа;

4) спектральный аппарат;

4) шкала электромагнитных излучений.

Глоссарий по теме

Тепловое излучение – это излучение нагретых тел.

Электролюминесценция — это свечение, сопровождающее разряд в газе.

Катодолюминесценция — это свечение твердых тел, вызванное бомбардировкой их электронами.

Хемилюминесценция — это свечение, которое возникает при выделении энергии в некоторых химических реакциях. Фотолюминесценция — это свечение тела непосредственно под воздействием падающего на него излучения.

Спектральная плотность потока излучения I(ν) — интенсивность излучения, приходящаяся на единицу частотного интервала.

Спектры излучения представляют собой набор частот или длин волн, которые содержатся в излучении вещества.

Непрерывный (или сплошной) спектр — это спектр, в котором представлены волны всех длин волн в данном диапазоне.

Линейчатый спектр — это спектр, представляющий собой цветные линии различной яркости, разделённые широкими тёмными полосами.

Полосатый спектр представляет собой спектр, состоящий из отдельных полос, разделенных темными интервалами.

Темными линиями на фоне непрерывного спектра являются линии поглощения, которые вместе образуют спектр поглощения.

Спектральный анализ — это метод определения химического состава вещества по его спектру.

Шкала электромагнитных волн: низкочастотное излучение; радиоизлучение; инфракрасные лучи; видимый свет; ультрафиолетовые лучи; рентгеновские лучи; γ-излучение.

Основная и дополнительная литература по теме урока:

Мякишев Г. Я., Буховцев Б.Б., Чаругин В. М. Физика. Учебник для образовательных организаций М.: Просвещение, 2014. С. 246 – 258.

Рымкевич А.П. Сборник проблем физики. 10-11 класс. – М.: Дрофа, 2014. С.143.

Теоретический материал для самостоятельного изучения

Электромагнитные волны излучаются ускоренно движущимися заряженными частицами. Излучение возникает также, когда атом переходит из возбужденного состояния в основное и во время распада ядра.

Источники излучений делятся на два класса: горячие и холодные.

Тепловое излучение — это излучение нагретых тел. Тепловыми источниками являются Солнце, лампа накаливания, пламя и т. д.

Энергия атомам для излучения может также поступать и из нетепловых источников; например, переменный ток вызывает появление электромагнитного поля; излучение происходит и при переходе атома из возбуждённого состояния в основное, а также при распаде ядра.

Электролюминесценция — это свечение, сопровождающее разряд в газе (полярные сияния, трубки для рекламных надписей). Катодолюминесценция — это свечение твердых тел, вызванное бомбардировкой их электронами (электронно-лучевых трубок). Хемилюминесценция — это свечение, которое происходит при выделении энергии в некоторых химических реакциях (светлячки, некоторые живые организмы и т. д.). Фотолюминесценция — это свечение тела непосредственно под воздействием падающего на него излучения (флуоресцентная лампа, светящиеся краски и т. д.).

Частотное распределение излучения характеризуется спектральной плотностью потока излучения.

Спектральная плотность потока излучения I(ν) — интенсивность излучения на единицу частотного интервала.

Спектральные аппараты — оптические устройства, в которых электромагнитное излучение оптического диапазона разлагается на монохроматические составляющие. Спектры излучения представляют собой набор частот или длин волн, которые содержатся в излучении какого-либо вещества. Они бывают трёх видов.

1) Непрерывный (или сплошной) — это спектр, в котором представлены волны всех длин волн в заданном диапазоне. При нагревании до высокой температуры твердые и жидкие тела дают такой спектр, а также высокотемпературная плазма.

2) Линейчатый спектр — это цветные линии различной яркости, разделенные широкими темными полосами. Такие спектры дают все вещества в газообразном атомарном состоянии. Изолированные атомы излучают свет строго определенных длин волн.

3) Полосатый спектр представляет собой спектр, состоящий из отдельных полос, разделенных темными интервалами. В отличие от линейчатых спектров полосатые спектры образуются не атомами, а молекулами, которые не связаны или слабо связаны друг с другом. Темными линиями на фоне непрерывного спектра являются линии поглощения, которые вместе образуют спектр поглощения.

Длины волн (или частоты) линейчатого спектра вещества зависят только от свойств его атомов, но не зависят от метода возбуждения свечения атомов — это основное свойство линейчатых спектров.

Атомы любого химического элемента дают спектр, непохожий на спектры всех других элементов: они способны излучать строго индивидуальный набор длин волн. Метод определения химического состава вещества по его спектру называется спектральным анализом. В астрономии с его помощью определяют химический состав звёзд, планет, температуру и индукцию их полей и многие другие характеристики. Он также успешно используется в геологии, археологии, криминалистике, металлургии, атомной индустрии и многих других сферах деятельности.

