В чем состоит идеальность модели реального газа



Источник: www.chem21.info

Идеальный газ – это модель разреженного газа, в которой пренебрегается взаимодействием между молекулами. Силы взаимодействия между молекулами довольно сложны. На очень малых расстояниях, когда молекулы вплотную подлетают друг к другу, между ними действуют большие по величине силы отталкивания. На больших или промежуточных расстояниях между молекулами действуют сравнительно слабые силы притяжения. Если расстояния между молекулами в среднем велики, что наблюдается в достаточно разреженном газе, то взаимодействие проявляется в виде относительно редких соударений молекул друг с другом, когда они подлетают вплотную. В идеальном газе взаимодействием молекул вообще пренебрегают.

Теория создана немецким физиком Р. Клаузисом в 1957 году для модели реального газа, которая называется идеальный газ. Основные признаки модели:

  • ·         расстояния между молекулами велики по сравнению с их размерами;
  • ·         взаимодействие между молекулами на расстоянии отсутствует;
  • ·         при столкновениях молекул действуют большие силы отталкивания;
  • ·         время столкновения много меньше времени свободного движения между столкновениями;
  • ·         движения подчиняются законом Ньютона;
  • ·         молекулы — упругие шары;
  • ·         силы взаимодействия возникают при столкновении.

Границы применимости модели идеального газа зависят от рассматриваемой задачи. Если необходимо установить связь между давлением, объемом и температурой, то газ с хорошей точностью можно считать идеальным до давлений в несколько десятков атмосфер. Если изучается фазовый переход типа испарения или конденсации или рассматривается процесс установления равновесия в газе, то модель идеального газа нельзя применять даже при давлениях в несколько миллиметров ртутного столба.

Давление газа на стенку сосуда является следствием хаотических ударов молекул о стенку, вследствие их большой частоты действие этих ударов воспринимается нашими органами чувств или приборами как непрерывная сила, действующая на стенку сосуда и создающая давление.

В чем состоит идеальность модели реального газаПусть одна молекула находится в сосуде, имеющем форму прямоугольного параллелепипеда (рис. 1). Рассмотрим, например, удары этой молекулы о правую стенку сосуда, перпендикулярную оси Х. Считаем удары молекулы о стенки абсолютно упругими, тогда угол отражения молекулы от стенки равен углу падения, а величина скорости в результате удара не изменяется. В нашем случае при ударе проекция скорости молекулы на ось У не изменяется, а проекция скорости на ось Х меняет знак. Таким образом, проекция импульса изменяется при ударе на величину, равную , знак «-» означает, что проекция конечной скорости отрицательна, а проекция начальной – положительна.

Определим число ударов молекулы о данную стенку за 1 секунду. Величина проекции скорости не изменяется при ударе о любую стенку, т.е. можно сказать, что движение молекулы вдоль оси Х равномерное. За 1 секунду она пролетает расстояние, равное проекции скорости . От удара до следующего удара об эту же стенку молекула пролетает вдоль оси Х расстояние, равное удвоенной длине сосуда 2L. Поэтому число ударов молекулы о выбранную стенку равно . Согласно 2-му закону Ньютона средняя сила равна изменению импульса тела за единицу времени. Если при каждом ударе о стенку частица изменяет импульс на величину , а число ударов за единицу времени равно , то средняя сила, действующая со стороны стенки на молекулу (равная по величине силе, действующей на стенку со стороны молекулы), равна , а среднее давление молекулы на стенку равно , где V – объем сосуда.

Если бы все молекулы имели одинаковую скорость, то общее давление получалось бы просто умножением этой величины на число частиц N, т.е. . Но поскольку молекулы газа имеют разные скорости, то в этой формуле будет стоять среднее значение квадрата скорости, тогда формула примет вид: .

Квадрат модуля скорости равен сумме квадратов ее проекций, это имеет место и для их средних значений: . Вследствие хаотичности теплового движения средние значения всех квадратов проекций скорости одинаковы, т.к. нет преимущественного движения молекул в каком-либо направлении. Поэтому , и тогда формула для давления газа примет вид: . Если ввести кинетическую энергию молекулы , то получим , где  — средняя кинетическая энергия молекулы.

Согласно Больцману средняя кинетическая энергия молекулы пропорциональна абсолютной температуре , и тогда давление идеального газа равно  или

Если ввести концентрацию частиц , то формула перепишется так:

Число частиц можно представить в виде произведения числа молей на число частиц в моле, равное числу Авогадро , а произведение . Тогда (1) запишется в виде:

Уравнения (1), (2) и (3) – это разные формы записи уравнения состояния идеального газа, они связывают давление, объем и температуру газа. Эти уравнения применимы как к чистым газам, так и к смесям газов, в последнем случае под N, n и ν следует понимать полное число молекул всех сортов, суммарную концентрацию или полное число молей в смеси. Для чистого газа число молей , где М – масса газа, а μ – масса одного моля (молярная масса). Тогда уравнение (3) примет вид:

Уравнение состояния в этой форме называют уравнением Клапейрона–Менделеева.

