В чем преимущество элемента гелия 3


Общие данные о веществе: свойства

В 1934 оду австралийский физик Марк Олифант, во время работы в Кавендишской лаборатории Кембриджского университета в Англии пришел к замечательному открытию. В ходе первой демонстрации ядерного синтеза при бомбардировке дейтронной мишени, он выдвинул гипотезу о существовании нового изотопа химического элемента под номером 2. Сегодня он же известен как гелий-3.

Он обладает следующими свойствами:

  • Содержит два протона, один нейтрон и два электрона;
  • Среди всех известных элементов он является единственным стабильным изотопом, который имеет больше протонов, чем нейтронов;
  • Кипит при 3,19 по Кельвину (-269,96 градусов Цельсия). Во время кипения вещество теряет половину своей плотности;
  • Момент импульса равен ½, что делает его фермионом;
  • Скрытая теплота парообразования составляет 0,026 КДж/Моль;

Спустя пять лет после открытия Марка Олифанта его теоретические построения получили экспериментальное подтверждение. А еще спустя 9 лет ученым удалось получить соединение в жидком виде. Как оказалось, в таком агрегатном состоянии гелий-3 обладает сверхтекучими свойствами.

Другими словами, при температурах, близких к абсолютному нулю, он способен проникать сквозь капилляры и узкие щели, практически не испытывая противодействия силы трения.


Гелиевая станция - проект

 

Добыча гелия-3 на Луне

Солнечный ветер на протяжении миллиардов лет нанес в поверхностный слой реголита гигантское количество гелия-3. Согласно оценкам, его количество на земном спутнике может достигать 10 миллионов тонн.

Многие космические державы имеют программу добычи этого вещества для целей последующего термоядерного синтеза:

  • В январе 2006 года российская компания «Энергия» заявила о планах начать геологические работы на Луне к 2020 году. Сегодня будущее проекта находится в подвешенном состоянии, из-за тяжелого экономического положения страны;
  • В 2008 году Индийская организация космических исследований отправила к поверхности земного спутника зонд, одной из целей которого было заявлено изучение гелий-содержащих минералов;
  • Собственные виды на залежи драгоценного сырья имеет и Китай. Согласно планам, предполагается отправлять к спутнику ежегодно три челнока. Энергия, произведенная из этого топлива, с лихвой покроет потребности всего человечества.

Покорение лунных глубин пока остается мечтой, которую можно увидеть разве что в научно-фантастических лентах. Среди них – «Луна» (2009) и «Железное небо» (2012).

В данном видео физик Борис Романов расскажет, в каком виде находится вещество гелий-3 на Луне, возможно ли его оттуда импортировать:

 

Геохимические данные

Изотоп также присутствует на планете Земля, хотя и в меньших количествах:

  • Это главная составляющая земной мантии, которая была синтезирована еще во время планетообразования. Совокупная ее масса в этой части планеты составляет, по различным оценкам, от 0,1 до 1 миллиона тонн;
  • На поверхность он выходит в результате деятельности вулканов. Так, сопки Гавайских островов выделяют около 300 граммов этого вещества в год. Срединно-океанические хребты – около 3 килограммов;
  • В местах наезда одной литосферной плиты на другую могут находиться сотни тысяч тонн гелиевого изотопа. Извлечь это богатство промышленным способом на современном этапе технологического развития не представляется возможным;
  • Природа продолжает производство данного соединения до сих пор, в результате распада радиоактивных элементов в коре и мантии;
  • В довольно небольших количествах (до 0,5%) его можно найти в некоторых источниках природного газа. Как отмечают эксперты, ежегодно в процессе транспортировки природного газа происходит отделение 26 м3 гелия-3;
  • Также он присутствует в земной атмосфере. Удельная доля его составляет приблизительно 7,2 частей на триллион атомов прочих газов атмосферы. Согласно последним подсчетам, общая масса атмосферного 32he достигает минимум 37 тысяч тонн.

 

База добытчиков на луне

 

Современное использование вещества

Практически весь используемый в народном хозяйстве изотоп получают путем радиоактивного распада трития, который бомбардируют нейтронами лития-6 в ядерном реакторе.

