Три закона кеплера кратко


Первый закон Кеплера

Кеплер обратил внимание, что результаты наблюдений Браге расходятся с представлениями о круговой траектории обращения планет вокруг Солнца. Особенно это касалось Марса, чья траектория движения по наблюдения датчанина никак не могла описывать идеальный круг. Браге был очень точен в своих расчетах и сомнений в их правдивости у его последователя не возникло.

Тогда немецкий математик принял орбиты за эллипсы, у каждого из которых есть два фокуса. Это условные точки, выбранные таким образом, что сумма расстояний от них до любой точки эллипса – величина постоянная.  При этом для эллиптической орбиты в одном из фокусов находится Солнце.

Форма эллипса вычисляется благодаря отношению фокального расстояния к большой полуоси орбиты. Полученное значение описывает эксцентриситет орбиты. Если он равен нулю – орбита представляет собой идеальную окружность, от нуля до единицы – эллипс различной вытянутости, больше единицы – параболу.

Второй закон Кеплера


Если орбита – это эллипс, то каким образом происходит движение небесного тела по ней? В каких отрезках орбитального пути оно ускоряется и замедляется?

Немецкий ученый обнаружил, что есть взять два любых отрезка орбитального пути, которые планета Солнечной системы проходит за одинаковые промежутки времени, провести от их концов радиус-векторы к центральной звезде, то площади полученных образований будут одинаковы.  Это упрощенная формулировка второго закона.

Для того, чтобы постоянство площадей сохранялось, тело должна двигаться в разных точках орбиты с разной скоростью. Так, например, Земля в наибольшем приближении к Солнцу движется быстрее, чем в максимальном удалении от него

Третий закон Кеплера

Третий постулат о движении небесных тел в Солнечной системе как раз касается понятий перигелия и афелия. Если провести между ними условную линию, получится большая ось траектории обращения планеты. Соответственно, половина этого отрезка – большая полуось.

Кеплер на основании наблюдений вывел, что отношение полных оборотов вокруг центральной звезды для двух любых планет системы, возведенных в квадрат, всегда равняется отношению больших полуосей орбитальных путей этих тел, возведенных в куб.

Трудность в доказательстве и принятии трех законов состояла в том, что он вывел их эмпирически. Но в конце 17 века Ньютоном был открыта классическая теория тяготения. Он и помог установить правильность суждений немецкого астронома и описал движение планет по эллипсу вокруг Солнца. Ньютон установил, что кроме массы объекта и его удаления от звезды никакие другие свойства не влияют на гравитационное притяжение.


Также Ньютон внес корректировки и в третий постулат Кеплера. Он открыл, что для соблюдения соотношения необходимо учитывать массу космического объекта. Данная трактовка третьего закона помогает установить массу планеты или спутника, зная величину его орбиты и период обращения.

Законы Иоганна Кеплера помогли установить форму планетарной траектории, вычислить период обращения планет, их скорость и ее изменения по мере приближения и удаления от Солнца. Ученый вывел Землю из ранга особенных астрономических объектов системы и установил, что она подчиняется всем трем законом, как и любая другая планета нашей звездной системы.

Источник: spaceworlds.ru

Иоганн КЕПЛЕР

Johannes Kepler, 1571–1630

Немецкий астроном. Родился в Вюртембурге. Начав с изучения богословия в Тюбингенской академии (позднее университет), увлекся математикой и астрономией и вскоре получил приглашение на должность преподавателя математики в гимназии австрийского города Грац.
м он снискал себе репутацию блестящего астролога благодаря ряду сбывшихся метеорологических прогнозов на 1595 год. Начиная с 1598 года Кеплер и другие протестанты стали подвергаться в католическом Граце жестоким религиозным гонениям, и в 1600 году ученый по приглашению датского астронома Тихо Браге переехал в Прагу. Работы Кеплера основывались на наблюдениях, сделанных Тихо Браге. Его дальнейшая жизнь сложилась трагично. Он жил в бедности и умер от лихорадки по дороге в Австрию, куда он отправился в надежде получить причитающееся ему жалованье.

Законы Кеплера

Чем ближе планеты к Солнцу, тем больше линейная и угловая скорости их обращения вокруг Солнца. Период обращения планет вокруг Солнца по отношению к звездам называется звездным периодом.

Такой период обращения Земли относительно звезд называется звездным годом. Наименьший звездный период обращения у планеты Меркурий. У Марса он составляет около 2 лет, у Юпитера — 12 лет и, все возрастая с удалением от Солнца, у Плутона доходит до 250 лет.

Заслуга открытия законов движения планет принадлежит выдающемуся австрийскому ученому Кеплеру. В начале XVII в. Кеплер установил три закона движения планет. Они названы законами Кеплера.


