Термоядерный синтез водорода


Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается — таким образом, ядро не остывает.

На Земле же термоядерные реакции можно провести лишь в специальных установках. 

Импульсные системы.  В таких системах дейтерий и тритий облучают сверхмощными лазерными лучи или пучками электронов/ионов. Такое облучение вызывает последовательность термоядерных микровзрывов. Однако такие системы невыгодно использовать в промышленных масштабах: на разгон атомов тратится намного больше энергии, чем получается в результате синтеза, так как не все разгоняемые атомы вступают в реакцию. Поэтому многие страны строят квазистационарные системы.

Квазистационарные системы.  В таких реакторах плазма удерживается с помощью магнитного поля при низком давлении и высокой температуре. Существует три типа реакторов, основанных на различных конфигурациях магнитного поля. Это токамаки, стеллараторы (торсатроны) и зеркальные ловушки.

Токамак  расшифровывается как "тороидальная камера с магнитными катушками". Это камера в виде "бублика" (тора), на которую намотаны катушки. Главной особенностью токамака является использование переменного электрического тока, который протекает через плазму, нагревает ее и, создавая вокруг себя магнитное поле, удерживает ее. 


Термоядерный синтез водорода 

В стеллараторе (торсатроне) магнитное поле полностью удерживается с помощью магнитных катушек и, в отличие от токамака, может работать постоянно.

В зеркальных (открытых) ловушках используется принцип отражения. Камера с двух сторон закрыта магнитными "пробками", которые отражают плазму, удерживая ее в реакторе. 

Термоядерный синтез водорода 

Долгое время зеркальные ловушки и токамаки боролись за первенство. Изначально концепция ловушки казалась более простой и потому более дешевой.  В начале 60-х годов открытые ловушки обильно финансировались, однако нестабильность плазмы и неудачные попытки удержать ее магнитным полем заставляли усложнять эти установки —  простые на вид конструкции превратились в адские машины, и добиться стабильного результата не выходило. Поэтому в 80-х годах на первый план вышли токамаки.  В 1984 году был запущен европейский токамак JET, стоимость которого составила всего 180 млн долларов и параметры которого позволяли провести термоядерную реакцию. В СССР и Франции проектировали сверхпроводящие токамаки, которые почти не тратили энергию на работу магнитной системы. 


Источник: www.sib-science.info

Естествознание, 11 класс

Урок 23. Проблема управляемого термоядерного синтеза и энергетика будущего

Перечень вопросов, рассматриваемых в теме:

  • Каким образом была осуществлена неуправляемая и в чём сложность осуществления управляемой термоядерной реакции?
  • Что представляет собой «горючее» для термоядерных реакций?

Глоссарий по теме:

Термоядерный синтез –процесс слияния лёгких атомных ядер, проходящий с выделением энергии при высоких температурах.

Неуправляемая термоядерная реакция – на солнце, звёздах, при взрыве водородной бомбы.

Управляемая термоядерная реакция – с использованием плазмы. Пока не создана.

Плазма – частично или полностью ионизированный газ.

Изотопы – элементы с одинаковым атомным номером (числом протонов), но с различным массовым числом (числом нейтронов).

Изотопы водорода – протий, дейтерий, тритий.

Магнитная ловушка для плазмы – пространственная конфигурация магнитного поля для удержания плазмы в некотором объёме.

Токамак – тип тороидальной магнитной ловушки.

Основная и дополнительная литература по теме урока:


  • Естествознание. 11 класс: Учебник для общеобразоват. организаций: базовый уровень под ред. И.Ю. Алексашиной. – 3-е изд. – М.: Просвещение, 2017 – §33, С. 106-109.
  • Физика. 11 класс [Текст]: учебник для общеобразоват. учреждений: базовый уровень; профильный уровень/А.В. Грачев, В.А. Погожев, А.М. Салецкий и др.- Вентана-Граф, 2011

Теоретический материал для самостоятельного изучения

Практическое использование ядерных реакций распада началось с пуска ядерного реактора, в котором воспроизводилась управляемая реакция. Лишь спустя три года появилась возможность провести ядерный взрыв – мощную неуправляемую реакцию ядерного распада.

Совершенно по-другому происходило (и происходит) освоение реакции ядерного синтеза.

Первая неуправляемая термоядерная реакция – взрыв водородной бомбы был произведен в 1952 г.

А вот управляемую реакцию термоядерного синтеза, в результате которой выделялась бы энергия, не удалось осуществить до сих пор. Осуществление управляемых термоядерных реакций даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии.

