В атом входят


Атом — это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z — порядковый номер данного элемента в периодической системе химических элементов, е — величина элементарного электрического заряда.

Электрон — это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10-19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К — оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных   электронов.   Процесс превращения нейтрального атома в заряженный ион называется ионизацией.


Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц — протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны — это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента — водорода. Число протонов в ядре равно Z. Нейтрон — это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А — Z, где А — массовое число данного изотопа (см. Периодическая система химических элементов). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).


Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны — гамма-излучение. Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

строение атома

Атом (греч. atomos — неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е — элементарный электрический заряд, равный по величине заряду электрона (4,8·10—10 эл.-ст. ед.), и Z — атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10-28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.).
сло нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А—Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются: В атом входят

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10—8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С12, принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба.
ыты показали, что микрочастицы — электроны, протоны, атомы и т. д.,— кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии.  Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е0, в какое-либо из возбужденных состояний Ei происходит при поглощении определенной порции энергии  Еi — Е0. Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= Ei— Еk где h — постоянная Планка (6,62·10—27 эрг·сек), v — частота света.


Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

Источник: www.medical-enc.ru

А́том (от др.-греч. ἄτομος — неделимый) — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.

Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом.В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.

Ядро, несущее почти всю (более чем 99,9 %) массу атома, состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия.
омы классифицируются по количеству протонов и нейтронов в ядре: число протонов Z соответствует порядковому номеру атома в периодической системе и определяет его принадлежность к некоторому химическому элементу, а число нейтронов N — определённому изотопу этого элемента. Число Z также определяет суммарный положительный электрический заряд (Ze) атомного ядра и число электронов в нейтральном атоме, задающее его размер.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.

Свойства атома

По определению, любые два атома с одним и тем же числом протонов в их ядрах относятся к одному химическому элементу. Атомы с одним и тем же количеством протонов, но разным количеством нейтронов называют изотопами данного элемента. Например, атомы водорода всегда содержат один протон, но существуют изотопы без нейтронов (водород-1, иногда также называемый протием — наиболее распространённая форма), с одним нейтроном (дейтерий) и двумя нейтронами (тритий). Известные элементы составляют непрерывный натуральный ряд по числу протонов в ядре, начиная с атома водорода с одним протоном и заканчивая атомом унуноктия, в ядре которого 118 протонов. Все изотопы элементов периодической системы, начиная с номера 83 (висмут), радиоактивны.


Масса

Поскольку наибольший вклад в массу атома вносят протоны и нейтроны, суммарное число этих частиц называют массовым числом. Массу покоя атома часто выражают в атомных единицах массы (а. е. м.), которая также называется дальтоном (Да). Эта единица определяется как 1⁄12 часть массы покоя нейтрального атома углерода-12, которая приблизительно равна 1,66·10−24 г. Водород-1 — наилегчайший изотоп водорода и атом с наименьшей массой, имеет атомный вес около 1,007825 а. е. м. Масса атома приблизительно равна произведению массового числа на атомную единицу массы Самый тяжёлый стабильный изотоп — свинец-208 с массой 207,9766521 а. е. м.

Так как массы даже самых тяжёлых атомов в обычных единицах (например, в граммах) очень малы, то в химии для измерения этих масс используют моли. В одном моле любого вещества по определению содержится одно и то же число атомов (примерно 6,022·1023). Это число (число Авогадро) выбрано таким образом, что если масса элемента равна 1 а. е. м., то моль атомов этого элемента будет иметь массу 1 г. Например, углерод имеет массу 12 а. е. м., поэтому 1 моль углерода весит 12 г.


Размер

Атомы не имеют отчётливо выраженной внешней границы, поэтому их размеры определяются по расстоянию между ядрами соседних атомов, которые образовали химическую связь (Ковалентный радиус) или по расстоянию до самой дальней из стабильных орбит электронов в электронной оболочке этого атома (Радиус атома). Радиус зависит от положения атома в периодической системе, вида химической связи, числа ближайших атомов (координационного числа) и квантово-механического свойства, известного как спин. В периодической системе элементов размер атома увеличивается при движении сверху вниз по столбцу и уменьшается при движении по строке слева направо. Соответственно, самый маленький атом — это атом гелия, имеющий радиус 32 пм, а самый большой — атом цезия (225 пм). Эти размеры в тысячи раз меньше длины волны видимого света (400—700 нм), поэтому атомы нельзя увидеть в оптический микроскоп. Однако отдельные атомы можно наблюдать с помощью сканирующего туннельного микроскопа.

