Управляемый ядерный синтез


Оптимизм — штука хорошая, но несамодостаточная. Например, по теории вероятности, на каждого смертного иногда должен падать кирпич. Поделать с этим решительно ничего нельзя: закон Вселенной. Выходит, единственное, что вообще может выгнать смертного на улицу в столь неспокойное время, — это вера в лучшее. А вот у работника сферы ЖКХ мотивация сложнее: его на улицу толкает как раз тот самый кирпич, который норовит на кого-то упасть. Ведь работник об этом кирпиче знает и может все исправить. Равновероятно может и не исправлять, но главное, что при любом решении голый оптимизм его уже не утешит.

 

В таком положении в XX веке оказалась целая отрасль — мировая энергетика. Люди, уполномоченные решать, решили, что уголь, нефть и природный газ будут, как солнце в песне, всегда, что кирпич сидит крепко и никуда не денется. Допустим, денется — так есть термоядерный синтез, пусть пока и не вполне управляемый. Логика такая: открыли его быстро, значит, так же быстро покорят. Но годы шли, отчества тиранов забывались, а термоядерный синтез не покорялся. Все только заигрывал, да требовал больше обходительности, чем имели смертные. Они-то, кстати, ничего не решали, были себе тихонечко оптимистами.


 

Повод заерзать на стуле появился, когда о конечности ископаемых топлив начали говорить публично. Причем, какая она, конечность, непонятно. Во-первых, точный объем еще не найденных нефти или, скажем, газа подсчитать довольно трудно. Во-вторых, прогноз осложняется колебаниями цен на рынке, от которых зависит скорость добычи. И, в-третьих, потребление разного горючего непостоянно во времени и пространстве: например, в 2015 году мировой спрос на уголь (это треть всех существующих энергоносителей) впервые упал с 2009 года, но к 2040 году, как ожидается, резко возрастет, особенно в Китае и на Ближнем Востоке.

 

Мы для наглядности возьмем прогноз МЭА (Международного энергетического агентства) и наметим границу в 40–270 лет. Представим, что затем ископаемые топлива иссякнут.

 

Другой недостаток ископаемых топлив, обнаруженный с опозданием, — вредные выбросы. При сжигании угля, нефти и природного газа вырабатываются углекислый газ, угарный газ и остальные гадости, которые попадают в атмосферу. Чем больше в атмосфере таких летучих веществ, тем меньше солнечного света Земля отражает обратно в космос и тем страннее погода. Ситуация с выбросами стала настолько щекотливой, что недавно МГЭИК (Межправительственная группа экспертов по изменению климата) объявила ультиматум: отказаться от ископаемых топлив к 2100 году. Иначе изменения климата станут необратимыми.


 

Что получается: максимум за 270 лет мировая энергетика должна сойти с рельс нефти, угля и природного газа (пока 80 процентов электроэнергии генерируется благодаря им) и пересесть на что-то другое — безопасное, с высоким КПД и чтобы не било по карману. Цена — момент, первостепенный для развивающихся стран, включая Россию, где спрос на электроэнергию растет быстрее, чем ВВП. Страшно представить, что ждет тех, кто и в ОПЕК (Организация стран-экспортеров нефти) не состоит. Но ближе к делу, вернее, к «Нагану» грядущей энергетической революции — управляемому термоядерному синтезу.

 

 

Как мы помним, простейшее атомное ядро состоит из положительно заряженного протона и отрицательно заряженного электрона. Если к атомному ядру, скажем, водорода «прицепить» один нейтрон, получится изотоп — дейтерий. Если «прицепить» два нейтрона, получится другой изотоп — тритий. При этом с каждым новым нейтроном зарядовое число и химические свойства водорода будут оставаться прежними, а вот массовое число (сумма протонов и нейтронов) и физические свойства — меняться. Возможность конструировать атомные ядра, управляя их физическими свойствами, и интересует ядерную физику.

 

Для запуска термоядерного синтеза нужно сблизить два изотопа с небольшим зарядовым числом, допустим дейтерий и тритий, до расстояния одного атомного ядра, чтобы те «слиплись» и образовали новое, более тяжелое ядро, в нашем примере — гелия-4. По эйнштейновской формуле E=mc2 это приведет к высвобождению огромного количества энергии, часть которой (что характерно — большая) достанется одинокому нейтрону: при столкновении дейтерия и трития он улетит и никогда не вернется. Кстати, сведение ядер — первая проблема синтеза, и небольшое зарядовое число ее упрощает.


 

 

Дело в том, что одноименно заряженные атомные ядра вообще-то сводить нельзя — действует кулоновское отталкивание. Поэтому газ дейтерия и трития приходится разгонять в вакууме, нагревая до температур свыше 100 миллионов градусов Цельсия. С атомов в результате слетают электронные оболочки, и газ переходит в состояние плазмы, состоящей только из заряженных частиц, что позволяет помыкать ей с помощью магнитных ловушек. На самом деле для современных установок 100 миллионов градусов не предел, правда, максимальное «время удержания энергии» в пекле, вдвое меньшем, пока не превышает и 102 секунд.

 

Компромисс между временем удержания плазмы и скоростью реакции — вторая проблема термоядерного синтеза. Подходов к ее решению целых два, по числу основных типов реакторов: квазистационарные (стеллараторы и токамаки) и инерциальные. Первые — это полые «бублики», в которых газ нагревается током и изолируется от внутренних стенок за счет магнитных полей. Вторые — «шарики», в них замороженные изотопы одновременно поджигаются и сдавливаются лазерами. Отличие в том, что токамаки и стеллараторы рассчитаны на долгую работу с разреженной плазмой, а «импульсные» — на «выстрелы» по упакованной смеси.

 


Управляемый ядерный синтез

 

Пытливый читатель, конечно, заметил: термоядерные реакторы уже существуют и даже разные. Тогда почему мы топим баню дровами, а не плазмой?

 

 

Чтобы прочувствовать боль, которую причиняет ученым решение термоядерной головоломки, мысленно пройдем их путь. В 1934 году американский физик советского происхождения Георгий Гамов, разглядывая звезды, задался вопросом: что делает их горячими миллионы лет? На фоне недавнего открытия нуклонов и общего подъема ядерной мысли он закономерно рассудил, что дело в ядерных реакциях. Гипотезу Гамова спустя четыре года развил американец Ханс Бете. В центре Солнца, считал Бете, ядра водорода сталкиваются, превращаясь в изотопы, а затем и в другие элементы. Разница их массовых чисел и зажигает светило.