На протяжении десятков лет гелий-3 был всего-навсего побочным продуктом при изготовлении боеголовок атомного оружия. Однако после подписания договора СНВ-1 в 1991 году сверхдержавы снизили объемы изготовления ракет, из-за чего продукты производства также пошли на убыль.

Сегодня масштабы производства изотопа находятся на подъеме, поскольку ему нашли новое применение:

  1. Благодаря относительно высокому гиромагнитному соотношению, частицы этого вещества применяются при медицинской томографии легких. Пациент вдыхает газовую смесь, содержащую гиперполяризованные атомы гелия-3. Затем под воздействием лазерного излучения инфракрасного диапазона компьютер рисует анатомические и функциональные изображения органов;
  2. В научных лабораториях данное соединение используется в криогенных целях. Путем его испарения с поверхности холодильника удается достичь значений, близких к 0,2 кельвина;
  3. В последние годы набирает популярность идея использования вещества в качестве сырья для электростанций. Первая подобная установка была построена в 2010 году в долине Теннеси (США).

 

Электростанция в Теннеси, работающая на гелие-3

 

Гелий-3 как топливо

Второй, пересмотренный подход к использованию контролируемой термоядерной энергии предполагает использование в качестве сырья 32he и дейтерия. Результатом такой реакции будет ион гелия-4 и высокоэнергетические протоны.

Теоретически данная технология обладает такими преимуществами:

  1. Высокий КПД, поскольку для контроля за слиянием ионов используется электростатическое поле. Кинетическая энергия протонов напрямую преобразуется в электричество за счет твердотельного преобразования. Нет необходимости строить турбины, которые используются в АЭС для превращения энергии протонов в тепло;
  2. Более низкие, в сравнении с прочими типами электростанций, капитальные и эксплуатационные затраты;
  3. Ни воздух, ни вода не загрязняются;
  4. Относительно малые габариты благодаря использованию современных компактных установок;
  5. Отсутствует радиоактивное топливо.

Однако критики отмечают значительную «сырость» такого решения. В самом лучшем случае коммерческое использование термоядерного синтеза начнется не ранее 2050 года.

Среди всех изотопов химического элемента с порядковым номером 2 особняком стоит гелий-3. Что это, вкратце можно описать следующими свойствами: он стабилен (то есть не испытывает превращений в результате излучения), обладает сверхтекучими свойствами в жидком виде, имеет относительно малую массу.

Ультрасовременное топливо

 

Источник: znay.co

Горсточка грунта, которая была подобрана на гребне лунного кратера Камелот, соскользнула с обычного совка в специальный тефлоновый пакет и вместе с командой «Аполлона-17» отправилась на Землю.


тот день, 13 декабря 1972 года, мало кто мог представить, что образец лунного грунта под номером 75501, а также образцы грунта, доставленные «Апполоном-11» и рядом других экспедиций, в том числе и советской исследовательской станцией «Луна-16», послужит весомым аргументом, для того чтобы в XXI веке человечество решило вернуться на Луну. Осознание этого пришло только через 30 лет, когда молодые ученые из университета штата Висконсин в образце лунного грунта нашли существенное содержание гелия-3. Это очень интересное вещество является изотопом хорошо известного всем газа – гелия, которым во время праздников заправляют разноцветные воздушные шары.

Еще до проведения СССР и США лунных миссий небольшое количество гелия-3 было найдено и на нашей планете, тогда данный факт уже заинтересовал научное сообщество. Гелий-3, обладающий уникальным внутриатомным строением, обещал ученым фантастические перспективы. Если удастся использовать гелий-3 в реакции ядерного синтеза, можно будет получить колоссальное количество электроэнергии, не утопая при этом в опасных радиоактивных отходах, которые производятся на АЭС независимо от нашего желания. Добыча гелия-3 на Луне и последующая его доставка на Землю – это задача не из легких, но при этом те, кто ввяжутся в эту авантюру, могут стать обладателем сногсшибательного вознаграждения. Гелий-3 – это то вещество, которое сможет навсегда избавить мир от «наркотической зависимости» – ископаемого топлива, нефтяной иглы.