В настоящее время определены спектры всех атомов и составлены таблицы спектров.

Механизмы образования всех электромагнитных излучений одинаковы, отличаются друг от друга методами получения и регистрации. Огромным достижением электромагнитной теории Максвелла было создание шкалы электромагнитных волн. Различают следующие области шкалы: низкочастотное излучение; радиоизлучение; инфракрасные лучи; видимый свет; ультрафиолетовые лучи; рентгеновские лучи; гамма-излучение.

1) Низкочастотные волны — электромагнитные волны с частотой до 100 кГц. Источник: генераторы тока, вибратор Герца. Применение: кино, радиовещание (микрофоны, громкоговорители).

2) Радиоволны — электромагнитные волны с длиной волны более 1 мм и менее 3 км. Источник: колебательный контур. Применение: радиосвязь, радиолокация, телевидение.

3) Инфракрасное излучение представляет собой излучение с частотами в диапазоне от 3 ∙ 10ˡˡ до 3,75 ∙ 10ˡ⁴ Гц. Оно было обнаружено в 1800 году английским астрономом У. Гершелем при изучении красного конца спектра. Источником является любое нагретое тело. Применение: получают изображения предметов по излучаемому теплу; в приборах ночного видения (ночной бинокль); используют в криминалистике, медицине, промышленности для сушки цветных изделий, стен зданий, дерева, фруктов и т. д. Свойства: проходит через непрозрачные тела, а также через дождь, туман, снег; производит химическое действие на фотопластинки; нагревает вещество при поглощении.

4) Видимое излучение — часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового) с частотой от 4 ∙ 10ˡ⁴ до 8 ∙ 10ˡ⁴ Гц. Свойства: воздействует на глаза.

5) Ультрафиолетовое излучение — электромагнитное излучение с частотой от 8 ∙ 10ˡ⁴ до 3 ∙ 10ˡ⁶ Гц. Источники: кварцевые лампы, нагретые твердые тела с температурой более 1000 º, светящиеся пары ртути. Свойства: высокая химическая активность, высокая проникающая способность, убивает микроорганизмы, в небольших дозах оказывает благотворное влияние на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие на глаза. Применение: в медицине, промышленности.

6) Рентгеновское излучение — это излучение с частотой от 3 ∙ 10ˡ⁶ до 3 ∙ 10²⁰ Гц. Это излучение было открыто в 1895 году немецким физиком В. Рентгеном. Источник: рентгеновская трубка. Свойства: высокая проникающая способность; облучение в больших дозах вызывает лучевую болезнь. Применение: в медицине (диагностика заболеваний внутренних органов), промышленности (дефектоскопия), научных исследованиях.

7) Гамма-лучи — излучение с очень малой длиной волны — от 10⁻⁸ до 10⁻ˡˡ см. Они были открыты французским физиком П. Вильяром в 1900 году. Источники — ядерные реакции. Свойства: огромная проникающая способность, обладает сильным биологическим эффектом. Применение: в медицине, промышленности (γ-дефектоскопия).

Все излучения имеют как квантовые, так и волновые свойства. Волновые свойства более ярко выражены на низких частотах и менее ярко – при больших, а квантовые свойства более ярко проявляются на высоких частотах и менее ярко — на малых частотах.

Уильям Гершель, английский астроном, прославившийся открытием планеты Уран, обнаружив в спектре Солнца невидимые — инфракрасные — лучи, был так поражен, что двадцать лет хранил об этом опыте молчание. А вот в том, что Марс обитаем и населен людьми, он не сомневался.

Оказывается, так называемые черные дыры, которые имеют такое сильное притяжение, что даже легкие частицы света не могут их покинуть, также способны излучать. Под влиянием огромной гравитации в окрестностях черной дыры рождаются реальные частицы (и фотоны) из вакуума. Английский физик Стивен Хокинг установил, что спектр этого излучения такой же, как и у абсолютно черного тела.

Примеры и разбор решения заданий:

1. Ответьте на вопрос и выберите правильный ответ: «Сколько длин волн монохроматического излучения с частотой 500 ТГц укладывается на отрезке 30 см?»

Варианты ответов:

  1. 2∙10⁶;
  2. 5∙10⁵;
  3. 7∙10⁵;
  4. 150.

Выражаем частоту излучения в герцах, учитывая, что 1ТГц = l∙10ˡ² Гц, ν = 500ТГц = 5∙10ˡ⁴ Гц. Длину выражаем в метрах: l = 30см = 0,3м. Записываем скорость электромагнитных излучений: c = 3∙10⁸м/с.

Находим длину волны: λ= с/ν = 3∙10⁸м/с /5∙10ˡ⁴ Гц = 6∙10⁻⁷ м.

