Температура большого взрыва


Происхождение Вселенной остается одной из главных загадок науки. С начала наблюдений за звездным небом человечество пыталось понять, как возникло все, что его окружает, и что там за пределами нашего мира. С развитием технологий ему покорились многие природные явления и даже просторы космоса, но никто так до сих пор и не установил, как зародилась Вселенная. Однако, астрономы выдвинули множество теорий на этот счет, некоторые из них вполне логичны и правдоподобны.

Теория большого взрыва

Основной теорией возникновения Вселенной в ее нынешнем состоянии является теория большого взрыва. Впервые этот термин был применен британским астрономом Ф. Хойлом в 1949 году. При этом сам ученый считал данное предположение о происхождении и эволюции Вселенной ошибочным.

Сами же идеи о расширении Вселенной и ее развитии в результате взрывного процесса возникли в начале 20 века. Способствовал этому Альберт Эйнштейн, опубликовавший свою теорию относительности. Нестационарное решение его гравитационного уравнения натолкнуло советского физика Фридмана на гипотезу о том, что Универсум – постоянно расширяющийся объект. По его версии, вначале она представляла собой очень плотное, однородное вещество. Оно в результате большого взрыва начало распространяться, образуя привычные нам элементы космоса – галактики, туманности, звезды, планеты и другие тела.


Теория происхождения Вселенной по Фридману неоднократно подвергалась дополнениям и улучшениям. В 1948 году астрофизик Георгий Гамов опубликовал работу, в которой описывал первичное вещество до Большого взрыва не только как очень плотное, но и как очень горячее. В нем постоянно происходили реакции термоядерного синтеза, в результате которых образовались ядра легких химических элементов. Выделяемое при этом электромагнитное излучение сохранилось до сих пор, но в остывающем виде. Теория была подтверждена почти через 20 лет после того, как ученым удалось открыть и измерить температуру космического фона. Изучение реликтового излучения также помогла установить возраст мироздания и распределение в нем вещества.

Современное представление о возникновении Вселенной

  • Теория Большого взрыва – описывает то, что стало пусковым механизмом расширения первичной материи.
  • Инфляционная теория – рассматривает причины расширения вещества.
  • Модель расширения Фридмана – описывает процессы распределения материи в пространстве.
  • Иерархическая теория – описывает возникновение всех структур космоса.

Хронология событий в теории Большого взрыва

Теория эволюции Вселенной подразумевает, что до Большого взрыва все мироздание находилось в принципиально другом состоянии. А после – проходило стадии развития, благодаря которым заполнилось частицами, химическими элементами и другими структурами. Они же послужили строительным материалом для всех космических тел и объектов. Каждый эпоха развития имеет свою продолжительность от незначительных долей секунды до миллиардов лет. Попробуем изложить теорию происхождения Вселенной кратко и простым языком.

Эпоха сингулярности

Большому взрыву и происхождению Вселенной в современном ее виде предшествовала стадия космологической сингулярности. Это состояние Универсума, при котором вещество имеет почти бесконечные значения плотности и температуры, а само оно стремится к нулю.

Космологическая сингулярность – один из самых трудных вопросов современной науки. Невозможно точно установить, что именно было до Большого взрыва. Но бесконечная плотность раннего вселенского вещества не может сопровождаться его бесконечной температурой. Следовательно, сингулярная Вселенная противоречит современным законам физики.

По некоторым предположениям, эпохи сингулярности вообще не существовало. Еще по предположению группы ученых, в число которых входит С.Хокинг, все сущее могло возникнуть из абсолютного вакуума («ничего») из-за колебаний системы. По другой теории, Большой взрыв привел лишь к образованию Метагалактики, как «пузырька» в плотном веществе Универсума. Есть также гипотеза о том, что вселенные образуются из-за разрывов сингулярности в пределах черных дыр. Доподлинно же установить, что было до Большого взрыва, не представляется возможным.


Планковская эпоха

Итак, в первичном мироздании произошел катастрофический процесс, в результате которого вещество начало стремительно расширяться и охлаждаться. При чем для формирования всех структур космического пространства взрыв должен был произойти повсюду.  Это и является точкой отчета возникновения мироздания в его нынешнем виде.

В период от нуля до 10-43 секунд вещество Универсума имело физические параметры (температура, энергия, плотность) соответствующие постоянным Планка. В таких условиях планковской эпохи произошло рождение частиц.