На Земле гелия-3 фатально не хватает. Огромное количество гелия зарождается на Солнце, но малую его долю составляет гелий-3, а основную массу – гораздо более часто встречающийся гелий-4. Пока данные изотопы движутся в составе «солнечного ветра» к Земле, оба изотопа претерпевают изменения. Столь драгоценный для землян гелий-3 не достигает нашей планеты, так как он отбрасывается прочь магнитным полем Земли. В то же время на Луне магнитное поле отсутствует и здесь гелий-3 может свободно накапливаться в поверхностном слое грунта.

В наши дни ученые рассматривают наш естественный спутник не только как естественную астрономическую обсерваторию и источник энергоресурсов, но и как будущий запасной континент для землян. При этом именно неисчерпаемый источник космического топлива наиболее привлекателен и перспективен. Новый возможный континент для землян находится на удалении всего в 380 тысяч километров от нашей планеты, при какой-то глобальной катастрофе на Земле здесь вполне могло бы найтись укрытие для людей. С Луны без особых помех можно наблюдать за другими небесными объектами, так на Земле этому в некоторой степени мешает атмосфера. Но главное – это неисчерпаемые запасы энергии, которой, по подсчетам ученых, для человечества хватило бы на 15 000 лет. Помимо этого на Луне есть запасы редких металлов: титана, бария, алюминия, циркония и это не все, считают ученые. Сегодня человечество находится лишь в самом начале пути по освоению Луны.


В настоящее время КНР, Индия, США, Россия, Япония – все эти государства находятся в очереди к Луне, и этих стран становится все больше. Очередной всплеск интереса к Луне возник еще в середине 90-х годов прошлого века. Тогда в научном сообществе возникло предположение о том, что на Луне может быть вода. Не так давно американский зонд «LRO» с российским прибором «Lend» это окончательно подтвердили – на Луне действительно есть вода (в виде льда на дне кратеров) и ее здесь немало (до 600 млн. тонн), а это решает множество проблем.

Наличие на Луне воды особенно ценно, так как способно решить большое количество различных проблем, которые возникнут при постройке лунных баз. Воду не придется доставлять с Земли, ее можно будет перерабатывать непосредственно на месте, отмечает Игорь Митрофанов – заведующий лабораторией космической гамма-спектроскопии ИКИ. По некоторым расчетам, при должном желании и финансировании человечество могло бы обосноваться на нашем естественном спутнике уже через 15 лет. При этом, скорее всего, первые обитатели Луны жили бы на ее полюсах вблизи больших запасов обнаруженной воды.

Однако ко многому на Луне пришлось бы привыкать по новой – даже к такому процессу, как ходьба. По Луне гораздо проще прыгать, в том, что гравитация здесь в 6 раз меньше, чем на Земле, в свое время убедился еще Нэйл Армстронг, когда 40 лет назад впервые ступил на поверхность данного небесного тела. При этом главным врагом человека на Луне в настоящее время является радиация, вариантов спасения от которой не так много. По словам Льва Зеленого директора Института космических исследований РАН, на нашем естественном спутнике нет магнитного поля. На Луну попадает вся радиация от Солнца и защититься от нее достаточно сложно.


При этом то, что Луна должна стать первой ступенью для продвижения человека в космосе – это бесспорный факт, считает Лев Зеленый. По его словам, Луна может стать перевалочной базой для стартов к другим планетам солнечной системы. Также здесь можно будет разместить станцию раннего оповещения о приближения к Земле опасных космических объектов: комет и астероидов, что достаточно важно в свете последних событий. Однако самое важное, что там есть – это гелий-3, возможно, космическое топливо будущего. Трудно поверить, но темно-серая пыль, которой выстлана вся поверхность Луны – это кладовая данного уникального вещества.