Чтобы узнать, сколько длин волн укладывается на данном отрезке, надо длину отрезка разделить на длину волны: Ν = l / λ = 0,3м / 6∙10⁻⁷ м = 5∙10⁵ длин волн.

Правильный вариант:

2) 5∙10⁵.

2. Вставьте пропущенные слова в предложения:

«Чем _____ температура тела, тем быстрее движутся в нём атомы. При их столкновении друг с другом часть _____ энергии идёт на возбуждение, затем атомы излучают и переходят в _______ состояние»

Варианты ответов: ниже, потенциальной, выше, основное, кинетической, возбуждённое.

Правильный вариант: Чем выше температура тела, тем быстрее движутся в нём атомы. При их столкновении друг с другом часть кинетической энергии идёт на возбуждение, затем атомы излучают и переходят в основное состояние.

Источник: resh.edu.ru

Слайд 1

Спектры. Виды спектров. Спектральный анализ. Презентация по физике ученика 11 класса ГБОУ СОШ № 1465 имени адмирала Н.Г. Кузнецова Иараджули Георгия Учитель физики Круглова Лариса Юрьевна

Слайд 2

Понятие спектра и основные сведения Спектр – распределение значений физической величины (обычно энергии, частоты или массы).Графическое представление такого распределения называется спектральной диаграммой. Обычно под спектром подразумевается электромагнитный спектр — спектр частот электромагнитного излучения.

Слайд 3

История исследования В научный обиход термин «спектр» ввёл Ньютон в 1671—1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму.

Слайд 4

Исторически раньше всех прочих спектров было начато исследование оптических спектров. Первым был Исаак Ньютон , который и ввёл в научный обиход термин «спектр» для обозначения полученной им в опытах над солнечным светом многоцветной полосы, похожей на радугу. В своём труде «Оптика» , вышедшем в 1704 году, опубликовал результаты своих опытов разложения с помощью треугольной стеклянной призмы белого света на отдельные компоненты различной цветности и преломляемости, то есть получил спектры солнечного излучения, и объяснил их природу, показав, что цвет есть собственное свойство света.

Слайд 5

Фактически, Ньютон заложил основы оптической спектроскопии : в «Оптике» он описал все три используемых поныне метода разложения света: преломление, интерференцию и дифракцию, а его призма с коллиматором, щелью и линзой была первым спектроскопом. Фрагмент рукописи «Оптики» Ньютона с описанием одного из экспериментов с призмой.

Слайд 6

Виды спектров Спектры излучения Спектры поглощения Спектры рассеивания

Слайд 7

Спектры излучения Непрерывные Линейчатые Полосатые

Слайд 8

Непрерывный спектр Дают тела, находящиеся в твердом, жидком состоянии, а также плотные газы. Чтобы получить, надо нагреть тело до высокой температуры. Характер спектра зависит не только от свойств отдельных излучающих атомов, но и от взаимодействия атомов друг с другом. В спектре представлены волны всех длин и нет разрывов. Непрерывный спектр цветов можно наблюдать на дифракционной решетке. Хорошей демонстрацией спектра является природное явление радуги. Одинаковы для разных веществ, поэтому их нельзя использовать для определения состава вещества

Слайд 9

Линейчатый спектр Состоит из отдельных линий разного или одного цвета, имеющих разные расположения Позволяет по спектральным линиям судить о химическом составе источника света Дают все вещества в газообразном атомарном (но не молекулярном) состоянии (атомы практически не взаимодействуют друг с другом) Изолированные атомы данного химического элемента излучают волны строго определенной длины Для наблюдения используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом При увеличении плотности атомарного газа отдельные спектральные линии расширяются

Слайд 10

Примеры линейчатых спектров

Слайд 11

Полосатый спектр Дают вещества, находящиеся в молекулярном состоянии Спектр состоит из отдельных полос, разделенных темными промежутками. Каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий Для наблюдения используют свечение паров в пламени или свечение газового разряда

Слайд 12

Примеры полосатых спектров Спектр угольной дуги (полосы молекул CN и C 2 ) Спектр испускания паров молекулы йода .

Слайд 13

Спектр поглощения Это совокупность частот, поглощаемых данным веществом. Вещество поглощает те линии спектра, которые и испускает, являясь источником света Спектры поглощения получают, пропуская свет от источника, дающего сплошной спектр, через вещество, атомы которого находятся в невозбужденном состоянии Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появятся темные линии. Газ поглощает наиболее интенсивно свет тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра – это линии поглощения, образующие в совокупности спектр поглощения.