Разберёмся с условиями. Необходимо создать высокие плотности и сверхвысокие температуры термоядерного горючего. В термоядерном реакторе реакция синтеза должна происходить медленно, должна быть возможность управлять ею.


Термоядерные реакции происходят на солнце и других звёздах. Температура в центре солнца достигает 13 млн градусов, а плотность вещества 100г на 1см3

Создать подобные внеземные условия пока удалось лишь при использовании самого мощного из доступных человеку средств – атомного взрыва.

Рассмотрим, что же такое термоядерное горючее.

Существует множество различных реакций термоядерного синтеза, происходящих с выделением тепла. Однако, чем тяжелее ядра, тем большие у них силы отталкивания, а, следовательно, более высокие температуры необходимы для термоядерного синтеза.

Поэтому в качестве возможных претендентов на термоядерное горючее рассматриваются самые легкие ядра – изотопы водорода, гелия и лития.

Из курса физики и химии вам известны изотопы водорода: протий, дейтерий и тритий. Ядро первого не содержит нейтроны, в ядре второго 1 нейтрон, в ядре трития – 2 нейтрона

Изотопы гелия могут содержать в ядре от двух до четырёх нейтронов.

В настоящее время известно 9 изотопов лития.

Одной из самых «низкотемпературных» является реакция синтеза дейтерия с тритием.

2H + 3H → 4He + n + 17,6 МэВ

Недостатком данной реакции является в первую очередь то, что тритий радиоактивен с малым периодом полураспада, поэтому его мало в природе и нужна защита от радиации.


А вот дейтерия в природе много. И в связи с доступностью дейтерия рассматриваются также возможности использования реакции между двумя ядрами дейтерия, которая может идти по двум каналам.

2H + 2H → 3H + 1H + 4,0 МэВ

2H + 2H → 3He + n + 3,25 МэВ

Продуктом первой реакции получается радиоактивный тритий, следовательно, остаётся проблема защиты от радиации.

Наиболее приемлемая реакция с позиции радиоактивности — это синтез дейтерия с изотопом гелия-3.

2H + 3He → 4He + 1H + 18,3 МэВ

Как исходные продукты, так и продукты реакции не радиоактивны. Однако, лёгкого гелия в природе ничтожно мало.

Имеются данные о том, что 3He достаточно много на Луне, уже появлялись сообщения о том, что оценивается возможность доставки его с Луны на Землю.

Самая сложная проблема, которую нужно решить при конструировании термоядерного реактора, проблема удержания плотной горячей плазмы в течение достаточно длительного времени – порядка одной секунды.

Любое вещество при температурах в десятки миллионов градусов превращается в плазму, поэтому каких-либо стенок для удержания термоядерного горючего создать невозможно.

Выход нашли в использовании электромагнитного поля.

Заряженная частица, попадая в магнитное поле начинает двигаться под действием силы Лоренца по спирали, «накрученной» на линию магнитного поля. А поскольку линии магнитного поля всегда замкнуты, движение заряженной частицы становится ограниченным некоторой областью пространства.


Для создания магнитного поля могут использоваться электромагниты различной формы. В настоящее время существующие проекты предусматривают создание камеры для термоядерного горючего в виде тороида («бублика»). На поверхность тороида наматываются обмотки электромагнита. Создаваемое ими магнитное поле представляет собой замкнутые линии, проходящие внутри тороида. Поскольку скорости частиц огромны, для их «закручивания» необходимы сильные поля, а значит большие токи. Чтобы избежать потерь энергии на нагрев проводов, предполагается использовать обмотки катушек из сверхпроводников, для чего их необходимо охлаждать до температур порядка десяти Кельвинов. Таким образом, сверхвысокие температуры будут «соседствовать» со сверхнизкими.

Магнитные ловушки прекрасно удерживали бы заряженные частицы, если бы эти частицы не сталкивались между собой. В результате столкновений частицы уходят из ловушки, и пока еще проблема удержания до конца не решена.

Для её решения в настоящее время привлекаются самые современные технологии и объединяются усилия учёных разных стран.

Первую термоядерную электростанцию планируют построить во Франции. Особые надежды возлагают на реактор ITER, на создание которого затратили безумное количество средств. это международный проект по созданию экспериментального термоядерного реактора.


По прогнозам ученых, температура плазмы в камере ITER будет составлять около 150 миллионов градусов Цельсия. Российские ученые смоделировали поведение металла в термоядерном реакторе.