Нефть и газ на планете не вечны. По оценкам ряда экспертов, без особых проблем человечество проживет на этих ресурсах порядка 40 лет. На сегодняшний день единственной альтернативой выступают атомные станции, но это не так безопасно из-за радиации. В то же время термоядерная реакция с участием гелия-3 является экологически чистой. По словам ученых, ничего лучшего пока не придумано и на это есть как минимум 2 причины. Во-первых, это очень эффективное термоядерное топливо, а во-вторых, что еще более ценно, оно является экологически чистым, отмечает Эрик Галимов – директор Института Геохимии и аналитической химии им. В.И. Вернадского.


По подсчетам Владислава Шевченко – заведующего отделом исследований Луны и планет Государственного астрономического института МГУ, имеющихся на естественном спутнике Земли запасов гелия-3 хватит на тысячи лет вперед. По оценкам специалистов минимальный объем гелия-3 на Луне составляется около 500 тысяч тонн, по более оптимистичным оценкам его там не менее 10 млн. тонн. При реакции термоядерного синтеза, когда в реакцию вступает 0,67 тонны дейтерия и 1 тонна гелия-3 выделяется энергия, которая эквивалентна энергии сгорания 15 млн. тонн нефти. При этом стоит отметить тот факт, что в настоящее время еще необходимо изучить техническую возможность осуществления подобных реакций.

Да и добыча этого вещества на Луне не будет легкой. Хотя гелий-3 расположен в поверхностном слое, концентрация его в нем очень низкая. Основной проблемой на данный момент времени остается реальность добычи гелия из лунного реголита. Содержание необходимого энергетике гелия-3 составляет примерно 1 грамм на 100 тонн лунного грунта. А это значит, что для добычи 1 тонны данного изотопа потребуется переработать не менее 100 млн. тонн лунного грунта.

При этом гелий-3 придется отделять от ненужного гелия-4, концентрация которого в реголите в 3 тысячи раз больше. По словам Эрика Галимова, для того чтобы добыть на луне 1 тонну гелия-3 потребуется, как уже было сказано выше, переработать 100 млн. тонн лунного грунта. Речь идет об участке Луны общей площадью порядка 20 квадратных километров, который надо будет переработать на глубину в 3 метра! При этом сама процедура доставки на Землю 1 тонны данного топлива обойдется в сумму не менее 100 млн. долларов. Но фактически даже эта очень большая сумма составляет лишь 1% от стоимости энергии, которую можно будет извлечь на термоядерной электростанции из данного сырья.

По оценкам Шевченко, стоимость добычи 1 тонны гелия-3 с учетом создания всей необходимой инфраструктуры по его добыче и доставке на Землю может составить 1 млрд. долларов. При этом транспортировка на Землю 25 тонн гелия-3 обойдется нам в 25 млрд. долларов, что не такая уж и большая сумма, если учесть, что такого масштаба топлива хватит для того, чтобы обеспечить землян энергией на целый год. Выгода от такого энергоносителя становится очевидной, если подсчитать, что только США в год на энергоносители расходуют порядка 40 млрд. долларов.

По расчетам, сделанным американским астронавтом Харрисоном Шмиттом, применение гелия-3 в земной энергетике, учитывая все расходы на доставку и добычу, становятся окупаемыми и коммерчески выгодными, когда производство термоядерной энергии с помощью данного сырья будет превышать мощность в 5 ГВт. Фактически это говорит о том, что даже 1 электростанции, работающей на лунном топливе, будет достаточно для того, чтобы сделать доставку на Землю рентабельной. По оценкам Шмитта, сумма предварительных расходов еще на стадии исследований составит около 15 млрд. долларов.

Один из возможных вариантов добычи гелия-3 предложил Эрик Галимов. Для того чтобы организовать добычу изотопа из лунной поверхности, он предлагает нагреть реголит до 700 градусов Цельсия. После этого его можно будет сжижать и извлекать на поверхность. С точки зрения современных технологий эти процедуры достаточно просты и хорошо известны. Российский ученый предлагает нагревать сырье в специальных «солнечных печах», которые при помощи больших вогнутых зеркал будут фокусировать на реголите солнечный свет. При этом из лунного грунта можно будет выделить содержащиеся в нем: кислород, водород и азот. А это значит, что лунная промышленность могла бы изготавливать не только сырье для земного энергетического комплекса, но и ракетное топливо, для перевозящих его ракет, а также воздух и воду для работающих на лунных предприятиях людей. В настоящее время в США также работают над аналогичными проектами.