Первый закон Кеплера: каждая планета обращается вокруг Солнца по эллипсу, в одном аз фокусов которого находится Солнце.

Эллипсом называется плоская замкнутая кривая, имеющая такое свойство, что сумма расстояний каждой ее точки от двух точек, называемых фокусами, остается постоянной.

Степень вытянутости эллипса характеризуется величиной его эксцентриситета. Эксцентриситет равен отношению расстояния фокуса от центра к длине большой полуоси. В пределе при совпадении фокусов и центра эксцентриситет равен нулю и эллипс превращается в окружность.

Ближайшая к Солнцу точка орбиты называется перигелием, а самая далекая от него точка называется афелием. Орбиты планет — эллипсы, мало отличающиеся от окружностей, их эксцентриситеты малы. Например, эксцентриситет орбиты Земли е = 0,017.

Эксцентриситеты орбит у комет приближаются к единице. При е=1 второй фокус эллипса удаляется (в пределе) в бесконечность, так что эллипс становится разомкнутой кривой, называемой параболой. Ее ветви в бесконечности стремятся стать параллельными. При е>1 орбита является гиперболой. Двигаясь по параболе или гиперболе, тело только однажды огибает Солнце и навсегда удаляется от него.


Кеплер открыл свои законы, изучая периодическое обращение планет вокруг Солнца. Ньютон, исходя из законов Кеплера, открыл закон всемирного тяготения. При этом он нашел, что под действием взаимного тяготения тела могут двигаться друг относительно друга по эллипсу, в частности по кругу, по параболе и по гиперболе. Выяснилось, что некоторые кометы огибают Солнце, двигаясь по параболе или по гиперболе. В таком случае они уходят из солнечной системы и уже не являются ее членами.

Ньютон установил, что вид орбиты, которую описывает тело, зависит от его скорости. При некоторой скорости тело описывает окружность около притягивающего центра. Такую скорость, которую называют первой космической скоростью, и придают телам, запускаемым в качестве искусственных спутников Земли (направляя эту скорость горизонтально). Первая космическая скорость составляет около 8 км/с. Если телу сообщить скорость в корень из двух раз большую, то это будет вторая космическая скорость, около 11 км/с, при которой тело навсегда удалится от Земли и может стать спутником Солнца. В этом случае движение тела будет происходить по параболе относительно Земли. При еще большей скорости относительно Земли тело полетит по гиперболе.


Средняя скорость движения Земли по орбите 30 км/с. Орбита Земли близка к окружности, а скорость Земли по орбите близка к круговой на расстоянии Земли от Солнца. Параболическая скорость для Земли будет равна √2*30 км/с = 42 км/с. При такой скорости относительно Солнца тело покинет солнечную систему.

Второй закон Кеплера (закон площадей): радиус-вектор планеты за одинаковые промежутки времени описывает равные площади. Радиусом — вектором планеты называется отрезок прямой, соединяющий планету с Солнцем. Скорость планеты при движении ее по орбите тем больше, чем ближе она к Солнцу. В перигелии скорость планеты наибольшая. Второй закон Кеплера количественно определяет изменение скорости движения планеты по эллипсу.




Третий закон Кеплера: квадраты звездных периодов обращения планет относятся как кубы больших полуосей их орбит.


Третий закон Кеплера связывает средние расстояния планет от Солнца с периодами их звездных обращений и позволяет большие полуоси всех планетных орбит выразить в единицах большой полуоси земной орбиты. Большую полуось земной орбиты называют астрономической единицей расстояний. В астрономических единицах средние расстояния планет от Солнца были определены раньше, чем узнали длину астрономической единицы в километрах.

 

Источник: www.sites.google.com

Предположение о равномерном круговом дви­жении планет Солнечной системы не согласовывалось с гелиоцентри­ческой системой мира Н. Коперника, поскольку расхождения между вычисленным и реальным положением планет в определённые проме­жутки времени было значительным. Это противоречие удалось разре­шить выдающемуся немецкому астроному И. Кеплеру. На основании многолетних наблюдений за движением планет, изучения трудов сво­их предшественников Кеплер открыл три закона, названных впослед­ствии его именем.

Первый закон Кеплера, называемый также законом эллипсов, был сформулирован учёным в 1609 г.


Первый закон Кеплера: все планеты Солнечной системы движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

Ближайшая к Солнцу точка P траектории называется перигели­ем, точка A, наиболее удалённая от Солнца, — афелием. Расстоя­ние между афелием и перигелием составляет большую ось эллиптической ор­биты. Половина длины большой оси, полуось a, — это среднее расстояние от планеты до Солнца.

Среднее расстоя­ние от Земли до Солнца называ­ется астрономической единицей (а. е.) и равно 150 млн км.