Текст задания 1:

Вставьте пропущенные слова: «Основной трудностью при создании ___________реакции термоядерного синтеза является удержание____________, нагретой до миллиарда градусов».

Правильный вариант:

Управляемой (контролируемой), плазмы.

Текст задания 2:

Решите кроссворд.

Термоядерный синтез водорода

По горизонтали:

  1. Форма траектории заряженной частицы в магнитном поле.
  2. Явление самопроизвольного распада с испусканием частиц, которое испытывает тритий.
  3. Изотоп водорода с двумя нейтронами в ядре.

По вертикали:

  1. Самый лёгкий изотоп водорода.
  2. Что представляет собой неуправляемая термоядерная реакция?

Правильный вариант:

Термоядерный синтез водорода

Источник: resh.edu.ru

История проблемы


Впервые задачу по управляемому термоядерному синтезу в Советском Союзе сформулировал и предложил для неё некоторое конструктивное решение советский физик Лаврентьев О. А.[1][2]. Кроме него важный вклад в решение проблемы внесли такие выдающиеся физики, как А. Д. Сахаров и И. Е. Тамм[1][2], а также Л. А. Арцимович, возглавлявший советскую программу по управляемому термоядерному синтезу с 1951 года.

Исторически вопрос управляемого термоядерного синтеза на мировом уровне возник в середине XX века. Известно, что И. В. Курчатов в 1956 году высказал предложение о сотрудничестве учёных-атомщиков разных стран в решении этой научной проблемы. Это произошло во время посещения Британского ядерного центра «Харуэлл» (англ.)[3].

Типы реакций

Реакция синтеза заключается в следующем: два или больше атомных ядра в результате применения некоторой силы сближаются настолько, чтобы силы, действующие на таких расстояниях, преобладали над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего формируется новое ядро. При создании нового ядра выделится большая энергия сильного взаимодействия. По известной формуле E=mc², высвободив энергию, система нуклонов потеряет часть своей массы. Атомные ядра, имеющие небольшой электрический заряд, проще свести на нужное расстояние, поэтому тяжелые изотопы водорода являются одними из лучших видов топлива для реакции синтеза.


Установлено, что смесь двух изотопов, дейтерия и трития, требует менее всего энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надежнее контролироваться, или, что более важно, производить меньше нейтронов. Особенный интерес вызывают так называемые «безнейтронные» реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость эксплуатации реактора, существенно уменьшив затраты на вывод из эксплуатации и утилизацию. Проблемой остается то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому D-T реакция считается только необходимым первым шагом.

Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.


Реакция дейтерий + тритий (Топливо D-T)

Самая легко осуществимая реакция — дейтерий + тритий:

2H + 3H = 4He + n при энергетическом выходе 17,6 МэВ (мегаэлектронвольт).

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты дешевы. Недостаток — выход нежелательной нейтронной радиации.

Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона:
{}^{2}_{1}mbox{H} + {}^{3}_{1}mbox{H} rightarrow {}^{4}_{2}mbox{He} + {}^{1}_{0}mbox{n} + 17,6 mbox{ MeV}.

Реакция дейтерий + гелий-3

Существенно сложнее, на пределе возможного, осуществить реакцию дейтерий + гелий-3

2H + 3He = 4He + p при энергетическом выходе 18,4 МэВ.

Условия её достижения значительно сложнее. Гелий-3, кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах в настоящее время не производится. Однако может быть получен из трития, получаемого в свою очередь на атомных электростанциях; или добыт на Луне.

Сложность проведения термоядерной реакции можно характеризовать тройным произведением nTτ (плотность на температуру на время удержания). По этому параметру реакция D-3He примерно в 100 раз сложнее, чем D-T.

Реакция между ядрами дейтерия (D-D, монотопливо)

Также возможны реакции между ядрами дейтерия, они идут немного труднее реакции с участием гелия-3:

mathrm{D} + mathrm{D} rightarrow mathrm{p} + mathrm{T} + 4{,}032 ; mathrm{MeV}.
mathrm{D} + mathrm{D} rightarrow mathrm{n} + {}^3!,mathrm{He} + 3{,}268 ; mathrm{MeV}.