Но и это еще не все, что может дать нам лунный грунт. В реголите находится большое содержание титана, что в отдаленной перспективе поможет наладить производство элементов корпусов ракет и промышленных конструкций прямо на естественном спутнике Земли. В этом случае на Луну придется доставлять лишь высокотехнологичные элементы ракет, компьютеры и приборы. А это может открыть второе перспективное направление для всей лунной экономики – постройку наиболее экономичного космодрома, научной базы для исследования всей Солнечной системы.

Источники информации:
-http://www.vesti.ru/doc.html?id=1038894
-http://www.popmech.ru/article/4098-lunnyie-sokrovischa
-http://vzglyadzagran.ru/news/sverxderzhavy-rodyatsya-na-lune-gelij-3.html
-http://ria.ru/science/20120725/709192459.html

Источник: topwar.ru

Космические исследования являются крайне дорогостоящими, поэтому рентабельность их часто ставится под сомнение. Многие вообще сомневаются в целесообразности развития космических программ. Действительно, зачем, если доставка, например, любых природных ресурсов из космоса настолько дорога, что мероприятие теряет всякий смысл? Любых, кроме одного. Речь идет о легком изотопе гелия Гелий-3.

История открытия Гелия-3 на Луне

Когда, почти полвека назад на Землю была доставлена первая порция лунного грунта, это было выдающимся событием, но практических дивидендов человечество от этого не получило. Лишь 30 лет спустя ученые обнаружили в пробе очень высокое (по сравнению с Землей) содержание Гелия-3.

Что такое Гелий-3 и откуда он на Луне

Баллончик с Гелием-3

Гелий-3 это легкий, стабильный изотоп гелия. Основным источником его является, так называемый, «солнечный ветер». Поскольку магнитное поле Земли является экраном, который защищает нас от попадания на планету гелия-3, общее его количество на нашей планете ничтожно и оценивается всего лишь в 35 000 т.

Луна же не имеет собственного магнитного поля и не защищена от «солнечного ветра», поэтому содержание гелия-3 в поверхностных слоях лунного грунта выше, чем на Земле в десятки тысяч раз. По различным оценкам количество гелия-3 на Луне колеблется между 500 тыс. и 3 млн. тонн. В чем же его ценность?

Гелий-3 – уникальное термоядерное топливо

Термоядерная реакция с участием Гелия-3

Дело в том, что легкий гелий является крайне перспективным топливом для термоядерных энергоустановок. Преимуществом его по сравнению с изотопами водорода (дейтерием и тритием) заключается в его экологичности. В результате реакции с гелием-3 отсутствует нейтронное излучение, как и другие виды радиоактивности, и, даже при разгерметизации рабочей зоны, нет опасности радиоактивного заражения.

Энергетическая ценность одного килограмма гелия-3 эквивалентна 15 000 тонн нефти. Поэтому доставка его с Луны представляется крайне выгодной, не смотря на огромные транспортные издержки – 100 000 долларов за доставку 1 кг. По оценкам экспертов, лунные запасы гелия-3 могут полностью решить энергетические потребности человечества на ближайшие 5 000 лет.

Мы существуем, благодаря нашим читателям.

Если Вы небезразличны к проблемам экологии — ставьте лайк и подписывайтесь на наш канал.

Источник: zen.yandex.ru

Машина для добычи гелия3 на луне уже готова, дело за малым — найти ему применение.

Когда говорят про гелий3, то имеют в виду реакции термоядерного слияния He3 + D -> He4 + H или He3 + He3 -> 2He4 + 2H. По сравнению с классической D + T -> He4 +n в продуктах реакции нет нейтронов, а значит нет активации сверхэнергичными нейтронами конструкции термоядерного реактора. Кроме того, проблемой считается тот факт, что нейтроны из “классики” уносят из плазмы 80% энергии, поэтому баланс самонагрева наступает при бОльшей температуре. Еще одним записываемым гелиевому варианту преимуществом является то, что электроэнергию можно снимать прямо с заряженных частиц реакции, а не нагревом нейтронами воды — как в старых угольных электростациях.