Слайд 14

Примеры спектров поглощения Фраунгофер Йозеф (1787–1826)-немецкий физик. Усовершенствовал изготовление линз, дифракционных решеток. Подробно описал (1814) линии поглощения в спектре Солнца, названные его именем. Изобрел гелиометр-рефрактор. Фраунгофера справедливо считают отцом астрофизики за его работы в астроскопии. Линии Фраунгофера

Слайд 15

Линии поглощения в спектре звёзд

Слайд 16

Спектральный анализ Спектральный анализ – метод определения химического состава вещества по его спектру. В 1854 году Г.Р.Кирхгоф и Р.В.Бунзен начали изучать спектры пламени, окрашенного парами металлических солей, и в результате ими были заложены основы спектрального анализа, первого из инструментальных спектральных методов — одних из самых мощных методов экспериментальной науки.

Слайд 17

Спектральный анализ окончательно был разработан в 1859 году. Фактически, спектральный анализ открыл новую эпоху в развитии науки — исследование спектров как наблюдаемых наборов значений функции состояния объекта или системы оказалось чрезвычайно плодотворным и, в конечном итоге, привело к появлению квантовой механики : Планк пришёл к идее кванта в процессе работы над теорией спектра абсолютно чёрного тела.

Слайд 18

С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества если даже его масса не превышает 10 -10 кг. В настоящее время определены спектры всех атомов и составлены таблицы спектров. С помощью спектрального анализа были открыты многие новые элементы: рубидий, цезий и др . Именно с помощью спектрального анализа узнали химический состав Солнца и звезд . Благодаря сравнительной простоте и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии. С помощью спектрального анализа определяют химический состав руд и минералов . Состав сложных, главным образом органических, смесей анализируется по их молекулярным спектрам. Спектральный анализ можно производить не только по спектрам испускания, но и по спектрам поглощения. Именно линии поглощения в спектре Солнца и звезд позволяют исследовать химический состав этих небесных тел.

Слайд 19

Спектральные аппараты Для точного исследования спектров используют спектральные аппараты . Чаще всего основной частью спектрального аппарата является призма или дифракционная решетка. Для получения спектра излучения видимого диапазона используется прибор, называемый спектроскопом , в котором детектором излучения служит человеческий глаз. Спектроскоп Спектрограф

Слайд 20

Спектроскоп Кирхгофа-Бунзена

Источник: nsportal.ru

Виды спектров. Спектральный анализ

«Физика — 11 класс»

Виды спектров

Спектральный состав излучения веществ весьма разнообразен.
Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Непрерывные спектры

Солнечный спектр или спектр дугового фонаря является непрерывным.
Это означает, что в спектре представлены волны всех длин волн.
В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Распределение энергии по частотам, т. е. спектральная плотность интенсивности излучения, для разных тел различно.
Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум при определенной частоте vmax.
Энергия излучения, приходящаяся на очень малые (ν → 0) и очень большие (ν → ∞) частоты, ничтожно мала.
При повышении температуры тела максимум спектральной плотности излучения смещается в сторону коротких волн.

Виды спектра

Непрерывные (или сплошные) спектры

Непрерывные (или сплошные) спектры дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы.
Для получения непрерывного спектра нужно нагреть тело до высокой температуры.

Характер непрерывного спектра и сам факт его существования не только определяются свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Непрерывный спектр дает также высокотемпературная плазма.
Электромагнитные волны излучаются плазмой в основном при столкновениях электронов с ионами.

Линейчатые спектры

Если внести в бледное пламя газовой горелки кусочек асбеста, смоченный раствором обыкновенной поваренной соли, то при наблюдении пламени в спектроскоп видно, как на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия.
Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени.
Каждый из спектров — это частокол цветных линий различной яркости, разделенных широкими темными полосами.
Такие спектры называются линейчатыми.
Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах).

Примерное распределение спектральной плотности интенсивности излучения в линейчатом спектре дано на рисунке.
Каждая линия имеет конечную ширину.

Виды спектра

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии.
В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом.
Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают свет строго определенных длин волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками.
С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий.
В отличие от линейчатых спектров полосатые спектры образуются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

< p>Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, используют свечение паров вещества в пламени или свечение газового разряда.

Спектры поглощения

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны.
Энергия этих волн определенным образом распределена по длинам волн.
Поглощение света веществом также зависит от длины волны.
Так, красное стекло пропускает волны, соответствующие красному свету (λ ≈ 8 • 10-5 см), и поглощает все остальные.

Если пропускать белый свет сквозь холодный, не излучающий газ, то на фоне непрерывного спектра источника появляются темные линии.
Газ поглощает наиболее интенсивно свет именно тех длин волн, которые он сам испускает в сильно нагретом состоянии.
Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения.

Итак,
Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения.

Источник: class-fizika.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.