 

Шел 1938 год. Пока романтики рассуждали о мироустройстве, политики начинали аншлюс и готовились к холодной войне. В 1941 году американец итальянского происхождения, один из двух «отцов» цепной ядерной реакции Энрико Ферми предложил коллегам по Манхэттенскому проекту подумать над бомбой не распада, то есть атомной, а синтеза, то есть водородной. Идея Ферми страшно понравилась Эдварду Теллеру, причем по двум причинам: он любил трудности и был любопытен, а задача расщепления атомных ядер на тот момент была наполовину решена (первый ядерный реактор заработал уже в следующем, 1942-м, году). Неинтересно.

 


Управляемый ядерный синтез

 

Роберт Оппенгеймер такого энтузиазма не разделял. Но сформировал из «проблемных» адептов термоядерной гипотезы запасной отряд под руководством Теллера. Когда «проблемный» математик Станислав Улам описал возможный алгоритм термоядерного синтеза, исследования вышли в практическое русло. И в 1951 году, через шесть лет после испытаний ядерного, США провели предварительное и спустя год — полномасштабное испытание термоядерного заряда. Топливом для него служили жидкие изотопы водорода, которые затем, ради увеличения мощности, заменили на твердотельный дейтерид лития-6 и -7.

 

Советский прототип термоядерного оружия, получивший уютное название «Слойка», был готов к 1949 году, а в 1950-м физик-самоучка Олег Лаврентьев — для разнообразия — высказался в пользу промышленного термоядерного синтеза. Неплохо бы, мол, не только ломать. Через несколько месяцев, одновременно с американцами, Игорь Тамм и Андрей Сахаров додумали концепцию Лаврентьева, предложив закольцевать движение плазмы в медном «бублике» и изолировать ее магнитными ловушками. В том же, 1951-м, году астрофизик Лайман Спитцер построил первый в мире образец термоядерного реактора — стелларатор.


 

Надо сказать, упоминание национальностей тут неслучайно. Гонка вооружений тормозила термоядерную энергетику не меньше, чем оптимизм и кулоновское отталкивание. В результате у СССР, который собирал водородную бомбу на позициях отстающего, свой термоядерный реактор появился только в 1954 году, и это был токамак. В типах реакторов тоже прослеживается идеология, или, если угодно, экзистенциальный подход: исторически так вышло, что стеллараторы были скорее американскими; токамаки — скорее советскими. Забегая вперед, скажем, что теперь эта тенденция неактуальна.

 

 

Сделаем еще одно отступление. Формально стеллараторы считались и считаются более прогрессивными, чем токамаки. Тому есть несколько причин. Во-первых, в стеллараторах плазму нагревают и удерживают только внешние токи и катушки. В токамаках розжиг происходит за счет электрического тока, протекающего в плазме и одновременно создающего дополнительное магнитное поле. Из-за этого в «бублике» токамака возникают свободные электроны и ионы уже со своими магнитными полями, которые норовят разрушить основное поле, сбить температуру и вообще все испортить.

 

Во-вторых, камеры стеллараторов не просто «бублики», а «мятые бублики»: в отличие от токамаков, у них нет азимутальной симметрии. При этом катушки на «мятых бубликах» стеллараторов имеют винтообразную, вложенную форму (на токамаках они прямые и параллельны друг другу) и «закручивают» силовые линии, то есть подвергают их вращательному преобразованию. Это тоже стабилизирует плазму и еще — отодвигает теоретический предел оптимального давления в камере. А квадрат давления примерно пропорционален скорости реакции. Чем выше давление, тем быстрее все произойдет.


 

Управляемый ядерный синтез

 

Стеллараторы доминировали ровно до 1969 года, когда температура плазмы (объемом всего в один кубический метр) в советском Т-3, первом и единственном токамаке, достигла рекордных трех миллионов градусов Цельсия, что лишь в пять раз меньше температуры в центре Солнца. Отрицая реальность происходящего, британские физики вызвались проверять результаты эксперимента, но, увы, чудо случилось. История с Т-3 ввела на токамаки моду: они понятнее и дешевле в строительстве. И в 1983 году в Великобритании был достроен крупнейший из ныне существующих термоядерных реакторов этого типа — JET.

 

Объем плазмы в JET составил уже около 100 кубических метров. За 30 лет он установил серию рекордов: решил первую проблему термоядерного синтеза, разогрев плазму до 150 миллионов градусов Цельсия; сгенерировал мощности в 1 мегаватт, а затем — в 16 мегаватт с показателем энергоэффективности Q ~ 0,7… Соотношение затраченной энергии к полученной — третья проблема термоядерного синтеза. Теоретически для самоподдерживающегося горения плазмы Q должен перевалить за единицу. Но практика показала, что мало и этого: на самом деле Q должен быть более 20. Среди токамаков Q JET пока остается непокоренным.

 


Управляемый ядерный синтез

 

Новой надеждой отрасли стал токамак ITER, который прямо сейчас всем миром строят во Франции. Показатель Q у ITER должен достигнуть 10, мощность — 500 мегаватт, которые для начала просто рассеют в пространстве. Работы над этим проектом ведутся с 1985 года и должны были закончиться в 2016 году. Но постепенно стоимость стройки выросла с 5 до 19 миллиардов евро, и дата ввода в эксплуатацию отодвинулась на 9–11 лет. При этом ITER позиционируется как мостик к реактору DEMO, который, по плану в 2040-х годах, сгенерирует первое «термоядерное» электричество.

 

Биография «импульсных» систем была менее драматичной. Когда в начале 1970-х годов физики признали, что вариант с «постоянным» синтезом неидеален, то предложили вычеркнуть из уравнения удержание плазмы. Вместо этого изотопы должны были помещаться в миллиметровую пластиковую сферу, та — в золотую капсулу, охлажденную до абсолютного нуля, а капсула — в камеру. Затем капсула синхронно «обстреливалась» лазерами. Идея в том, что если нагреть и сдавить топливо достаточно быстро и равномерно, то реакция произойдет еще до рассеяния плазмы. И в 1974 году частная компания KMS Fusion такую реакцию получила.

 


Управляемый ядерный синтез

 

Спустя несколько экспериментальных установок и лет выяснилось, что с «импульсным» синтезом не все так гладко. Равномерность сжатия оказалась проблемой: замороженные изотопы превращались не в идеальный шар, а в «гантелю», что резко снижало давление, а значит, и энергоэффективность. Ситуация привела к тому, что в 2012 году, через четыре года работы, от безысходности едва не закрылся крупнейший инерциальный американский реактор NIF. Но уже в 2013 году он сделал то, чего не удалось JET: первым в ядерной физике получил в 1,5 раза больше энергии, чем израсходовал.