Так вот, все это — неправда, точнее очень маленькая часть правды.

В чем преимущество элемента гелия 3

Начнем с того, что при одинаковой плотности плазмы и оптимальной температуре реакция He3 + D даст в 40 раз меньше энерговыделение на кубометр рабочей плазмы. При этом температура, нужная для хотя бы 40 кратного разрыва будет в 10 раз выше — 100 кЭв (или один миллиард градусов) против 10 для D +T. Сама по себе, такая температура вполне достижима (рекорд токамаков на сегодня — 50 кЭв, всего в два раза хуже), но что бы завязать энергобаланс (скорость остывания VS скорость нагрева в т.ч. самонагрева) нам нужно поднять в 50 раз энерговыделение с кубометра He3 +D реакции, что можно сделать только подняв плотность в те же в 50 раз. В сочетании с выросшей в 10 раз температурой это дает увеличение давления плазмы в 500 раз — с 3-5 атм до 1500-2500 атм, и такое же увеличение противодавления, что бы эту плазму удержать.

В чем преимущество элемента гелия 3

Зато картинки вдохновляющие.

Помните, я писал, что магниты тороидального поля ИТЭР, которые создают противодавление плазме — абсолютно рекордные изделия, единственные по параметрам в мире? Так вот, поклонники He3 предлагают сделать магниты в 500 раз мощнее.

Ок, забудем про сложности, может преимущества этой реакции их окупают?

В чем преимущество элемента гелия 3

Разные термоядерные реакции, которые применимы для УТС. He3 + D дает слегка больше энергии, чем D + T, но на преодалевание кулоновского отталкивания тратится очень много энергии (заряд 3 а не 2), поэтому реакция идет медленно.

Начнем с нейтронов. Нейтроны в промышленном реакторе будут представлять собой серьезную проблему, повреждать материалы корпуса, греть все элементы обращенные к плазме настолько, что их придется охлаждать приличным расходом воды. А главное — активация материалов нейтронами приведут к тому, что и через 10 лет после остановки термоядерного реактора у нем будет тысячи тонн радиоактивных конструкций, которые невозможно разбирать руками, и которые будут вылеживаться уже в хранилище сотни и тысячи лет. Избавление от нейтронов очевидно бы облегчило задачу создания термоядерной электростанции.

Одна маленькая проблемка — нейтроны от He3 + D реакции будут. Они будут рождаться в ходе паразитной реакции D + D ->T + n, а получившийся тритий тут же будет сгорать и давать еще один нейтрон. С учетом того, что дотянуться до зажигания гелия3 крайне непросто, при минимальных параметрах конфаймента (конфаймент — фактически теплоизоляция плазмы магнитным полем), при которых он будет гореть, в виде нейтронов будет выделятся 2-3% энергии термоядерной реакции. Да, это в 25-40 раз меньше, чем в случае D + T, но это в ваттах, а в штуках нейтронов разница составит всего 4 раза, они просто гораздо менее энергичные, чем от D + T. Радиоактивных изотопов в стенах реактора в итоге будет где-то в 10 раз меньше, но сути это не меняет — ядерный объект, с дорогой, сложной и контролируемой атомнадзором эксплуатацией.

В чем преимущество элемента гелия 3

Скорости ТЯ реакций в зависимости от температуры. В максимуме, при 1 миллиарде градусов, D + He3 обгоняет паразитную D +D всего в 3,6 раза, отсюда нейтроны.

В чем преимущество элемента гелия 3

Доля энергии, уносимая нейтронами. Если добавить побольше He3 в реактор, то можно снизить ее до 1%, но это еще ужесточит условия зажигания.

Ок, ну а как насчет прямого преобразования энергии заряженных частиц в электричество? Опыты показывают, что поток ионов с энергией 100 кЭв можно преобразовать в электричество с 80% кпд. У нас же тут нет нейтронов…. ну в смысле они не уносят всю энергию, которую мы можем получить только в виде тепла — давайте избавимся от паровых турбин и поставим ионные коллекторы?