В дополнение к основной реакции в ДД-плазме также происходят:

mathrm{p} + mathrm{D} rightarrow {}^3!,mathrm{He} + gamma + 5{,}4 ; mathrm{MeV}.
mathrm{p} + mathrm{T} rightarrow {}^4!,mathrm{He} + gamma + 19{,}814 ; mathrm{MeV}.
mathrm{D} + mathrm{T} rightarrow mathrm{n} + {}^4!,mathrm{He} + 17{,}589 ; mathrm{MeV}.
mathrm{D} + ! ^3mathrm{He} rightarrow mathrm{p} + {}^4!,mathrm{He} + 18{,}353 ; mathrm{MeV}.
{}^3!,mathrm{He} + ! ^3mathrm{He} rightarrow 2 ,mathrm{p} + , {}^4!,mathrm{He} + 12{,}86 ; mathrm{MeV}.
mathrm{T} + mathrm{T} rightarrow 2 ,mathrm{n} + {}^4!,mathrm{He} + 11{,}332 ; mathrm{MeV}.

Эти реакции медленно протекают параллельно с реакцией дейтерий + гелий-3, а образовавшиеся в ходе них тритий и гелий-3 с большой вероятностью немедленно реагируют с дейтерием.

Другие типы реакций

Возможны и некоторые другие типы реакций. Выбор топлива зависит от множества факторов — его доступности и дешевизны, энергетического выхода, лёгкости достижения требующихся для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и т. д.

«Безнейтронные» реакции

Наиболее перспективны так называемые «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и порождает наведенную радиоактивность в конструкции реактора. Реакция дейтерий + гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода.

mathrm{D} + ! ^3mathrm{He} rightarrow mathrm{p} + {}^4!,mathrm{He} + 18{,}353 ; mathrm{MeV}.
mathrm{D} + ! ^6mathrm{Li} rightarrow 2 , {}^4!,mathrm{He} + 22{,}4 ; mathrm{MeV}.
mathrm{p} + ! ^6mathrm{Li} rightarrow {}^4!,mathrm{He} + {}^3!,mathrm{He} + 4{,}0 ; mathrm{MeV}.
{}^3!,mathrm{He} + ! ^6mathrm{Li} rightarrow mathrm{p} + 2 , {}^4!,mathrm{He} + 16{,}9 ; mathrm{MeV}.
{}^3!,mathrm{He} + ! ^3mathrm{He} rightarrow 2 ,mathrm{p} + , {}^4!,mathrm{He} + 12{,}86 ; mathrm{MeV}.
mathrm{p} + ! ^7mathrm{Li} rightarrow 2 , {}^4!,mathrm{He} + 17{,}2 ; mathrm{MeV}.
mathrm{p} + ! ^1! ^1mathrm{B} rightarrow 3 , {}^4!,mathrm{He} + 8{,}7 ; mathrm{MeV}.

Реакции на лёгком водороде

Стоит отметить, что протон-протонные реакции синтеза, идущие в звёздах, не рассматриваются как перспективное термоядерное горючее. Протон-протонные реакции идут через слабое взаимодействие с излучением нейтрино, и по этой причине требуют астрономических размеров реактора для сколь-либо заметного энерговыделения.

p + p → ²D + e+ + νe + 0.4 Мэв

Условия

Управляемый термоядерный синтез возможен при одновременном выполнении двух условий:

  • Скорость соударения ядер соответствует температуре плазмы:
T > 108 K (для реакции D-T).
  • Соблюдение критерия Лоусона:
nτ > 1014 см−3·с (для реакции D-T),

где n — плотность высокотемпературной плазмы, τ — время удержания плазмы в системе.

От значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.

В настоящее время (2012) управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии.

Термоядерная энергетика и гелий-3

Запасы гелия-3 на Земле составляют в атмосфере около 50 000 т[источник не указан 619 дней] и гораздо больше в литосфере, на Луне он находится в значительном количестве: до 10 млн тонн (по минимальным оценкам — 500 тысяч тонн[источник не указан 683 дня]). В то же время его можно легко получать и на Земле из широко распространённого в природе лития-6 на существующих ядерных реакторах деления.

Наиболее простым способом осуществления термоядерной реакции является синтез дейтерия и трития с выделением гелия-4 и «быстрого» нейтрона:

D + T → 4He (3,5 МэВ) + n (14,1 МэВ).

Однако при этом бо́льшая часть (более 80 %) выделяемой кинетической энергии приходится именно на нейтрон. В результате столкновений осколков с другими атомами эта энергия преобразуется в тепловую. Помимо этого, быстрые нейтроны создают значительное количество радиоактивных отходов. В отличие от этого, синтез дейтерия и гелия-3 почти не производит радиоактивных продуктов:

D + 3He → 4He (3,7 МэВ) + p (14,7 МэВ), где p — протон.