Рассмотрим частные газовые законы. При постоянной температуре и массе из (4) следует, что , т.е. при постоянной температуре и массе газа его давление обратно пропорционально объему. Этот закон называется законом Бойля и Мариотта, а процесс, при котором температура постоянна, называется изотермическим.

Для изобарного процесса, происходящего при постоянном давлении, из (4) следует, что , т.е. объем пропорционален абсолютной температуре. Этот закон называют законом Гей-Люссака.

Для изохорного процесса, происходящего при постоянном объеме, из (4) следует, что , т.е. давление пропорционально абсолютной температуре. Этот закон называют законом Шарля.

Эти три газовых закона, таким образом, являются частными случаями уравнения состояния идеального газа. Исторически они сначала были открыты экспериментально, и лишь значительно позднее получены теоретически, исходя из молекулярных представлений.

Источник: www.sites.google.com

Наиболее простой теоретической моделью газа является идеальный газ. В этой модели пренебрегают размерами и взаимодействиями молекул и учиты­вают лишь их упругие столкновения. Более реальной является расширенная модель идеального газа, в которой молекулы представляются упругими сферами с конечным диаметром d, а взаимодействие по-прежнему учитывается только при непосредственном упругом столкновении молекул.

Установим критерий, следуя которому можно установить, когда газ можно рассматривать как идеальный. Ясно, что газ будет идеаль­ным, если расстояние rмежду его молекулами такое, что силой взаимодействия между ними на этом расстоянии можно пренебречь. Как отмечалось в пункте 3 Введения, силы взаимодействия между молекулами быстро убывают с расстоянием r и уже на расстояниях в несколь­ко диаметров d молекулы пренебрежимо малы. Поэтому условие идеаль­ности газа в расширенном понимании можно записать в виде:

r>>d (1.1.13)

Расстояние r нетрудно выразить через такой важный параметр газа как концентрацию n=N/V, здесь N – число частиц в газе, а V – его объем. В самом деле, если газ находится в равновесии при отсутствии внешних полей его молекулы будут равномерно распре­делены в объеме V м3 , и тогда на ребре куба длиной 1 м расположится В чем состоит идеальность модели реального газа молекул. Следовательно, среднее расстояние между молекулами составит

В чем состоит идеальность модели реального газа (1.1.14)

Из соотношений (1.1.13) и (1.1.14) следует, что критерий идеальности газа можно представить следующим образом

nd 3<< 1 , nd 3 – безразмерный параметр (1.1.15)

Учитывая, что из формул (В.9) и (В.10) число частиц в газе N=mNA /m , концентрацию можно выразить через плотность r газа:

В чем состоит идеальность модели реального газа (1.1.16)

где r = m/V — плотность газа

Выражение (1.1.16) позволяет записать критерий идеальности газа (1.1.15) в эквивалентной форме

rNAd3/m<<1 (1.1.17)

Пример

1. Является ли азот N2 при нормальных условиях идеальным газом? Каково расстояние между молекулами?

Решение: При нормальных условиях плотность азота ρ=1,251 кг/м3 Поэтому по формуле (1.16) концентрация азота

n = ρNA / m =1,251·6,02·1023 /28·10-3=2,7·1025 1/м3

Диаметр молекулы азота возьмем из таблицы 1 :d = 3,16·10 -10 м. Тогда n d3 = 2,7·1025 · 52,7·10-30 = 0,8·10-3 , что является величи­ной значительно меньшей единицы. Таким образом, условие (1.1.15) выполнено и азот при нормальных условиях является идеальным газом.

При этом расстояние между молекулами В чем состоит идеальность модели реального газа что более чем в десять раз больше диаметра молекулы азота (см.табл.1), а силы притяжения на таких расстояниях пренебрежимо малы

Источник: studopedia.ru

Лекция № 8 Модель идеального газа. Изопроцессы.

Строение газообразных, жидких и твердых тел

Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях.

Газы. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул (рис.1). Например, при атмосферном  давлении объем сосуда в десятки тысяч раз превышает объем находящихся в нем молекул.

Газы легко сжимаются, при этом уменьшается среднее расстояние между молекулами, но форма молекулы не изменяется (рис.2).

Модель идеального газа

Сжимаемость газов

 

 

 

 

 

 

 

Рис.1  Рис.2

 

 

Молекулы с огромными скоростями — сотни метров в секунду – движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам. Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема. Многочисленные удары молекул о стенки сосуда создают давление газа.

Жидкости. Молекулы жидкости расположены почти вплотную друг к другу (рис.3), поэтому молекула жидкости ведет себя иначе, чем молекула газа.