 

Сейчас, помимо крупных, проблемы термоядерного синтеза решают «карманные», чисто экспериментальные, и «стартаперские» установки самых разных конструкций. Иногда и у них получается совершить чудо. Например, недавно физики из Рочестерского университета превзошли поставленный в 2013 году рекорд энергоэффективности в четыре, а затем и в пять раз. Правда, новые ограничения на температуру розжига и давления при этом никуда не делись, да и эксперименты проводились в реакторе, примерно втрое меньшем, чем NIF. А линейный размер, как мы знаем, имеет значение.


 

Зачем так напрягаться, недоумеваете вы? Чтобы было понятно, чем термоядерный синтез так привлекателен, сравним его с «обычным» горючим. Допустим, в каждый момент времени в «бублике» токамака находится один грамм изотопов. При столкновении одного дейтерия и одного трития выделяется 17,6 мегаэлектронвольта энергии, или 0,000 000 000 002 джоуля. Теперь статистика: сжигание одного грамма дров даст нам 7 тысяч джоулей, угля — 34 тысячи джоулей, газа или нефти — 44 тысячи джоулей. Сжигание же грамма изотопов должно привести к выбросу 170 миллиардов джоулей тепла. Столько весь мир потребляет примерно за 14 минут.

 

 

Более того, термоядерный синтез почти безвреден. «Почти» — потому что нейтрон, который улетит и не вернется, забрав часть кинетической энергии, покинет магнитную ловушку, но далеко уйти не сможет. Скоро непоседа будет схвачен атомным ядром одного из листов бланкета — металлического «одеяла» реактора. Ядро, «поймавшее» нейтрон, при этом превратится либо в стабильный, то есть безопасный и относительно долговечный, либо в радиоактивный изотоп — как повезет. Облучение реактора нейтронами называется наведенной радиацией. Из-за нее бланкет придется менять где-то каждые 10–100 лет.

 

Самое время уточнить, что схема «сцепления» изотопов, описанная выше, была упрощенной. В отличие от дейтерия, который можно есть ложкой, легко создать и встретить в обычной морской воде, тритий — радиоизотоп, и искусственно синтезируется за неприличные деньги. При этом хранить его бессмысленно: ядро быстро «разваливается». В ITER тритий будут получать на месте, сталкивая нейтроны с литием-6 и отдельно добавляя готовый дейтерий. В результате нейтронов, которые попытаются «бежать» (вместе с тритием) и застрянут в бланкете, будет еще больше, чем могло показаться.

 

Управляемый ядерный синтез

 

Несмотря на это, площадь радиоактивного воздействия термоядерного реактора будет пренебрежимо мала. Ирония в том, что безопасность предусмотрена самим несовершенством технологии. Поскольку плазму приходится удерживать, а «топливо» добавлять снова и снова, без надзора со стороны система проработает от силы несколько минут (плановое время удержания у ITER — 400 секунд) и погаснет. Но даже при одномоментном разрушении, по мнению физика Кристофера Ллуэллина-Смита, выселять города не придется: из-за низкой плотности плазмы трития в ней будет всего 0,7 грамма.

 

Разумеется, на дейтерии и тритии свет клином не сошелся. Для термоядерного синтеза ученые рассматривают и другие пары: дейтерий и дейтерий, гелий-3 и бор-11, дейтерий и гелий-3, водород и бор-11. В трех последних никаких «убегающих» нейтронов и вовсе не будет, а с парами водород — бор-11 и дейтерий — гелий-3 уже работают две американские компании. Просто пока, на нынешнем витке технологического невежества, сталкивать дейтерий и тритий чуть легче.

 

Да и простая арифметика на стороне новой отрасли. За последние 55 лет в мире произошло: пять прорывов ГЭС, в результате которых погибло столько, сколько на российских дорогах погибает за восемь лет; 26 аварий на атомных электростанциях, из-за которых погибло в десятки тысяч раз меньше людей, чем от прорывов ГЭС; и сотни происшествий на тепловых электросетях с бог весть какими последствиями. Зато за время работы термоядерных реакторов, кажется, ничто, кроме нервных клеток и бюджетов, пока не пострадало.

 

 

Каким бы крошечным он ни был, а шанс сорвать куш в «термоядерную» лотерею будоражил всех, не только физиков. В марте 1989 года два достаточно известных химика, американец Стэнли Понс и британец Мартин Флейшман, собрали журналистов, чтобы явить миру «холодный» ядерный синтез. Работал он так. В раствор с дейтерием и литием помещался палладиевый электрод и через него пропускали постоянный ток. Дейтерий и литий поглощались палладием и, сталкиваясь, иногда «сцеплялись» в тритий и гелий-4, вдруг резко нагревая раствор. И это при комнатной температуре и нормальном атмосферном давлении.

 

Перспектива получать энергию без головомойки с температурой, давлением и сложными установками была слишком заманчива, и на следующий день Флейшман и Понс проснулись знаменитыми. Власти штата Юта выделили на их исследования «холодного» синтеза 5 миллионов долларов, еще 25 миллионов долларов у Конгресса США запросил университет, в котором работал Понс. Ложку дегтя в историю добавляли два момента. Во-первых, подробности эксперимента появились в The Journal of Electroanalytical Chemistry and Interfacial Electrochemistry только в апреле, спустя месяц после пресс-конференции. Это противоречило научному этикету.

 

Управляемый ядерный синтез

 

Во-вторых, у специалистов по ядерной физике к Флейшману и Понсу возникло много вопросов. Например, почему в их реакторе столкновение двух дейтронов дает тритий и гелий-4, когда должно давать тритий и протон или нейтрон и гелий-3? Причем проверить это было просто: при условии, что в палладиевом электроде происходил ядерный синтез, от изотопов «отлетали» бы нейтроны с заранее известной кинетической энергией. Но ни датчики нейтронов, ни воспроизведение эксперимента другими учеными к таким результатам не привели. И за недостатком данных уже в мае сенсация химиков была признана «уткой».