Эпоха великого объединения

В период с 10-43 по 10-35 секунд после Большого взрыва в относительно устойчивой системе возникли силы гравитации. Они впоследствии способствовали возникновению звезд и планет. Первичная материя перестала быть однородно плотной. Но электромагнитное и ядерное взаимодействия в ней  были еще объединены, поэтому любые физико-химические параметры для этого вещества не имеют смысла.


Эпоха инфляции

При переходе в эту стадию эволюции Вселенная начала ускоренно расширяться. Это позволило перераспределиться высокоплотному изотропному первичному веществу. Эпоха заняла промежуток времени с 10-35 по 10-32 секунды от взрывного процесса.

Электрослабая эпоха

К этому моменту сильное ядерное взаимодействие, как и гравитация, отделено от первичной материи. Период с 10-32 по 10-12 секунд – момент рождения таких элементарных частиц, как хиггсовский бозон и W-, Z-частицы. Симметрия до вселенского вещества окончательно разрушена.

Кварковая эпоха

С 10-12 по 10-6 секунд все четыре фундаментальные взаимодействия начинают существовать отдельно. Все вещество Универсума представляет собой «кварковый суп» из безмассовых и бесструктурных фундаментальных частиц.

Андронная эпоха

Из фундаментальных частиц начали образовываться андроны – частицы с сильным ядерным взаимодействием. Именно из них образуются нуклоны, формирующее атомные ядра, протоны и нейтроны. Весь процесс андронизации занял порядка ста секунд после Большого взрыва.

Лептонная эпоха

Первые три минуты существования Универсума происходит формирование лептонов, в том числе и их подвида – нейтрино. Это еще одни фундаментальные структуры вселенского вещества, из которых в дальнейшем было построено все в мироздании.


Протонная эпоха

Более 300 тысяч лет ушло на первичный процесс нуклеосинтеза легких химических элементов  и перераспределения вещества Универсума. Оно стало доминировать над излучением, что замедлило расширение космического пространства. Конец данной стадии ознаменовался возможностью передвижения тепловых фотонов.

Темные века

Ни одной привычной нам космической структуры в первые 500 млн. лет после возникновения Вселенной не существовало. Она была заполнена водородно-гелиевой массой и реликтовым тепловым излучением, распространяющимся по всему ее пространству.

Реионизация

Постепенно облака водорода и гелия под воздействием гравитации начали сжиматься, в них стали зарождаться процессы термоядерного синтеза. Появились первые звезды. Они стали собираться в скопления, называемые галактиками. В центре формирующихся галактик возникал источник мощнейшего излучения и гравитационного притяжения – квазар. Этот процесс занял более 300 млн. лет.

Эра вещества

Молодые звезды формируют вокруг себя протопланетные диски, из которых впоследствии образовываются целые планетарные системы. В эту эру 4,6 млрд. лет назад возникла и Солнечная система со всеми окружающими ее планетами.  Вся же история Вселенной продолжается более 13,7 млрд.лет.

Будущее Вселенной

Теория возникновения Вселенной путем Большого взрыва официально признана в научном мире. Согласно ее основным утверждениям, космическое пространство все еще продолжает эволюционировать  и на смену одним структурам приходят абсолютно новые. Существуют две противоположные версии дальнейшего развития событий:


  • Большой разрыв. Если Универсум и дальше продолжит расширяться, то в дальнейшем гравитационное взаимодействие между его элементами начнет стремительно ослабевать. Произойдет распад галактик и их скоплений. После этого распадутся отдельные звездные системы, где гравитация звезды не в силах будет удержать планеты вокруг себя. Постепенно все элементы Вселенной разрушаться вновь до элементарных частиц, законы физики перестанут иметь смысл. Что произойдет дальше – предсказать невозможно.
  • Большое сжатие. В этом сценарии описывается предположение, что космическое пространство постепенно замедлит свое расширение и начнет обратно сжиматься. Все его элементы образуют единое мега скопление, в котором будет продолжаться процессы рождения, эволюции и смерти галактик. Однако, вещество будет сжиматься и далее, что приведет к образованию одной гигантской галактики. Космическое пространство вновь начнет нагреваться, реликтовое излучение разрушит планеты и звезды. Все структуры перейдут в состояние элементарных частиц. Вселенная приобретет свой первоначальный вид до Большого взрыва.