Форму эллипса, степень его отличия от окружности определяет соотношение c/a, где c — расстояние от центра эллипса до фокуса, a — большая полуось эллипса.

Чем больше это отношение, тем более вы­тянута орбита движения планеты (рис. 37), фокусы находятся дальше друг от друга. Если это отношение равно нулю, то эллипс превра­щается в окружность, фокусы сливаются в одну точку — центр окружности.

Орбиты Земли и Венеры почти круговые, для Земли соотношение c/a составляет 0,0167, для Венеры — 0,0068. Орбиты других планет более сплющенные. Наиболее вытяну­та орбита Плутона, для которого c/a = 0,2488. По эллиптическим орбитам движутся не только планеты вокруг Солнца, но и спутники (естественные и искус­ственные) вокруг планет. Ближайшая к Земле точка движения спут­ника называется перигеем, самая удалённая — апогеем.


Три закона кеплера кратко
Рис. 37. Схема эллип­тической орбиты дви­жения планет: P — пе­ригелий; A — афелий; a — среднее расстояние от планеты до Солнца; m — масса планеты; M— масса Солнца; F, F’ — фокусы орбиты; r — радиус-вектор планеты
Три закона кеплера кратко
Рис. 38. Схема движения планет вокруг Солнца в равные промежутки времени: P — перигелий; A — афелий; m — масса планеты; M — масса Солнца; r — радиус- вектор планеты; S1, S2 — площади, описываемые радиусом- вектором планеты; F, F’ — фокусы орбиты

Второй закон Кеплера (закон площадей): радиус-вектор планеты описывает в равные промежутки времени равные площади.


На рисунке 38 проиллюстрирован второй закон Кеплера. Из рисунка понятно, что радиус-вектор — это отрезок, соединяющий фокус орбиты (по сути, центр Солнца) и центр планеты в любой точке её движения по орби­те. В соответствии со вторым законом Кепле­ра площади выделенных цветом секторов рав­ны между собой. Тогда получается, что за оди­наковый промежуток времени планета проходит по орбите разное расстояние, т. е. скорость движения не постоянна: v2 > v1. Чем ближе планета к перигелию, тем быстрее её движение, будто она стремится скорее уйти подальше от палящих солнечных лучей. Материал с сайта http://doklad-referat.ru

Третий закон Кеплера (гармонический): квадраты периодов обра­щения двух планет вокруг Солнца относятся друг к другу, как кубы больших полуосей их орбит.

Помня, что длина большой полуоси орбиты считается средним рас­стоянием от планеты до Солнца, запишем математическое выражение третьего закона Кеплера:

T21 / T22 = a31 / a32,

где T1, T2 — периоды обращения планет 1 и 2; a1 > a2 — среднее расстояние от планет 1 и 2 до Солнца.

Третий закон Кеплера выполняется как для планет, так и для спутников, с погрешно­стью не более 1 %.

На основании этого закона можно вычис­лить продолжительность года (время полного оборота вокруг Солнца) любой планеты, если известно её расстояние до Солнца. И наобо­рот — по этому же закону можно рассчитать орбиту, зная период обращения.

Источник: doklad-referat.ru

Законы

На смену геоцентрической Птолемеевой системе мира пришла система гелиоцентрического типа, созданная Коперником. Еще позже, Кеплер выявил законы движения планет вокруг Солнца.

После многолетних наблюдений за планетами появились три закона Кеплера. Рассмотрим их в статье.

Первый

Согласно первому закону Кеплера, все планеты нашей системы движутся по замкнутой кривой, называемой эллипсом. Наше светило располагается в одном из фокусов эллипса. Всего их два: это две точки внутри кривой, сумма расстояний от которых до любой точки эллипса постоянна. После длительных наблюдений ученый смог выявить, что орбиты всех планет нашей системы располагаются почти в одной плоскости. Некоторые небесные тела двигаются по орбитам-эллипсам, близким к окружности. И только Плутон с Марсом двигаются по более вытянутым орбитам. Исходя из этого, первый закон Кеплера получил название закона эллипсов.

Второй закон

Изучение движения тел позволяет ученому установить, что скорость планеты больше в тот период, когда она находится ближе к Солнцу, и меньше тогда, когда она находится на максимальном расстоянии от Солнца (это точки перигелия и афелия).

Второй закон Кеплера говорит о следующем: каждая планета перемещается в плоскости, проходящей через центр нашего светила. В одно и то же время радиус-вектор, соединяющий Солнце и исследуемую планету, описывает равные площади.