 

Несмотря на это, труд Понса и Флейшмана внес в ядерную физику и химию сумятицу. Ведь что произошло: некая реакция изотопов, палладия и электричества привела к выделению положительной энергии, точнее, к спонтанному нагреванию раствора. В 2008 году похожую установку журналистам показали японские ученые. Они помещали в колбу палладий и оксид циркония и под давлением накачивали в нее дейтерий. Из-за давления ядра «терлись» друг о друга и превращались в гелий, выделяя энергию. Как и в эксперименте Флейшмана-Понса, о «безнейтронной» реакции синтеза авторы судили только по температуре в колбе.

 

У физики объяснений не было. Но могли быть у химии: что если вещество изменяют катализаторы — «ускорители» реакций? Один такой «ускоритель» якобы использовал итальянский инженер Андреа Росси. В 2009 году он вместе с физиком Серджио Фокарди подал заявку на изобретение аппарата для «низкоэнергетической ядерной реакции». Это 20-сантиметровая керамическая трубка, в которую помещаются порошок никеля, неизвестный катализатор и под давлением накачивается водород. Трубка нагревается обычным электрокалорифером, частично превращая никель в медь с выделением нейтронов и положительной энергии.

 

До патента Росси и Фокарди механику «реактора» не разглашали из принципа. Потом — со ссылкой на коммерческую тайну. В 2011 году установку начали проверять журналисты и ученые (почему-то одни и те же). Проверки заключались в следующем. Трубку нагревали на несколько часов, измеряли входную и выходную мощность и изучали изотопный состав никеля. Вскрывать было нельзя. Слова разработчиков подтверждались: энергии выходит в 30 раз больше, состав никеля меняется. Но как? Для такой реакции нужно не 200 градусов, а все 20 миллиардов градусов Цельсия, поскольку ядро никеля тяжелее даже железа.

 

Управляемый ядерный синтез

 

Ни один научный журнал итальянских «волшебников» так и не опубликовал. Многие довольно быстро махнули на «низкоэнергетические реакции» рукой, хотя последователи у метода есть. Сейчас Росси судится с правообладателем патента, американской компанией Industrial Heat, по обвинению в краже интеллектуальной собственности. Та считает его мошенником, а проверки с экспертами — «липой».

 

И все же «холодный» ядерный синтез существует. Он действительно основан на «катализаторе», — мюонах. Мюоны (отрицательно заряженные) «выпинывают» электроны с атомной орбитали, образуя мезоатомы. Если столкнуть мезоатомы с, например, дейтерием, получатся положительно заряженные мезомолекулы. А так как мюон в 207 раз тяжелее электрона, ядра мезомолекул будут в 207 раз ближе друг к другу — того же эффекта можно добиться, если нагреть изотопы до 30 миллионов градусов Цельсия. Поэтому ядра мезоатомов «сцепляются» сами, без нагрева, а мюон «прыгает» на другие атомы, пока не «увязнет» в мезоатоме гелия.

 

К 2016 году мюон научили совершать примерно 100 таких «прыжков». Затем — либо мезоатом гелия, либо распад (время жизни мюона — всего 2,2 микросекунды). Овчинка не стоит выделки: количество полученной от 100 «прыжков» энергии не превышает 2 гигаэлектронвольт, а на создание одного мюона нужно 5–10 гигаэлектронвольт. Чтобы «холодный» синтез, точнее, «мюонный катализ», был выгодным, каждый мюон должен научиться 10 тысячам «прыжков» или, наконец, перестать требовать от смертных слишком много. В конце концов, до каменного века — с пионерскими кострами вместо ТЭЦ — осталось каких-то 250 лет.

 

Впрочем, в конечность ископаемых топлив верят не все. Менделеев, например, отрицал исчерпаемость нефти. Она, думал химик, — продукт абиотических реакций, а не разложившихся птеродактилей, поэтому самовосстанавливается. Слухи об обратном Менделеев вменял братьям Нобель, которые в конце XIX века замахнулись на нефтяную монополию. Вслед за ним советский физик Лев Арцимович и вовсе выражал убежденность в том, что термоядерная энергетика появится только тогда, когда будет «действительно» нужна человечеству. Выходит, Менделеев и Арцимович были хоть лицами и решающими, а все же — оптимистами.

 

И в термоядерной энергетике мы на самом деле пока не нуждаемся.

Источник: naked-science.ru

История проблемы

Впервые задачу по управляемому термоядерному синтезу в Советском Союзе сформулировал и предложил для неё некоторое конструктивное решение советский физик Лаврентьев О. А.[1][2]. Кроме него важный вклад в решение проблемы внесли такие выдающиеся физики, как А. Д. Сахаров и И. Е. Тамм[1][2], а также Л. А. Арцимович, возглавлявший советскую программу по управляемому термоядерному синтезу с 1951 года.

Исторически вопрос управляемого термоядерного синтеза на мировом уровне возник в середине XX века. Известно, что И. В. Курчатов в 1956 году высказал предложение о сотрудничестве учёных-атомщиков разных стран в решении этой научной проблемы. Это произошло во время посещения Британского ядерного центра «Харуэлл» (англ.)[3].

Типы реакций

Реакция синтеза заключается в следующем: два или больше атомных ядра в результате применения некоторой силы сближаются настолько, чтобы силы, действующие на таких расстояниях, преобладали над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего формируется новое ядро. При создании нового ядра выделится большая энергия сильного взаимодействия. По известной формуле E=mc², высвободив энергию, система нуклонов потеряет часть своей массы. Атомные ядра, имеющие небольшой электрический заряд, проще свести на нужное расстояние, поэтому тяжелые изотопы водорода являются одними из лучших видов топлива для реакции синтеза.

Установлено, что смесь двух изотопов, дейтерия и трития, требует менее всего энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надежнее контролироваться, или, что более важно, производить меньше нейтронов. Особенный интерес вызывают так называемые «безнейтронные» реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость эксплуатации реактора, существенно уменьшив затраты на вывод из эксплуатации и утилизацию. Проблемой остается то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому D-T реакция считается только необходимым первым шагом.

Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.

Реакция дейтерий + тритий (Топливо D-T)

Самая легко осуществимая реакция — дейтерий + тритий:

2H + 3H = 4He + n при энергетическом выходе 17,6 МэВ (мегаэлектронвольт).

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты дешевы. Недостаток — выход нежелательной нейтронной радиации.

Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона:
{}^{2}_{1}mbox{H} + {}^{3}_{1}mbox{H} rightarrow {}^{4}_{2}mbox{He} + {}^{1}_{0}mbox{n} + 17,6 mbox{ MeV}.

Реакция дейтерий + гелий-3

Существенно сложнее, на пределе возможного, осуществить реакцию дейтерий + гелий-3

2H + 3He = 4He + p при энергетическом выходе 18,4 МэВ.