Да, технологии прямого преобразования энергии плазмы в электроэнергию есть, они активно исследовались в 60х-70х, и показали кпд в районе 50-60% (не 80, надо заметить). Однако эта идея слабо применима как в D +T реакторах, так и в He3 +D. Почему это так, помогает понять вот эта картинка.

В чем преимущество элемента гелия 3

На ней показаны потери тепла плазмой по разным каналам. Сравните D+T и D + He3. Transport — это то, что можно использовать для прямого преобразования энергии плазмы в электричество. Если в D + T варианте у нас все забирают мерзкие нейтроны, то в случае He3 + D все забирает электромагнитное излучение плазмы, в основном синхротронное и рентгеновское тормозное (на картинке Bremsstrahlung). Ситуация практически симметричная, все равно надо отводить тепло от стенок и все равно прямым преобразованием мы не может вытащить больше 10-15% энергии термоядерного горения, а остальное — по старинке, через паросиловую машину.

В чем преимущество элемента гелия 3

Иллюстрация в исследовании по прямому преобразованию энергии плазмы на крупнейшей открытой ловушке Gamma-10 в японии.

Кроме теоретических ограничений есть и инженерные — в мире (в т.ч. в СССР) были потрачены гигантские усилия на создание установок прямого преобразования энергии плазмы в электричество для обычных электростанций, что позволяло поднять кпд с 35% до 55%. В основном на базе МГД-генераторов. 30 лет работы больших коллективов закончились пшиком — ресурс установки составлял сотни часов, когда энергетикам нужны тысячи и десятки тысяч. Гигантское количество ресурсов, потраченное на эту технологию привело, в частности, к тому, что наша страна отстала в производстве энергетических газовых турбин и установок парогазотурбинного цикла (которые дают ровно такое же повышение кпд — с 35 до 55%!).

В чем преимущество элемента гелия 3

Кстати, мощные сверхпроводящие магниты нужны и для МГД-генераторов. Здесь показаны СП магниты для 30 мегаваттного МГД-генератора.

Источник: mirvn.livejournal.com

ознакомьтесь, пожалуйста, с оценкой сложности задачи и ее цены, и с объемами того, что было «реально уплОчено».

В США (для примера, у остальных ситуация аналогична, на США проще ссылаться т.к. данные в интернетах на виду, «вставляй URL — не хочу»), к примеру, всего пару лет как догнала по тратам (а по некоторым оценкам «второго сравниваемого»- еще и не догнала!) за весь период существования тему магнитного УТС, с 1953-го года, траты, сделанные ими же на «Манхеттенский проект»(sic!).

(из https://aries.pppl.gov/FPA/OFESbudget.html, там же раскладка по годам, и итог на 2018-й год: MFE ($M): 15 418, MFE adjusted ($M): 24 054)

Если кажется, что много, давайте я вам масштаб задам, сравнив траты с оценками, сделанными ERDA в 1976 году, по разным сценариям

На графике отчетливо видно, и сколько требовалось, и «сколько было уплОчено», ага.

Но если вам трудно читать так оформленный график, вот вам исходники:

1) План (без инфляционной поправки):

http://fire.pppl.gov/us_fusion_plan_1976.pdf, там есть раскладки по каждому году для каждой из стратегий, и суммарные цифры.

Напомню, стратегии (в отличие от цветной картинки с осмысленными названиями стратегий) тут именовались как
«Logic I», «Logic II», «Logic III», «Logic IV», «Logic V», от самой убогой «Logic I», для которой «время достижения цели не определено» (в цветном графике она названа «fusion never», и, как видим, реальность финансирования пробила и это днищщще), до самой резвой (и самой дорогой) «Logic V»:

раскладки затрат по годам — c 27-й, по 32 стр. отчета (с 32-й по 37 стр. этого PDF-файла)
«Logic I»: —
«Logic II»: Figure II-13, с. 27-28 (с. 32-33)
«Logic III»: Figure II-14, с. 29-30 (с. 34-35)
«Logic IV»: Figure II-15, с. 31 (с. 36)
«Logic V»: Figure II-16, с. 32 (с. 37)

_________

То есть у нас ситуация «за товар не уплОчено», в чистом виде.