Любой из основных сценариев смерти Вселенной в нынешнем ее состоянии предполагает распад всех ее структур до фундаментальных частиц и прекращения любых сил взаимодействия. Так ли оно будет на самом деле, предсказать современной науке невозможно.

Основные теории происхождения Вселенной

Большой взрыв не единственное современное представление о происхождении и эволюции Вселенной. Научный мир знает множество теорий возникновения мира, основными из которых являются:

  • Теория струн. Ее основное утверждение заключается в том, что все существующее состоит из мельчающих энергетических нитей. Такие квантовые струны могут растягиваться, искривляться и располагаться в любых направлениях, что делает космическое пространство многомерным. И каждое из этих измерений имеет свою эволюционную стадийность.
  • Теория стационарной Вселенной. По этой версии, в расширяющемся пространстве космоса постоянно возникает новая материя, что делают всю систему стабильной. Идея была популярна в середине 20-го века, но после открытия и изучения реликтового излучения у нее практически не осталось сторонников.

Не исключено, что все предположения о возникновении мироздания, признанные сейчас в научном мире, не будут опровергнуты в будущем. И чем дальше и дольше человечество исследует космические просторы, тем больше новых ответов и вопросов оно находит.

Источник: spaceworlds.ru

Теория большого взрыва


Основной теорией возникновения Вселенной в ее нынешнем состоянии является теория большого взрыва. Впервые этот термин был применен британским астрономом Ф. Хойлом в 1949 году. При этом сам ученый считал данное предположение о происхождении и эволюции Вселенной ошибочным.

Сами же идеи о расширении Вселенной и ее развитии в результате взрывного процесса возникли в начале 20 века. Способствовал этому Альберт Эйнштейн, опубликовавший свою теорию относительности. Нестационарное решение его гравитационного уравнения натолкнуло советского физика Фридмана на гипотезу о том, что Универсум – постоянно расширяющийся объект. По его версии, вначале она представляла собой очень плотное, однородное вещество. Оно в результате большого взрыва начало распространяться, образуя привычные нам элементы космоса – галактики, туманности, звезды, планеты и другие тела.

Теория происхождения Вселенной по Фридману неоднократно подвергалась дополнениям и улучшениям. В 1948 году астрофизик Георгий Гамов опубликовал работу, в которой описывал первичное вещество до Большого взрыва не только как очень плотное, но и как очень горячее. В нем постоянно происходили реакции термоядерного синтеза, в результате которых образовались ядра легких химических элементов. Выделяемое при этом электромагнитное излучение сохранилось до сих пор, но в остывающем виде. Теория была подтверждена почти через 20 лет после того, как ученым удалось открыть и измерить температуру космического фона. Изучение реликтового излучения также помогла установить возраст мироздания и распределение в нем вещества.

Современное представление о возникновении Вселенной


  • Теория Большого взрыва – описывает то, что стало пусковым механизмом расширения первичной материи.
  • Инфляционная теория – рассматривает причины расширения вещества.
  • Модель расширения Фридмана – описывает процессы распределения материи в пространстве.
  • Иерархическая теория – описывает возникновение всех структур космоса.

Хронология событий в теории Большого взрыва

Теория эволюции Вселенной подразумевает, что до Большого взрыва все мироздание находилось в принципиально другом состоянии. А после – проходило стадии развития, благодаря которым заполнилось частицами, химическими элементами и другими структурами. Они же послужили строительным материалом для всех космических тел и объектов. Каждый эпоха развития имеет свою продолжительность от незначительных долей секунды до миллиардов лет. Попробуем изложить теорию происхождения Вселенной кратко и простым языком.

Эпоха сингулярности

Большому взрыву и происхождению Вселенной в современном ее виде предшествовала стадия космологической сингулярности. Это состояние Универсума, при котором вещество имеет почти бесконечные значения плотности и температуры, а само оно стремится к нулю.


Космологическая сингулярность – один из самых трудных вопросов современной науки. Невозможно точно установить, что именно было до Большого взрыва. Но бесконечная плотность раннего вселенского вещества не может сопровождаться его бесконечной температурой. Следовательно, сингулярная Вселенная противоречит современным законам физики.