Это позволяет использовать более простые и эффективные системы преобразования кинетической реакции синтеза, такие как магнитогидродинамический генератор.

Конструкции реакторов

Существуют две принципиальные схемы осуществления управляемого термоядерного синтеза, разработки которых продолжаются в настоящее время (2012):

  1. Квазистационарные системы (tau ge 1 c, n ge 10^{14} cm^{-3} ,!) в которых нагрев и удержание плазмы осуществляется магнитным полем при относительно низком давлении и высокой температуре. Для этого применяются реакторы в виде токамаков, стеллараторов (торсатронов) и зеркальных ловушек, которые отличаются конфигурацией магнитного поля. К квазистационарным реакторам относится реактор ITER, имеющий конфигурацию токамака.
  2. Импульсные системы (tau sim 10^{-8} c, n ge 10^{22} cm^{-3} ,!). В таких системах управляемый термоядерный синтез осуществляется путем кратковременного нагрева небольших мишеней, содержащих дейтерий и тритий, сверхмощными лазерными лучами или пучками высокоэнергичных частиц (ионов, электронов). Такое облучение вызывает последовательность термоядерных микровзрывов.

Первый вид термоядерных реакторов намного лучше разработан и изучен, чем второй.

В ядерной физике, при исследованиях термоядерного синтеза, для удержания плазмы в некотором объёме используется магнитная ловушка — устройство, удерживающее плазму от контакта с элементами термоядерного реактора. Магнитная ловушка используется в первую очередь как теплоизолятор. Принцип удержания плазмы основан на взаимодействии заряженных частиц с магнитным полем, а именно на спиральном вращении заряженных частиц вдоль силовых линий магнитного поля. Однако, намагниченная плазма очень нестабильна. В результате столкновений заряженные частицы стремятся покинуть магнитное поле. Поэтому для создания эффективной магнитной ловушки используются мощные электромагниты, потребляющее огромное количество энергии или применяющие сверхпроводники.[источник не указан 752 дня]

Радиационная безопасность

Термоядерный реактор намного безопаснее ядерного реактора в радиационном отношении. Прежде всего, количество находящихся в нем радиоактивных веществ сравнительно невелико. Энергия, которая может выделиться в результате какой-либо аварии, тоже мала и не может привести к разрушению реактора. При этом в конструкции реактора есть несколько естественных барьеров, препятствующих распространению радиоактивных веществ. Например, вакуумная камера и оболочка криостата должны быть герметичными, иначе реактор просто не сможет работать. Тем не менее, при проектирования ITER большое внимание уделялось радиационной безопасности как при нормальной эксплуатации, так и во время возможных аварий.

Есть несколько источников возможного радиоактивного загрязнения:

  • радиоактивный изотоп водорода — тритий;
  • наведённая радиоактивность в материалах установки в результате облучения нейтронами;
  • радиоактивная пыль, образующаяся в результате воздействия плазмы на первую стенку;
  • радиоактивные продукты коррозии, которые могут образовываться в системе охлаждения.

Для того, чтобы предотвратить распространение трития и пыли, если они выйдут за пределы вакуумной камеры и криостата, необходима специальная система вентиляции которая должна поддерживать в здании реактора пониженное давление. Поэтому из здания не будет утечек воздуха, кроме как через фильтры вентиляции.

При строительстве реактора, ITER например, где только возможно, будут применяться материалы, уже испытанные в ядерной энергетике. Благодаря этому, наведённая радиоактивность будет сравнительно небольшой. В частности, даже в случае отказа систем охлаждения, естественной конвекции будет достаточно для охлаждения вакуумной камеры и других элементов конструкции.

Оценки показывают, что даже в случае аварии радиоактивные выбросы не будут представлять опасности для населения и не вызовут необходимости эвакуации.

Цикл топлива

Реакторы первого поколения будут, вероятнее всего, работать на смеси дейтерия и трития. Нейтроны, которые появляются в процессе реакции, поглотятся защитой реактора, а выделяющееся тепло будет использоваться для нагревания теплоносителя в теплообменнике, и эта энергия, в свою очередь, будет использоваться для вращения генератора.

{}^6_3mathrm{Li} + ^1_0mathrm{n} rightarrow ^3_1mathrm{T} + ^4_2mathrm{He}.
{}^7_3mathrm{Li} + ^1_0mathrm{n} rightarrow ^3_1mathrm{T} + ^4_2mathrm{He} + ^1_0mathrm{n}.