Условия её достижения значительно сложнее. Гелий-3, кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах в настоящее время не производится. Однако может быть получен из трития, получаемого в свою очередь на атомных электростанциях; или добыт на Луне.

Сложность проведения термоядерной реакции можно характеризовать тройным произведением nTτ (плотность на температуру на время удержания). По этому параметру реакция D-3He примерно в 100 раз сложнее, чем D-T.

Реакция между ядрами дейтерия (D-D, монотопливо)

Также возможны реакции между ядрами дейтерия, они идут немного труднее реакции с участием гелия-3:

mathrm{D} + mathrm{D} rightarrow mathrm{p} + mathrm{T} + 4{,}032 ; mathrm{MeV}.
mathrm{D} + mathrm{D} rightarrow mathrm{n} + {}^3!,mathrm{He} + 3{,}268 ; mathrm{MeV}.

В дополнение к основной реакции в ДД-плазме также происходят:

mathrm{p} + mathrm{D} rightarrow {}^3!,mathrm{He} + gamma + 5{,}4 ; mathrm{MeV}.
mathrm{p} + mathrm{T} rightarrow {}^4!,mathrm{He} + gamma + 19{,}814 ; mathrm{MeV}.
mathrm{D} + mathrm{T} rightarrow mathrm{n} + {}^4!,mathrm{He} + 17{,}589 ; mathrm{MeV}.
mathrm{D} + ! ^3mathrm{He} rightarrow mathrm{p} + {}^4!,mathrm{He} + 18{,}353 ; mathrm{MeV}.
{}^3!,mathrm{He} + ! ^3mathrm{He} rightarrow 2 ,mathrm{p} + , {}^4!,mathrm{He} + 12{,}86 ; mathrm{MeV}.
mathrm{T} + mathrm{T} rightarrow 2 ,mathrm{n} + {}^4!,mathrm{He} + 11{,}332 ; mathrm{MeV}.

Эти реакции медленно протекают параллельно с реакцией дейтерий + гелий-3, а образовавшиеся в ходе них тритий и гелий-3 с большой вероятностью немедленно реагируют с дейтерием.

Другие типы реакций

Возможны и некоторые другие типы реакций. Выбор топлива зависит от множества факторов — его доступности и дешевизны, энергетического выхода, лёгкости достижения требующихся для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и т. д.

«Безнейтронные» реакции

Наиболее перспективны так называемые «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и порождает наведенную радиоактивность в конструкции реактора. Реакция дейтерий + гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода.

mathrm{D} + ! ^3mathrm{He} rightarrow mathrm{p} + {}^4!,mathrm{He} + 18{,}353 ; mathrm{MeV}.
mathrm{D} + ! ^6mathrm{Li} rightarrow 2 , {}^4!,mathrm{He} + 22{,}4 ; mathrm{MeV}.
mathrm{p} + ! ^6mathrm{Li} rightarrow {}^4!,mathrm{He} + {}^3!,mathrm{He} + 4{,}0 ; mathrm{MeV}.
{}^3!,mathrm{He} + ! ^6mathrm{Li} rightarrow mathrm{p} + 2 , {}^4!,mathrm{He} + 16{,}9 ; mathrm{MeV}.
{}^3!,mathrm{He} + ! ^3mathrm{He} rightarrow 2 ,mathrm{p} + , {}^4!,mathrm{He} + 12{,}86 ; mathrm{MeV}.
mathrm{p} + ! ^7mathrm{Li} rightarrow 2 , {}^4!,mathrm{He} + 17{,}2 ; mathrm{MeV}.
mathrm{p} + ! ^1! ^1mathrm{B} rightarrow 3 , {}^4!,mathrm{He} + 8{,}7 ; mathrm{MeV}.

Реакции на лёгком водороде

Стоит отметить, что протон-протонные реакции синтеза, идущие в звёздах, не рассматриваются как перспективное термоядерное горючее. Протон-протонные реакции идут через слабое взаимодействие с излучением нейтрино, и по этой причине требуют астрономических размеров реактора для сколь-либо заметного энерговыделения.

p + p → ²D + e+ + νe + 0.4 Мэв

Условия

Управляемый термоядерный синтез возможен при одновременном выполнении двух условий:

  • Скорость соударения ядер соответствует температуре плазмы:
T > 108 K (для реакции D-T).
  • Соблюдение критерия Лоусона:
nτ > 1014 см−3·с (для реакции D-T),

где n — плотность высокотемпературной плазмы, τ — время удержания плазмы в системе.

От значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.

В настоящее время (2012) управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии.

Термоядерная энергетика и гелий-3

Запасы гелия-3 на Земле составляют в атмосфере около 50 000 т[источник не указан 619 дней] и гораздо больше в литосфере, на Луне он находится в значительном количестве: до 10 млн тонн (по минимальным оценкам — 500 тысяч тонн[источник не указан 683 дня]). В то же время его можно легко получать и на Земле из широко распространённого в природе лития-6 на существующих ядерных реакторах деления.

Наиболее простым способом осуществления термоядерной реакции является синтез дейтерия и трития с выделением гелия-4 и «быстрого» нейтрона:

D + T → 4He (3,5 МэВ) + n (14,1 МэВ).

Однако при этом бо́льшая часть (более 80 %) выделяемой кинетической энергии приходится именно на нейтрон. В результате столкновений осколков с другими атомами эта энергия преобразуется в тепловую. Помимо этого, быстрые нейтроны создают значительное количество радиоактивных отходов. В отличие от этого, синтез дейтерия и гелия-3 почти не производит радиоактивных продуктов:

D + 3He → 4He (3,7 МэВ) + p (14,7 МэВ), где p — протон.

Это позволяет использовать более простые и эффективные системы преобразования кинетической реакции синтеза, такие как магнитогидродинамический генератор.

Конструкции реакторов

Существуют две принципиальные схемы осуществления управляемого термоядерного синтеза, разработки которых продолжаются в настоящее время (2012):

  1. Квазистационарные системы (tau ge 1 c, n ge 10^{14} cm^{-3} ,!) в которых нагрев и удержание плазмы осуществляется магнитным полем при относительно низком давлении и высокой температуре. Для этого применяются реакторы в виде токамаков, стеллараторов (торсатронов) и зеркальных ловушек, которые отличаются конфигурацией магнитного поля. К квазистационарным реакторам относится реактор ITER, имеющий конфигурацию токамака.
  2. Импульсные системы (tau sim 10^{-8} c, n ge 10^{22} cm^{-3} ,!). В таких системах управляемый термоядерный синтез осуществляется путем кратковременного нагрева небольших мишеней, содержащих дейтерий и тритий, сверхмощными лазерными лучами или пучками высокоэнергичных частиц (ионов, электронов). Такое облучение вызывает последовательность термоядерных микровзрывов.