По некоторым предположениям, эпохи сингулярности вообще не существовало. Еще по предположению группы ученых, в число которых входит С.Хокинг, все сущее могло возникнуть из абсолютного вакуума («ничего») из-за колебаний системы. По другой теории, Большой взрыв привел лишь к образованию Метагалактики, как «пузырька» в плотном веществе Универсума. Есть также гипотеза о том, что вселенные образуются из-за разрывов сингулярности в пределах черных дыр. Доподлинно же установить, что было до Большого взрыва, не представляется возможным.

Планковская эпоха

Итак, в первичном мироздании произошел катастрофический процесс, в результате которого вещество начало стремительно расширяться и охлаждаться. При чем для формирования всех структур космического пространства взрыв должен был произойти повсюду.  Это и является точкой отчета возникновения мироздания в его нынешнем виде.

В период от нуля до 10-43 секунд вещество Универсума имело физические параметры (температура, энергия, плотность) соответствующие постоянным Планка. В таких условиях планковской эпохи произошло рождение частиц.

Эпоха великого объединения

В период с 10-43 по 10-35 секунд после Большого взрыва в относительно устойчивой системе возникли силы гравитации. Они впоследствии способствовали возникновению звезд и планет. Первичная материя перестала быть однородно плотной. Но электромагнитное и ядерное взаимодействия в ней  были еще объединены, поэтому любые физико-химические параметры для этого вещества не имеют смысла.

Эпоха инфляции

При переходе в эту стадию эволюции Вселенная начала ускоренно расширяться. Это позволило перераспределиться высокоплотному изотропному первичному веществу. Эпоха заняла промежуток времени с 10-35 по 10-32 секунды от взрывного процесса.

Электрослабая эпоха

К этому моменту сильное ядерное взаимодействие, как и гравитация, отделено от первичной материи. Период с 10-32 по 10-12 секунд – момент рождения таких элементарных частиц, как хиггсовский бозон и W-, Z-частицы. Симметрия до вселенского вещества окончательно разрушена.

Кварковая эпоха

С 10-12 по 10-6 секунд все четыре фундаментальные взаимодействия начинают существовать отдельно. Все вещество Универсума представляет собой «кварковый суп» из безмассовых и бесструктурных фундаментальных частиц.

Андронная эпоха

Из фундаментальных частиц начали образовываться андроны – частицы с сильным ядерным взаимодействием. Именно из них образуются нуклоны, формирующее атомные ядра, протоны и нейтроны. Весь процесс андронизации занял порядка ста секунд после Большого взрыва.

Лептонная эпоха

Первые три минуты существования Универсума происходит формирование лептонов, в том числе и их подвида – нейтрино. Это еще одни фундаментальные структуры вселенского вещества, из которых в дальнейшем было построено все в мироздании.

Протонная эпоха

Более 300 тысяч лет ушло на первичный процесс нуклеосинтеза легких химических элементов  и перераспределения вещества Универсума. Оно стало доминировать над излучением, что замедлило расширение космического пространства. Конец данной стадии ознаменовался возможностью передвижения тепловых фотонов.

Темные века

Ни одной привычной нам космической структуры в первые 500 млн. лет после возникновения Вселенной не существовало. Она была заполнена водородно-гелиевой массой и реликтовым тепловым излучением, распространяющимся по всему ее пространству.

Реионизация

Постепенно облака водорода и гелия под воздействием гравитации начали сжиматься, в них стали зарождаться процессы термоядерного синтеза. Появились первые звезды. Они стали собираться в скопления, называемые галактиками. В центре формирующихся галактик возникал источник мощнейшего излучения и гравитационного притяжения – квазар. Этот процесс занял более 300 млн. лет.

Эра вещества

Молодые звезды формируют вокруг себя протопланетные диски, из которых впоследствии образовываются целые планетарные системы. В эту эру 4,6 млрд. лет назад возникла и Солнечная система со всеми окружающими ее планетами.  Вся же история Вселенной продолжается более 13,7 млрд.лет.