В жидкостях существует так называемый ближний порядок, т. е. упорядоченное расположение молекул сохраняется на расстояниях, равных нескольким молекулярным диаметрам. Молекула колеблется около своего положения равновесия, сталкиваясь с соседними молекулами. Лишь время от времени она совершает очередной «прыжок», попадая в новое положение равновесия. В этом положении равновесия сила отталкивания равна силе притяжения, т. е. суммарная сила взаимодействия молекулы равна нулю.

Время оседлой жизни молекулы воды, т. е. время ее колебаний около одного определенного положения равновесия при комнатной температуре, равно в среднем 10-11 с. Время же одного колебания значительно меньше (10-12 -10-13 с). С повышением температуры время оседлой жизни молекул уменьшается.

 

Строение газа, жидкости, твердого тела

Рис.3

Жидкость по форме сосудов

Рис.4

Характер молекулярного движения в жидкостях, впервые установленный советским физиком Я.И.Френкелем, позволяет понять основные свойства жидкостей.

Молекулы жидкости находятся непосредственно друг возле друга. При уменьшении объема, силы отталкивания становятся, очень велики. Этим и объясняется малая сжимаемость жидкостей. Как известно, жидкости текучи, т. е. не сохраняют своей формы. Объяснить это можно так. Внешняя сила заметно не меняет числа перескоков молекул в секунду. Но перескоки молекул из одного оседлого положения в другое происходят преимущественно в направлении действия внешней силы (рис.4). Вот почему жидкость течет и принимает форму сосуда.

Твердые тела. Атомы или молекулы твердых тел, в   отличие от атомов и молекул жидкостей, колеблются около определенных положений равновесия. По этой причине твердые тела сохраняют не только объем, но и форму. Потенциальная энергия взаимодействия молекул твердого тела существенно больше их кинетической энергии.

Есть еще одно важное различие между жидкостями и твердыми телами. Жидкость можно сравнить с толпой людей, где отдельные индивидуумы беспокойно толкутся на месте, а твердое тело подобно стройной когорте тех же индивидуумов, которые хотя и не стоят по стойке смирно, но выдерживают между собой в среднем определенные расстояния. Если соединить центры положений равновесия атомов или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической.

На рисунках 5 и 6 изображены кристаллические решетки поваренной соли и алмаза. Внутренний порядок в расположении атомов кристаллов приводит к правильным внешним геометрическим формам.

Кристаллическая решетка твертых веществ

Рис.5                                                                            Рис.6

 

У газа расстояние l между молекулами много больше размеров молекул r0:l>>r0.

У жидкостей и твердых тел l≈r0. Молекулы жидкости расположены в беспорядке и время от времени перескакивают из одного оседлого положения в другое.

У кристаллических твердых тел молекулы (или атомы) расположены строго упорядоченно.

Кристаллизация — процесс фазового перехода вещества из жидкого состояния в твёрдое состояние.

Модель идеального газа

Наиболее простой теоретической моделью газа является идеальный газ. В этой модели пренебрегают размерами и взаимодействиями молекул и учиты­вают лишь их упругие столкновения. Более реальной является расширенная модель идеального газа, в которой молекулы представляются упругими сферами с конечным диаметром d, а взаимодействие по-прежнему учитывается только при непосредственном упругом столкновении молекул.

Установим критерий, следуя которому можно установить, когда газ можно рассматривать как идеальный. Ясно, что газ будет идеаль­ным, если расстояние r между его молекулами такое, что силой взаимодействия между ними на этом расстоянии можно пренебречь. Как мы знаем, силы взаимодействия между молекулами быстро убывают с расстоянием r и уже на расстояниях в несколь­ко диаметров d молекулы пренебрежимо малы. Поэтому условие идеаль­ности газа в расширенном понимании можно записать в виде:

r>>d (1)

Расстояние r нетрудно выразить через такой важный параметр газа как концентрацию n=N/V, здесь N – число частиц в газе, а V – его объем. В самом деле, если газ находится в равновесии, при отсутствии внешних полей его молекулы будут равномерно распре­делены в объеме V м3 , и тогда на ребре куба длиной 1 м расположиться 3√n молекул. Следовательно, среднее расстояние между молекулами составит

r = 1/3√n (2)

Из соотношений (1) и (2) следует, что критерий идеальности газа можно представить следующим образом

nd 3<< 1 nd 3 – безразмерный параметр (3)

Учитывая, что число частиц в газе N=mNA /m , концентрацию можно выразить через плотность ρ газа:

n = N/ѵ = (m/ν)*(Na/m) = ρNa/m (4)

где ρ = m/V — плотность газа

Выражение (4) позволяет записать критерий идеальности газа (5) в эквивалентной форме

ρNAd3/m<<1 (5),

где: ρ – плотность газа; Na – постоянная Авагадро; m – масса газа; ν = N/Na – количество вещества.

Источник: razmishlyajem.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.