Реакция с 6Li является экзотермической, обеспечивая получение небольшой энергии для реактора. Реакция с 7Li является эндотермической — но не потребляет нейтронов[4]. По крайней мере, некоторые реакции 7Li необходимы для замены нейтронов, потерянных в реакции с другими элементами. Большинство конструкций реактора используют естественные смеси изотопов лития.

Это топливо имеет ряд недостатков:

  • Реакция продуцирует значительное количество нейтронов, которые активируют (радиоактивно заражают) реактор и теплообменник. Нейтронное облучение во время D-T реакции настолько велико, что после первой серии тестов на JET, наибольшем реакторе на сегодняшний день на таком топливе, реактор стал настолько радиоактивным, что для завершения годового цикла тестов пришлось разработать роботизированную систему дистанционного обслуживания.[источник не указан 1095 дней]
  • Требуются мероприятия для защиты от возможного истока радиоактивного трития.
  • Только около 20 % энергии синтеза выделяется в форме заряженных частиц (остальное — нейтроны), что ограничивает возможность прямого превращения энергии синтеза в электроэнергию[5].
  • Использование D-T реакции зависит от имеющихся запасов лития, которые значительно меньше чем запасы дейтерия.

Существуют, в теории, альтернативные виды топлива, которые лишены указанных недостатков. Но их использованию препятствует фундаментальное физическое ограничение. Чтобы получить достаточное количество энергии из реакции синтеза, необходимо удерживать достаточно плотную плазму при температуре синтеза (108 K) на протяжении определенного времени. Этот фундаментальный аспект синтеза описывается произведением плотности плазмы n на время содержания нагретой плазмы τ, что требуется для достижения точки равновесия. Произведение nτ зависит от типа горючего и является функцией температуры плазмы. Из всех видов горючего дейтерий-тритиевая смесь требует самого низкого значения nτ, по меньшей мере на порядок, и самую низкую температуру реакции, по меньшей мере в 5 раз. Таким образом, D-T реакция является необходимым первым шагом, однако использование других видов горючего остается важной целью исследований.[источник не указан 752 дня]

Реакция синтеза в качестве промышленного источника электроэнергии

Энергия синтеза рассматривается многими исследователями (в частности, Кристофером Ллуэллин-Смитом) в качестве «естественного» источника энергии в долгосрочной перспективе. Сторонники коммерческого использования термоядерных реакторов для производства электроэнергии приводят следующие аргументы в их пользу:

  • Практически неисчерпаемые запасы топлива (водород).
  • Топливо можно добывать из морской воды на любом побережье мира, что делает невозможным монополизацию топливных ресурсов одной или группой стран.
  • Минимальная вероятность аварийного взрывного увеличения мощности реакции в термоядерном реакторе.
  • Отсутствие продуктов сгорания.
  • Нет необходимости использовать материалы, которые могут быть использованы для производства ядерных взрывных устройств, таким образом исключается возможность саботажа и терроризма.[источник не указан 1095 дней]
  • По сравнению с ядерными реакторами вырабатываются радиоактивные отходы с коротким периодом полураспада[6].
  • С помощью вычислений можно провести оценку, что наперсток, наполненный дейтерием, производит энергию, эквивалентную 20 тоннам угля. Озеро среднего размера в состоянии обеспечить любую страну энергией на сотни лет. Однако следует заметить, что существующие исследовательские реакторы спроектированы для достижения прямой дейтериево-тритиевой (DT) реакции, цикл топлива которой требует использования лития для производства трития, тогда как заявления о неисчерпаемости энергии касаются использования дейтериево-дейтериевой (DD) реакции во втором поколении реакторов.[источник не указан 1095 дней]
  • Так же, как и реакция распада, реакция синтеза не производит углекислотных выбросов в атмосферу, являющихся, по мнению многих специалистов, главным вкладом в глобальное потепление. Это является значительным преимуществом, поскольку использование ископаемых топлив для производства электроэнергии имеет своим следствием то, что, например, в США производится 29 кг CO2 (один из основных газов, которые могут считаться причиной глобального потепления) на жителя США в день.[источник не указан 1095 дней]
  • В отличие от неядерных электростанций на возобновляемых источниках энергии, термоядерные реакторы можно устанавливать где угодно (в том числе на транспорте: суда, самолёты и даже автомобили), в каких угодно количествах и без серьёзного вреда для окружающей среды (затопления водохранилищ, поражение птиц лопастями ветровых электростанций…).[источник не указан 1095 дней]
  • В космосе же они вовсе незаменимы, так как дальше пояса астероидов и, тем более, на ночных сторонах планет солнечные батареи неэффективны, химические топлива неприменимы вовсе, традиционное ядерное топливо есть далеко не везде, а вот водород в изобилии.[источник не указан 1095 дней]