Таким образом, ясно, что тела движутся вокруг желтого карлика неравномерно, а имея в перигелии максимальную скорость, а в афелии – минимальную. На практике это видно по движению Земли. Ежегодно в начале января наша планета, во время прохождения через перигелий, перемещается быстрее. Из-за этого движение Солнца по эклиптике происходит быстрее, чем в другое время года. В начале июля Земля движется через афелий, из-за чего Солнце по эклиптике перемещается медленнее.

Третий закон

По третьему закону Кеплера, между периодом обращения планет вокруг светила и ее средним расстоянием от него устанавливается связь. Этот закон ученый применил ко всем планетам нашей системы.

Объяснение законов

Законы Кеплера смогли объяснить только после открытия Ньютоном закона тяготения. По нему физические объекты принимают участие в гравитационном взаимодействии. Оно обладает всеобщей универсальностью, которой подвержены все объекты материального типа и физические поля. По утверждению Ньютона, два неподвижных тела действуют взаимно друг с другом с силой, пропорциональной произведению их веса и обратно пропорциональной квадрату промежутков между ними.

Возмущенное движение

Движением тел нашей Солнечной системы управляет сила притяжения желтого карлика. Если бы тела притягивались только силой Солнца, то планеты совершали бы движения вокруг него точно по законам движения Кеплера. Данный вид перемещения называют невозмущенным или кеплеровским.

В действительности все объекты нашей системы притягиваются не только нашим светилом, но и друг другом. Поэтому ни одно из тел не может перемещаться точно по эллипсу, гиперболе или по кругу. Если тело отклоняется во время движения от законов Кеплера, то это называется возмущениями, а само движение – возмущенным. Именно оно считается реальным.

Орбиты небесных тел не являются неподвижными эллипсами. Во время притяжения другими телами, происходит изменение эллипса орбиты.

Вклад И. Ньютона

Исаак Ньютон смог вывести из законов движения планет Кеплера закон всемирного тяготения. Для решения космическо-механических задач Ньютон использовал именно всемирное тяготение.

После Исаака прогресс в области небесной механики заключался в развитии математической науки, применяемой для решения уравнений, выражающих законы Ньютона. Этот ученый смог установить, что гравитация планеты определяется расстоянием до нее и массой, а вот такие показатели, как температура и состав, не оказывают никакого влияния.

В своей научной работе Ньютон показал, что третий кеплеровский закон не совсем точен. Он показал, что при подсчетах важно учитывать массу планеты, так как движение и вес планет связаны. Это гармоническая комбинация показывает связь между кеплеровскими законами и законом тяготения, выявленным Ньютоном.

Астродинамика

Применение законов Ньютона и Кеплера стало основой появления астродинамики. Это раздел небесной механики, изучающий движение космических тел, созданных искусственно, а именно: спутников, межпланетных станций, различных кораблей.

Астродинамика занимается расчетами орбит космических кораблей, а также определяет, по каким параметрам производить пуск, на какую орбиту выводить, какие необходимо провести маневры, планированием гравитационного воздействия на корабли. И это далеко не все практические задачи, которые ставятся перед астродинамикой. Все полученные результаты применяются при выполнении самых разных космических миссий.

С астродинамикой тесно связана небесная механика, которая изучает движение естественных космических тел под действием силы тяготения.

Орбиты

Под орбитой понимают траекторию движения точки в заданном пространстве. В небесной механике принято считать, что траектория тела в гравитационном поле другого тела обладает значительно большей массой. В прямоугольной системе координат, траектория может иметь форму конического сечения, т.е. быть представлена параболой, эллипсом, кругом, гиперболой. При этом фокус будет совпадать с центром системы.

На протяжении длительного времени считалось, что орбиты должны быть круглыми. Довольно долго ученые пытались подобрать именно круговой вариант перемещения, но у них не получалось. И только Кеплер смог объяснить, что планеты перемещаются не по круговой орбите, а по вытянутой. Это позволило открыть три закона, которые смогли описать движение небесных тел по орбите. Кеплер открыл следующие элементы орбиты: форму орбиты, ее наклон, положение плоскости орбиты тела в пространстве, размер орбиты, привязку по времени. Все эти элементы определяют орбиту независимо от ее формы. При расчетах основной координатной плоскостью может быть плоскость эклиптики, галактики, планетарного экватора и т.д.

Многочисленные исследования показывают, что по геометрической форме орбиты могут быть эллиптическими и округлыми. Есть деление на замкнутые и незамкнутые. По углу наклона орбиты к плоскости земного экватора, орбиты могут быть полярными, наклонными и экваториальными.

По периоду обращения вокруг тела, орбиты могут быть синхронными или солнечно-синхронными, синхронно-суточными, квазисинхронными.

Как говорил Кеплер, все тела имеют определенную скорость движения, т.е. орбитальную скорость. Она может быть постоянной на протяжении всего обращения вокруг тела или же изменяться.

Источник: FB.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.