Первый вид термоядерных реакторов намного лучше разработан и изучен, чем второй.

В ядерной физике, при исследованиях термоядерного синтеза, для удержания плазмы в некотором объёме используется магнитная ловушка — устройство, удерживающее плазму от контакта с элементами термоядерного реактора. Магнитная ловушка используется в первую очередь как теплоизолятор. Принцип удержания плазмы основан на взаимодействии заряженных частиц с магнитным полем, а именно на спиральном вращении заряженных частиц вдоль силовых линий магнитного поля. Однако, намагниченная плазма очень нестабильна. В результате столкновений заряженные частицы стремятся покинуть магнитное поле. Поэтому для создания эффективной магнитной ловушки используются мощные электромагниты, потребляющее огромное количество энергии или применяющие сверхпроводники.[источник не указан 752 дня]

Радиационная безопасность

Термоядерный реактор намного безопаснее ядерного реактора в радиационном отношении. Прежде всего, количество находящихся в нем радиоактивных веществ сравнительно невелико. Энергия, которая может выделиться в результате какой-либо аварии, тоже мала и не может привести к разрушению реактора. При этом в конструкции реактора есть несколько естественных барьеров, препятствующих распространению радиоактивных веществ. Например, вакуумная камера и оболочка криостата должны быть герметичными, иначе реактор просто не сможет работать. Тем не менее, при проектирования ITER большое внимание уделялось радиационной безопасности как при нормальной эксплуатации, так и во время возможных аварий.

Есть несколько источников возможного радиоактивного загрязнения:

  • радиоактивный изотоп водорода — тритий;
  • наведённая радиоактивность в материалах установки в результате облучения нейтронами;
  • радиоактивная пыль, образующаяся в результате воздействия плазмы на первую стенку;
  • радиоактивные продукты коррозии, которые могут образовываться в системе охлаждения.

Для того, чтобы предотвратить распространение трития и пыли, если они выйдут за пределы вакуумной камеры и криостата, необходима специальная система вентиляции которая должна поддерживать в здании реактора пониженное давление. Поэтому из здания не будет утечек воздуха, кроме как через фильтры вентиляции.

При строительстве реактора, ITER например, где только возможно, будут применяться материалы, уже испытанные в ядерной энергетике. Благодаря этому, наведённая радиоактивность будет сравнительно небольшой. В частности, даже в случае отказа систем охлаждения, естественной конвекции будет достаточно для охлаждения вакуумной камеры и других элементов конструкции.

Оценки показывают, что даже в случае аварии радиоактивные выбросы не будут представлять опасности для населения и не вызовут необходимости эвакуации.

Цикл топлива

Реакторы первого поколения будут, вероятнее всего, работать на смеси дейтерия и трития. Нейтроны, которые появляются в процессе реакции, поглотятся защитой реактора, а выделяющееся тепло будет использоваться для нагревания теплоносителя в теплообменнике, и эта энергия, в свою очередь, будет использоваться для вращения генератора.

{}^6_3mathrm{Li} + ^1_0mathrm{n} rightarrow ^3_1mathrm{T} + ^4_2mathrm{He}.
{}^7_3mathrm{Li} + ^1_0mathrm{n} rightarrow ^3_1mathrm{T} + ^4_2mathrm{He} + ^1_0mathrm{n}.

Реакция с 6Li является экзотермической, обеспечивая получение небольшой энергии для реактора. Реакция с 7Li является эндотермической — но не потребляет нейтронов[4]. По крайней мере, некоторые реакции 7Li необходимы для замены нейтронов, потерянных в реакции с другими элементами. Большинство конструкций реактора используют естественные смеси изотопов лития.

Это топливо имеет ряд недостатков:

  • Реакция продуцирует значительное количество нейтронов, которые активируют (радиоактивно заражают) реактор и теплообменник. Нейтронное облучение во время D-T реакции настолько велико, что после первой серии тестов на JET, наибольшем реакторе на сегодняшний день на таком топливе, реактор стал настолько радиоактивным, что для завершения годового цикла тестов пришлось разработать роботизированную систему дистанционного обслуживания.[источник не указан 1095 дней]
  • Требуются мероприятия для защиты от возможного истока радиоактивного трития.
  • Только около 20 % энергии синтеза выделяется в форме заряженных частиц (остальное — нейтроны), что ограничивает возможность прямого превращения энергии синтеза в электроэнергию[5].
  • Использование D-T реакции зависит от имеющихся запасов лития, которые значительно меньше чем запасы дейтерия.

Существуют, в теории, альтернативные виды топлива, которые лишены указанных недостатков. Но их использованию препятствует фундаментальное физическое ограничение. Чтобы получить достаточное количество энергии из реакции синтеза, необходимо удерживать достаточно плотную плазму при температуре синтеза (108 K) на протяжении определенного времени. Этот фундаментальный аспект синтеза описывается произведением плотности плазмы n на время содержания нагретой плазмы τ, что требуется для достижения точки равновесия. Произведение nτ зависит от типа горючего и является функцией температуры плазмы. Из всех видов горючего дейтерий-тритиевая смесь требует самого низкого значения nτ, по меньшей мере на порядок, и самую низкую температуру реакции, по меньшей мере в 5 раз. Таким образом, D-T реакция является необходимым первым шагом, однако использование других видов горючего остается важной целью исследований.[источник не указан 752 дня]

Реакция синтеза в качестве промышленного источника электроэнергии

Энергия синтеза рассматривается многими исследователями (в частности, Кристофером Ллуэллин-Смитом) в качестве «естественного» источника энергии в долгосрочной перспективе. Сторонники коммерческого использования термоядерных реакторов для производства электроэнергии приводят следующие аргументы в их пользу:

  • Практически неисчерпаемые запасы топлива (водород).
  • Топливо можно добывать из морской воды на любом побережье мира, что делает невозможным монополизацию топливных ресурсов одной или группой стран.
  • Минимальная вероятность аварийного взрывного увеличения мощности реакции в термоядерном реакторе.
  • Отсутствие продуктов сгорания.
  • Нет необходимости использовать материалы, которые могут быть использованы для производства ядерных взрывных устройств, таким образом исключается возможность саботажа и терроризма.[источник не указан 1095 дней]
  • По сравнению с ядерными реакторами вырабатываются радиоактивные отходы с коротким периодом полураспада[6].
  • С помощью вычислений можно провести оценку, что наперсток, наполненный дейтерием, производит энергию, эквивалентную 20 тоннам угля. Озеро среднего размера в состоянии обеспечить любую страну энергией на сотни лет. Однако следует заметить, что существующие исследовательские реакторы спроектированы для достижения прямой дейтериево-тритиевой (DT) реакции, цикл топлива которой требует использования лития для производства трития, тогда как заявления о неисчерпаемости энергии касаются использования дейтериево-дейтериевой (DD) реакции во втором поколении реакторов.[источник не указан 1095 дней]
  • Так же, как и реакция распада, реакция синтеза не производит углекислотных выбросов в атмосферу, являющихся, по мнению многих специалистов, главным вкладом в глобальное потепление. Это является значительным преимуществом, поскольку использование ископаемых топлив для производства электроэнергии имеет своим следствием то, что, например, в США производится 29 кг CO2 (один из основных газов, которые могут считаться причиной глобального потепления) на жителя США в день.[источник не указан 1095 дней]
  • В отличие от неядерных электростанций на возобновляемых источниках энергии, термоядерные реакторы можно устанавливать где угодно (в том числе на транспорте: суда, самолёты и даже автомобили), в каких угодно количествах и без серьёзного вреда для окружающей среды (затопления водохранилищ, поражение птиц лопастями ветровых электростанций…).[источник не указан 1095 дней]
  • В космосе же они вовсе незаменимы, так как дальше пояса астероидов и, тем более, на ночных сторонах планет солнечные батареи неэффективны, химические топлива неприменимы вовсе, традиционное ядерное топливо есть далеко не везде, а вот водород в изобилии.[источник не указан 1095 дней]

Стоимость электроэнергии в сравнении с традиционными источниками

Критики указывают, что вопрос о рентабельности ядерного синтеза в производстве электроэнергии в общих целях остается открытым. В том же исследовании, проведённом по заказу Бюро науки и техники британского парламента, указывается, что себестоимость производства электроэнергии с использованием термоядерного реактора будет, вероятно, в верхней части спектра стоимости традиционных источников энергии. Много будет зависеть от доступной в будущем технологии, структуры и регулирования рынка. Стоимость электроэнергии напрямую зависит от эффективности использования, длительности эксплуатации и стоимости утилизации реактора[7].

Отдельно стоит вопрос стоимости исследований. Страны Евросоюза тратят около 200 млн евро ежегодно на исследования, и прогнозируется, что нужно еще несколько десятилетий, пока промышленное использование ядерного синтеза станет возможным. Сторонники альтернативных неядерных источников электроэнергии считают, что было бы целесообразнее направить эти средства на внедрение возобновляемых источников электроэнергии.[источник не указан 1095 дней]

Доступность коммерческой энергии ядерного синтеза

Несмотря на распространённый оптимизм (с начала первых исследований 1950-х годов), существенные препятствия между сегодняшним пониманием процессов ядерного синтеза, технологическими возможностями и практическим использованием ядерного синтеза до сих пор не преодолены. Неясным является даже то, насколько может быть рентабельным производство электроэнергии с использованием термоядерного синтеза. Хотя наблюдается постоянный прогресс в исследованиях, исследователи то и дело сталкиваются с новыми проблемами. Например, проблемой является разработка материала, способного выдержать нейтронную бомбардировку, которая, как оценивается, должна быть в 100 раз интенсивнее, чем в традиционных ядерных реакторах. Тяжесть проблемы усугубляется тем, что сечение взаимодействия нейтронов с ядрами с ростом энергии перестаёт зависеть от числа протонов и нейтронов и стремится к сечению атомного ядра — и для нейтронов энергии 14 МэВ просто не существует изотопа с достаточно малым сечением взаимодействия. Это обуславливает необходимость очень частой замены конструкций D-T и D-D реактора и снижает его рентабельность настолько, что стоимость конструкций реакторов из современных материалов для этих двух типов оказывается больше стоимости произведённой на них энергии. Решения возможны трёх типов[источник не указан 752 дня]:

  1. Отказ от чистого ядерного синтеза и употребление его в качестве источника нейтронов для деления урана или тория.
  2. Отказ от D-T и D-D синтеза в пользу других реакций синтеза (например D-He).
  3. Резкое удешевление конструкционных материалов или разработка процессов их восстановления после облучения. Требуются также гигантские вложения в материаловедение, но перспективы неопределённые.

Побочные реакции D-D (3 %) при синтезе D-He осложняют изготовление рентабельных конструкций для реактора, но не невозможны на современном технологическом уровне.

Различают следующие фазы исследований:

1. Равновесие или режим «перевала» (Break-even): когда общая энергия, выделяемая в процессе синтеза, равна общей энергии, затраченной на запуск и поддержку реакции. Это соотношение помечают символом Q.

2. Пылающая плазма (Burning Plasma): промежуточный этап, на котором реакция будет поддерживаться главным образом альфа-частицами, которые продуцируются в процессе реакции, а не внешним подогревом. Q ≈ 5. До сих пор (2012) не достигнут.

3. Воспламенение (Ignition): стабильная самоподдерживающаяся реакция. Должна достигаться при больших значениях Q. До сих пор не достигнуто.

Следующим шагом в исследованиях должен стать Международный термоядерный экспериментальный реактор (International Thermonuclear Experimental Reactor, ITER). На этом реакторе планируется провести исследование поведения высокотемпературной плазмы (пылающая плазма с Q ~ 30) и конструктивных материалов для промышленного реактора.

Окончательной фазой исследований станет DEMO: прототип промышленного реактора, на котором будет достигнуто воспламенение, и продемонстрирована практическая пригодность новых материалов. Самые оптимистичные прогнозы завершения фазы DEMO: 30 лет. Учитывая ориентировочное время на построение и введение в эксплуатацию промышленного реактора, нас отделяет ~40 лет от промышленного использования термоядерной энергии.[источник не указан 1095 дней]

Существующие токамаки

Всего в мире было построено около 300 токамаков. Ниже перечислены наиболее крупные из них.