Малость атомов демонстрируют следующие примеры. Человеческий волос по толщине в миллион раз больше атома углерода. Одна капля воды содержит 2 секстиллиона (2·1021) атомов кислорода, и в два раза больше атомов водорода. Один карат алмаза с массой 0,2 г состоит из 10 секстиллионов атомов углерода. Если бы яблоко можно было увеличить до размеров Земли, то атомы достигли бы исходных размеров яблока.


Учёные из Харьковского физико-технического института представили первые в истории науки снимки атома. Для получения снимков учёные использовали электронный микроскоп, фиксирующий излучения и поля (field-emission electron microscope, FEEM). Физики последовательно разместили десятки атомов углерода в вакуумной камере и пропустили через них электрический разряд в 425 вольт. Излучение последнего атома в цепочке на фосфорный экран позволило получить изображение облака электронов вокруг ядра.

Источник: www.sites.google.com

Всем привет. В своё время меня просто поразило, когда я узнал, почему же атомы взаимодействуют между собой. Вот сегодня, я хочу с вами этим поделится.

Дело в том, что атомы несовершенны. И они, стремясь к гармонии, ищут того, с кем они это могут сделать. Звучит поразительно, но на деле всё так и есть, а теперь подробней.

Для начала давайте посмотрим, как устроен атом.
довольно сильно похож на солнечную систему. Внутри у него массивное ядро, а вокруг летают относительно маленькие электроны. Поподробней рассмотрим самый простой атом во вселенной – атом водорода. Ядро у него в подавляющем большинстве случаев представляет обычный протон. Массивную положительно заряженную частицу. А электрончик заряжен отрицательно, вспомнив что разноимённо заряженные частицы притягиваются, понимаем почему электрон вокруг протона крутится, он попросту притягивается кулоновскими силами.

Теперь частности. Порой, это происходит довольно редко, в ядре водорода присутствует не только протон, но и ещё одна массивная частица – нейтрон. Она не имеет заряда, а имеет только массу, примерно такую же, как и протон. И мы получаем атом водорода, который весит вдвое больше, чем его собрат из первого примера, но обладает теми же химическими свойствами.

Такие атомы одно и того же элемента которые отличаются только массами называются крутым словом – изотоп. Обычно для них не придумывают отдельных названий, просто говорят уран 235 или уран 238. Но для водорода сделали исключения и все три его возможных изотопа имеют свои имена, протий – одинокий протон, дейтерий – протон + нейтрон, и тритий – протон + два нейтрона.

О том сколько и каких изотопов на нашей земле, мы можем примерно узнать из таблицы Менделеева, достаточно посмотреть на относительную атомную массу, которая написана рядышком с каждым элементом

Для водорода это 1,00794. Атомная масса чистого протона + электрон немного меньше. Разница получается от того, что в природе есть изотопы. Взяли миллион атомов взвесили их, но не в килограммах, а в относительных атомных массах, которая равна кстати 1/12 массы изотопа углерода С12, а потом результат разделили на миллион и получили 1,00794. Другими словами, это число сумма масс изотопов, умноженных на их процентное содержание на земле.

Теперь подробней об атомах. Электроны крутятся вокруг ядра, но не где захотят, а только на особых орбитах, которые называются энергетические орбитали. И вот здесь начинается самое интересное. Орбитали представляют собой концентрические сферы, т.е одна внутри другой, как матрёшки, а внутри есть ещё такая штука как подуровень. И у каждого подуровня есть максимальное количество атомов, которые он может уместить внутри, также есть определённые правила заполнения. Если атом имеет полностью завершённую внешнюю орбиталь, то он – совершенный. Ему вообще ничего не нужно, он и сам по себе крутой. Он вообще не будет участвовать в химических реакциях (ну или делает это крайне неохотно). В химии такие атомы называют – благородными, или инертными. Это, например гелий, неон аргон.

Остальным атомам, которые имеют незавершённые подуровни энергетических орбиталей, тоже хочется совершенства, и они начинают взаимодействовать друг с другом. Самый простой пример может нам показать атом тот же атом водорода, у которого вокруг ядра болтается одинокий электрон. Его внешняя энергетическая орбиталь может вместить два, а потому он несовершенен. И он ходит вокруг, ищет такого же бедолагу, с которым можно задружится. При встрече с другим атомом водорода, они соединяются. Их электроны теперь не принадлежат одному, а одновременно обоим атомам, и вроде теперь на энергетической орбитали каждого из них по два электрона. Они теперь счастливы. Они теперь не атомы, вместе они стали молекулой. Это молекула довольно гармонична и каждый атом участник обладает одинаковыми правами, потому что тянет к себе электрон с одинаковой силой. Такая связь атомов называется ковалентная неполярная.