А были ли шансы получить результат, если бы заплатили, в тех же 70-х?

Давайте посмотрим:

1. пока даже этого мизера денег (а было по всему миру так же) хватало на установки следующих поколений, в тот период параметры в УТС росли (удваивались) быстрее, чем по закону Мура:

image

2. с начала 70-х, все успешно пущенные установки магнитного УТС, давали либо запланированные, либо лучшие, чем запланированные результаты (достигнутые параметры). Т.е. ситуация в чистом виде «За что заплатили, — то и получили», а точнее, — «За что заплатили, — то и получили, и даже больше!»

3. специалисты, — ровно авторы успеха, переоткрывшего в 2014-2015 годах (2014 (демонстрация успеха в эксперименте; + помощь TAE с их системой)-2015 г (публикация в рецензируемом журнале; результат помощи TAE)) направление открытых ловушек, почти полностью похороненное в 80-х годах (там косвенная вина (закрытие MFTM) аж двумя способами лежит на недостаточном финансировании (кроме очевидного «денег нет» в конце, еще и гигантизм «съедим слона одном куском» самой затеи из-за страха, что если пойдут мелким шагами — отменят посередине) теоретическим (из простейших моделей) проблематзациями),… так вот, люди, которые сами, на установке, сданной еще в 1986 году (ГДЛ, ИЯФ им. Будкера), и после, за смешные деньги «медленно и печально дорабатывавшейся» показали параметры плазмы, которые в 80-х годах были заявлены как теоретически недостижимые на ОЛ (открытых ловушках), говорят, что все это можно было сделать еще в 70-е, еще раз, — говорят, что это можно было сделать еще в 70-е, и тогда же сделать и реактор.
________________

Это что касается фактологии, с которой вы, я подозреваю, не знакомы.

Вернемся к вашим словам:

Заявлять может, кто угодно, о чем угодно

— да, но только не надо это подавать в залоге «это означает, что эти заявления равнозначны». Если плазмист, специалист из top-10 в мире в теории УТС-плазмы (а из живых — еще меньше top), автор новых способов удержания/ ловушке, соавтор успеха (экспериментально показанного успеха!), о котором он же рассуждает в сослагательном наклонении «а можно ли это было сделать в 70-х, если бы деньги по плану ERDA дали?» — говорит, что безусловно можно было, — вес у этого заявления радикально выше веса ваших обывательских рассуждений по этой теме.

А. А. Зализняк про это хорошо сказал в речи, известной словами «Девочка-пятиклассница имеет мнение, что Дарвин не прав», — я говорю о той ее части, где говорится:

«В любом обсуждаемом вопросе профессионал (если он действительно профессионал, а не просто носитель казенных титулов) в нормальном случае более прав, чем дилетант«

Ни добавить, ни убавить. Профессионал имеет обоснованное мнение (при том есть и другая часть обоснования, понятная, надеюсь, даже вам, я вам ее выше расписал), которое, очевидно, расходится с вашим, очевидно дилетантским.

Оценить в такой ситуации оба этих мнения не составит труда (для вменяемого человека), я полагаю.

Что же до остальной части вашего комментария, там сперва капитанство про сложность УТС-станции, бОльшую, чем у ядерной (спасибо, но у меня с одной стороны ERDA 1976 лежит, а с другой — (освоенного мной) инженерного чтива на год по ITER etc, с одной стороны, и не меньше освоенного инженерного чтива про АЭС разных типов; так что уровень дискуссии «оно сложнее» мне не интересен; не говоря о том, что он тут бессмыслен, — специалисты высказались вам как в 1976-году, так и в 2017-2018-м), а далее идет какая-то борьба с соломенными чучелеми, и/или «ломление в открытую дверь, — вы зачем-то увещеваете меня о том, что „Гелий-3“ нахрен не нужен, хотя внимательный читатель мог бы понять, что я по сути о том же говорил в комментарии, на который вы отвечали (работают над D+D и p+B11, — добыча гелия-3 на Луне в таких раскладах нужна, как собаке пятая нога).

Источник: habr.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.