  • СССР и Россия
    • Т-3 — первый функциональный аппарат.
    • Т-4 — увеличенный вариант Т-3
    • Т-7 — уникальная установка, в которой впервые в мире реализована относительно крупная магнитная система со сверхпроводящим соленоидом на базе ниобата олова, охлаждаемого жидким гелием. Главная задача Т-7 была выполнена: подготовлена перспектива для следующего поколения сверхпроводящих соленоидов термоядерной энергетики.
    • Т-10 и PLT — следующий шаг в мировых термоядерных исследованиях, они почти одинакового размера, равной мощности, с одинаковым фактором удержания. И полученные результаты идентичны: на обоих реакторах достигнута заветная температура термоядерного синтеза, а отставание по критерию Лоусона — всего в двести раз.
    • Т-15 — реактор сегодняшнего дня со сверхпроводящим соленоидом, дающим поле напряжённостью 3,6 Тл.
  • Ливия
    • ТМ-4А
  • Европа и Великобритания
    • Joint European Torus[8] — самый крупный в мире действующий токамак, созданный организацией Евратом в Великобритании. В нём использован комбинированный нагрев: 20 МВт — нейтральная инжекция, 32 МВт — ионно-циклотронный резонанс. В итоге, критерий Лоусона лишь в 4—5 раз ниже уровня зажигания.
    • Tore Supra[9] — токамак со сверхпроводящими катушками, один из крупнейших в мире. Находится в исследовательском центре Кадараш (Франция).
  • США
    • Test Fusion Tokamak Reactor (TFTR)[10] — крупнейший токамак США (в Принстонском университете) с дополнительным нагревом быстрыми нейтральными частицами. Достигнут высокий результат: критерий Лоусона при истинно термоядерной температуре всего в 5,5 раза ниже порога зажигания. Закрыт в 1997 г.
    • National Spherical Torus Experiment (NSTX)[11]  — сферический токамак (сферомак) работающий в настоящее время в Принстонском университете. Первая плазма в реакторе получена в 1999 году, через два года после закрытия TFTR.
    • Alcator C-Mod[12] — один из трех крупнейших токамаков в США (два других — NSTX и DIII-D), Alcator C-Mod характеризуется самым высоким магнитным полем и давлением плазмы в мире. Работает с 1993 года.
    • DIII-D[13] — токамак США, созданный и работающий в компании General Atomic в Сан-Диего.
  • Япония
    • JT-60[14] — крупнейший японский токамак, работающий в Японском институте исследований атомной энергии (англ.) с 1985 года.
  • Китай
    • EAST (Experimental Advanced Superconducting Tokamak) — Экспериментальный усовершенствованный сверхпроводимый токамак. Является глубокой модернизацией Российского токамака HT-7. Работает в рамках международного проекта ITER. Первые успешные испытания были проведены летом 2006 года. Принадлежит Институту физики плазмы Китайской академии наук. Расположен в городе Хэфэй, провинции Аньхой. На этом реакторе в 2007 году был проведён[15] первый в мире «безубыточный» термоядерный синтез, с точки зрения соотношения затраченной/полученной энергии. На данный момент это соотношение составляет 1:1,25. В ближайшем будущем планируется довести это соотношение до 1:50.[16]

Ссылки

  • Е.П. Велихов; С.В. Мирнов Управляемый термоядерный синтез выходит на финишную прямую (PDF). Троицкий институт инновационных и термоядерных исследований. Российский научный центр «Курчатовский институт».. ac.ru. — Популярное изложение проблемы.. Архивировано из первоисточника 5 февраля 2012. Проверено 8 августа 2007.
  • К. Ллуэллин-Смит. На пути к термоядерной энергетике. Материалы лекции, прочитанной 17 мая 2009 года в ФИАНе.
  • Грандиозный эксперимент по термоядерному синтезу проведут в США.

Интересные факты

  • В фильме «Человек-паук 2» в результате неудачного проведения реакции термоядерного синтеза Отто Октавиус попадает под влияние своих щупалец, в результате чего становится зловещим Доктором Осьминогом.[17]

См. также

  • Инерциальный управляемый термоядерный синтез
  • Мюонный катализ
  • Холодный термоядерный синтез
  • Сонолюминесценция
  • Ультразвуковой термояд
  • Нуклеосинтез
  • Ядерные реакции
  • Термоядерный ракетный двигатель
  • Адронный коллайдер
  • Список новых перспективных технологий

Источник: dic.academic.ru

Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается — таким образом, ядро не остывает.

На Земле же термоядерные реакции можно провести лишь в специальных установках. 

Импульсные системы.  В таких системах дейтерий и тритий облучают сверхмощными лазерными лучи или пучками электронов/ионов. Такое облучение вызывает последовательность термоядерных микровзрывов. Однако такие системы невыгодно использовать в промышленных масштабах: на разгон атомов тратится намного больше энергии, чем получается в результате синтеза, так как не все разгоняемые атомы вступают в реакцию. Поэтому многие страны строят квазистационарные системы.

Квазистационарные системы.  В таких реакторах плазма удерживается с помощью магнитного поля при низком давлении и высокой температуре. Существует три типа реакторов, основанных на различных конфигурациях магнитного поля. Это токамаки, стеллараторы (торсатроны) и зеркальные ловушки.

Токамак  расшифровывается как "тороидальная камера с магнитными катушками". Это камера в виде "бублика" (тора), на которую намотаны катушки. Главной особенностью токамака является использование переменного электрического тока, который протекает через плазму, нагревает ее и, создавая вокруг себя магнитное поле, удерживает ее. 

Управляемый ядерный синтез 

В стеллараторе (торсатроне) магнитное поле полностью удерживается с помощью магнитных катушек и, в отличие от токамака, может работать постоянно.

В зеркальных (открытых) ловушках используется принцип отражения. Камера с двух сторон закрыта магнитными "пробками", которые отражают плазму, удерживая ее в реакторе. 

Управляемый ядерный синтез 

Долгое время зеркальные ловушки и токамаки боролись за первенство. Изначально концепция ловушки казалась более простой и потому более дешевой.  В начале 60-х годов открытые ловушки обильно финансировались, однако нестабильность плазмы и неудачные попытки удержать ее магнитным полем заставляли усложнять эти установки —  простые на вид конструкции превратились в адские машины, и добиться стабильного результата не выходило. Поэтому в 80-х годах на первый план вышли токамаки.  В 1984 году был запущен европейский токамак JET, стоимость которого составила всего 180 млн долларов и параметры которого позволяли провести термоядерную реакцию. В СССР и Франции проектировали сверхпроводящие токамаки, которые почти не тратили энергию на работу магнитной системы. 

Источник: www.sib-science.info


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.