Немного более сложный пример с атомом кислорода и водорода. Кислород имеет полностью заполненную внутреннюю орбиталь два из двух электронов, и не до конца заполненную внешнюю, шесть из восьми электронов. Чтобы стать полностью совершенным, ему либо нужно отобрать у кого-нибудь два электрона, либо раздать 6. Представьте если бы у нас издали указ, о том что квартиры дают тем семьям у кого либо два ребёнка либо 10. А у вас их 8, конечно проще взять ещё двух чем раздать своих шестерых. Поэтому атом кислорода начинает искать атомы водорода с одним ребёнком, и понятно, что ему нужно два таких атома. Втроём они образуют такую шведскую семью, в которой 10 детей — электронов. И снова три атома образуют новую молекулу, новое вещество, вы его конечно узнали — это вода. Теперь атом кислорода имеет 8 электронов на внешней орбитали, а каждый из атомов водорода по два. В этой молекуле не всё так радужно как в первом примере, дело в том что кислород гораздо сильнее тянет к себе электроны. Он такая яжмать, которая собирает электроны вокруг себя, а атомы водорода, приходят к ним только на выходные. Этот вид связи называется ковалентная полярная.

Я немного слукавил, говоря о том, что кислороду нужно раздать 6 электронов, я не упомянул о подуровнях. У него есть возможность отдать только два электрона чтобы получить завершённость подуровней. Но таких профитов как при полностью завершённой внешней орбитали он не получит, поэтому делает так крайне неохотно.

Ещё более жестокий пример, когда атому не хватает всего одного электрона на внешней орбитали и он хочет принять этот электрон очень сильно, а другой так же сильно хочет его отдать. В этом случае мы получаем ситуацию, когда один атом совсем отбирает электрон у другого, и два этих атома держатся друг около друга за счёт электромагнитных сил. В этом случае говорят о ионной связи. Самый яркий пример такой связи — это молекула обычной соли NaCl.

В целом желание атомов завершить свою орбиталь и образует всё многообразие химических реакций, дальше частности.

Не путайте химические реакции с реакциями синтеза или распада, при которых получаются не новые химические вещества, а новые элементы таблицы Менделеева. Об этом я обязательно расскажу ка нибудь в другой раз.

Источник: pikabu.ru

В состав любого атома входит ядро, занимающее ничтожно малый объем, но сосредоточившее в себе практически всю его массу, и электроны, вращающиеся вокруг ядра по орбиталям. Обычно ядро нейтрально, то есть, суммарный отрицательный заряд электронов уравновешивается суммарным положительным зарядом протонов, содержащихся в ядре. Находящиеся в нем же нейтроны, как легко догадаться из самого названия, не несут никакого заряда. Если же количество электронов превосходит количество протонов либо уступает ему, атом становится ионом, заряженным отрицательно или, соответственно, положительно.Строение атома было предметом жарких дискуссий, начиная с древних времен. Такие выдающиеся люди, как древнегреческий ученый Демокрит, древнеримский поэт Тит Лукреций Карр (автор знаменитого сочинения «О природе вещей»), считали, что свойства мельчайших частиц обусловлены их формой, а также наличием (или отсутствием) острых, выступающих элементов. Знаменитый физик Томсон, открывший в 1897 году электрон, предложил свою модель атома. Согласно ей, он представляет собою некое шарообразное тело, внутри которого, словно изюминки в пудинге или кексе, находятся электроны. Столь же знаменитый физик Резерфорд, ученик Томсона, опытным путем установил невозможность такой модели и предложил свою «планетарную модель» атома. В дальнейшем, усилиями многих всемирно известных ученых, таких, как Бор, Планк, Шредингер и др., планетарная модель получила свое развитие. Была создана квантовая механика, с помощью которой удалось объяснить «поведение» атомных частиц и разрешить возникшие парадоксы. Химические свойства атома зависят от конфигурации его электронной оболочки. Его масса измеряется в атомных единицах (одна атомная единица равна 1/12 массы атома изотопа углерода 12). Местоположение атома в Таблице Менделеева зависит от электрического заряда ядра. Атомы имеют столь ничтожные размеры, что их невозможно разглядеть даже в самый мощный оптический микроскоп. Изображение электронного облака вокруг атомного ядра можно получить с помощью электронного микроскопа.

Источник: www.kakprosto.ru

Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z — порядковый номер данного элемента в периодической системе химических элементов, е — величина элементарного электрического заряда.
Электрон — мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10-19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К — оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.
Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц — протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны — стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента — водорода. Число протонов в ядре равно Z. Нейтрон — нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А — Z, где А — массовое число данного изотопа (см. Периодическая система химических элементов) . Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.
В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.
Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад) , либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват) .
Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны — гамма-излучение. Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

В атом входят

Источник: otvet.mail.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.