Стоимость электроэнергии в сравнении с традиционными источниками

Критики указывают, что вопрос о рентабельности ядерного синтеза в производстве электроэнергии в общих целях остается открытым. В том же исследовании, проведённом по заказу Бюро науки и техники британского парламента, указывается, что себестоимость производства электроэнергии с использованием термоядерного реактора будет, вероятно, в верхней части спектра стоимости традиционных источников энергии. Много будет зависеть от доступной в будущем технологии, структуры и регулирования рынка. Стоимость электроэнергии напрямую зависит от эффективности использования, длительности эксплуатации и стоимости утилизации реактора[7].

Отдельно стоит вопрос стоимости исследований. Страны Евросоюза тратят около 200 млн евро ежегодно на исследования, и прогнозируется, что нужно еще несколько десятилетий, пока промышленное использование ядерного синтеза станет возможным. Сторонники альтернативных неядерных источников электроэнергии считают, что было бы целесообразнее направить эти средства на внедрение возобновляемых источников электроэнергии.[источник не указан 1095 дней]

Доступность коммерческой энергии ядерного синтеза

Несмотря на распространённый оптимизм (с начала первых исследований 1950-х годов), существенные препятствия между сегодняшним пониманием процессов ядерного синтеза, технологическими возможностями и практическим использованием ядерного синтеза до сих пор не преодолены. Неясным является даже то, насколько может быть рентабельным производство электроэнергии с использованием термоядерного синтеза. Хотя наблюдается постоянный прогресс в исследованиях, исследователи то и дело сталкиваются с новыми проблемами. Например, проблемой является разработка материала, способного выдержать нейтронную бомбардировку, которая, как оценивается, должна быть в 100 раз интенсивнее, чем в традиционных ядерных реакторах. Тяжесть проблемы усугубляется тем, что сечение взаимодействия нейтронов с ядрами с ростом энергии перестаёт зависеть от числа протонов и нейтронов и стремится к сечению атомного ядра — и для нейтронов энергии 14 МэВ просто не существует изотопа с достаточно малым сечением взаимодействия. Это обуславливает необходимость очень частой замены конструкций D-T и D-D реактора и снижает его рентабельность настолько, что стоимость конструкций реакторов из современных материалов для этих двух типов оказывается больше стоимости произведённой на них энергии. Решения возможны трёх типов[источник не указан 752 дня]:

  1. Отказ от чистого ядерного синтеза и употребление его в качестве источника нейтронов для деления урана или тория.
  2. Отказ от D-T и D-D синтеза в пользу других реакций синтеза (например D-He).
  3. Резкое удешевление конструкционных материалов или разработка процессов их восстановления после облучения. Требуются также гигантские вложения в материаловедение, но перспективы неопределённые.

Побочные реакции D-D (3 %) при синтезе D-He осложняют изготовление рентабельных конструкций для реактора, но не невозможны на современном технологическом уровне.

Различают следующие фазы исследований:

1. Равновесие или режим «перевала» (Break-even): когда общая энергия, выделяемая в процессе синтеза, равна общей энергии, затраченной на запуск и поддержку реакции. Это соотношение помечают символом Q.

2. Пылающая плазма (Burning Plasma): промежуточный этап, на котором реакция будет поддерживаться главным образом альфа-частицами, которые продуцируются в процессе реакции, а не внешним подогревом. Q ≈ 5. До сих пор (2012) не достигнут.

3. Воспламенение (Ignition): стабильная самоподдерживающаяся реакция. Должна достигаться при больших значениях Q. До сих пор не достигнуто.

Следующим шагом в исследованиях должен стать Международный термоядерный экспериментальный реактор (International Thermonuclear Experimental Reactor, ITER). На этом реакторе планируется провести исследование поведения высокотемпературной плазмы (пылающая плазма с Q ~ 30) и конструктивных материалов для промышленного реактора.

Окончательной фазой исследований станет DEMO: прототип промышленного реактора, на котором будет достигнуто воспламенение, и продемонстрирована практическая пригодность новых материалов. Самые оптимистичные прогнозы завершения фазы DEMO: 30 лет. Учитывая ориентировочное время на построение и введение в эксплуатацию промышленного реактора, нас отделяет ~40 лет от промышленного использования термоядерной энергии.[источник не указан 1095 дней]

Существующие токамаки

Всего в мире было построено около 300 токамаков. Ниже перечислены наиболее крупные из них.

  • СССР и Россия
    • Т-3 — первый функциональный аппарат.
    • Т-4 — увеличенный вариант Т-3
    • Т-7 — уникальная установка, в которой впервые в мире реализована относительно крупная магнитная система со сверхпроводящим соленоидом на базе ниобата олова, охлаждаемого жидким гелием. Главная задача Т-7 была выполнена: подготовлена перспектива для следующего поколения сверхпроводящих соленоидов термоядерной энергетики.
    • Т-10 и PLT — следующий шаг в мировых термоядерных исследованиях, они почти одинакового размера, равной мощности, с одинаковым фактором удержания. И полученные результаты идентичны: на обоих реакторах достигнута заветная температура термоядерного синтеза, а отставание по критерию Лоусона — всего в двести раз.
    • Т-15 — реактор сегодняшнего дня со сверхпроводящим соленоидом, дающим поле напряжённостью 3,6 Тл.
  • Ливия
    • ТМ-4А
  • Европа и Великобритания
    • Joint European Torus[8] — самый крупный в мире действующий токамак, созданный организацией Евратом в Великобритании. В нём использован комбинированный нагрев: 20 МВт — нейтральная инжекция, 32 МВт — ионно-циклотронный резонанс. В итоге, критерий Лоусона лишь в 4—5 раз ниже уровня зажигания.
    • Tore Supra[9] — токамак со сверхпроводящими катушками, один из крупнейших в мире. Находится в исследовательском центре Кадараш (Франция).
  • США
    • Test Fusion Tokamak Reactor (TFTR)[10] — крупнейший токамак США (в Принстонском университете) с дополнительным нагревом быстрыми нейтральными частицами. Достигнут высокий результат: критерий Лоусона при истинно термоядерной температуре всего в 5,5 раза ниже порога зажигания. Закрыт в 1997 г.
    • National Spherical Torus Experiment (NSTX)[11]  — сферический токамак (сферомак) работающий в настоящее время в Принстонском университете. Первая плазма в реакторе получена в 1999 году, через два года после закрытия TFTR.
    • Alcator C-Mod[12] — один из трех крупнейших токамаков в США (два других — NSTX и DIII-D), Alcator C-Mod характеризуется самым высоким магнитным полем и давлением плазмы в мире. Работает с 1993 года.
    • DIII-D[13] — токамак США, созданный и работающий в компании General Atomic в Сан-Диего.
  • Япония
    • JT-60[14] — крупнейший японский токамак, работающий в Японском институте исследований атомной энергии (англ.) с 1985 года.
  • Китай
    • EAST (Experimental Advanced Superconducting Tokamak) — Экспериментальный усовершенствованный сверхпроводимый токамак. Является глубокой модернизацией Российского токамака HT-7. Работает в рамках международного проекта ITER. Первые успешные испытания были проведены летом 2006 года. Принадлежит Институту физики плазмы Китайской академии наук. Расположен в городе Хэфэй, провинции Аньхой. На этом реакторе в 2007 году был проведён[15] первый в мире «безубыточный» термоядерный синтез, с точки зрения соотношения затраченной/полученной энергии. На данный момент это соотношение составляет 1:1,25. В ближайшем будущем планируется довести это соотношение до 1:50.[16]

Ссылки

  • Е.П. Велихов; С.В. Мирнов Управляемый термоядерный синтез выходит на финишную прямую (PDF). Троицкий институт инновационных и термоядерных исследований. Российский научный центр «Курчатовский институт».. ac.ru. — Популярное изложение проблемы.. Архивировано из первоисточника 5 февраля 2012. Проверено 8 августа 2007.
  • К. Ллуэллин-Смит. На пути к термоядерной энергетике. Материалы лекции, прочитанной 17 мая 2009 года в ФИАНе.
  • Грандиозный эксперимент по термоядерному синтезу проведут в США.

Интересные факты

  • В фильме «Человек-паук 2» в результате неудачного проведения реакции термоядерного синтеза Отто Октавиус попадает под влияние своих щупалец, в результате чего становится зловещим Доктором Осьминогом.[17]

См. также

  • Инерциальный управляемый термоядерный синтез
  • Мюонный катализ
  • Холодный термоядерный синтез
  • Сонолюминесценция
  • Ультразвуковой термояд
  • Нуклеосинтез
  • Ядерные реакции
  • Термоядерный ракетный двигатель
  • Адронный коллайдер
  • Список новых перспективных технологий

Источник: dic.academic.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.