Будущее Вселенной

Теория возникновения Вселенной путем Большого взрыва официально признана в научном мире. Согласно ее основным утверждениям, космическое пространство все еще продолжает эволюционировать  и на смену одним структурам приходят абсолютно новые. Существуют две противоположные версии дальнейшего развития событий:

  • Большой разрыв. Если Универсум и дальше продолжит расширяться, то в дальнейшем гравитационное взаимодействие между его элементами начнет стремительно ослабевать. Произойдет распад галактик и их скоплений. После этого распадутся отдельные звездные системы, где гравитация звезды не в силах будет удержать планеты вокруг себя. Постепенно все элементы Вселенной разрушаться вновь до элементарных частиц, законы физики перестанут иметь смысл. Что произойдет дальше – предсказать невозможно.
  • Большое сжатие. В этом сценарии описывается предположение, что космическое пространство постепенно замедлит свое расширение и начнет обратно сжиматься. Все его элементы образуют единое мега скопление, в котором будет продолжаться процессы рождения, эволюции и смерти галактик. Однако, вещество будет сжиматься и далее, что приведет к образованию одной гигантской галактики. Космическое пространство вновь начнет нагреваться, реликтовое излучение разрушит планеты и звезды. Все структуры перейдут в состояние элементарных частиц. Вселенная приобретет свой первоначальный вид до Большого взрыва.

Любой из основных сценариев смерти Вселенной в нынешнем ее состоянии предполагает распад всех ее структур до фундаментальных частиц и прекращения любых сил взаимодействия. Так ли оно будет на самом деле, предсказать современной науке невозможно.

Основные теории происхождения Вселенной

Большой взрыв не единственное современное представление о происхождении и эволюции Вселенной. Научный мир знает множество теорий возникновения мира, основными из которых являются:

  • Теория струн. Ее основное утверждение заключается в том, что все существующее состоит из мельчающих энергетических нитей. Такие квантовые струны могут растягиваться, искривляться и располагаться в любых направлениях, что делает космическое пространство многомерным. И каждое из этих измерений имеет свою эволюционную стадийность.
  • Теория стационарной Вселенной. По этой версии, в расширяющемся пространстве космоса постоянно возникает новая материя, что делают всю систему стабильной. Идея была популярна в середине 20-го века, но после открытия и изучения реликтового излучения у нее практически не осталось сторонников.

Не исключено, что все предположения о возникновении мироздания, признанные сейчас в научном мире, не будут опровергнуты в будущем. И чем дальше и дольше человечество исследует космические просторы, тем больше новых ответов и вопросов оно находит.

Источник: spaceworlds.ru

Планковская эпоха

Планковская эпоха считается самым ранним моментом Большого взрыва. Продолжительность этой эпохи не очень велика, она определяется временем от 0 до 10-43 секунд. Параметры вещества этой эпохи тоже имеют планковские значения: температура составляла 1032 К, а плотность – 1093 г/см3. Поскольку Вселенная в это время имела чрезвычайно малые размеры, миром правили квантовые эффекты. Все существующие силы были объединены, а гравитационное воздействие по величине было сравнимо с остальными фундаментальными силами. Невероятно высокие параметры температуры и плотности вещества делали его состояние неустойчивым. Произошло нарушение симметрии, и стали проявляться фундаментальные силы — гравитация отделилась от других взаимодействий. Это стало окончанием планковской эпохи.

Эпоха великого объединения

Эта эпоха (ЭВО) ещё носит название эпохи суперсимметрии. То есть, это такое состояние, когда бозонные и фермионные поля могут переходить друг в друга. Или же, что понятнее, вещество может становиться взаимодействием (излучением), и наоборот. Считается, что ЭВО стартовала во временной момент порядка 10-43 секунд и закончилась около 10-34 секунды. Температура этой эпохи составила 1027 К, а плотность – 1074 г/см3С начала ЭВО происходит ослабление квантовых эффектов, и начинают действовать законы теории относительности.

Гравитация уже отделилась, но оставшиеся три взаимодействия (сильное, слабое и электромагнитное) пока объединены в одно. В продолжение данной эпохи были абсолютно не актуальны некоторые физические характеристики – вес, масса, цвет. В конце ЭВО происходит отделение сильного взаимодействия от остальных, и в создающихся условиях оно приводит к новому этапу – Инфляционному расширению Вселенной. Очень трудно, а, скорее, абсолютно невозможно представить временные промежутки от 10-43 до 10-34 секунд. Но правильно ли мы рассуждаем, пытаясь измерить неизвестные события привычными величинами? А какими были физические законы до Большого взрыва, в момент его и по окончании самого процесса? Может быть, эти понятия из того же разряда, что и многомерность Вселенной, представить которую мы пока явно не в состоянии? Ответы на эти вопросы — дело ученых в будущем.

Инфляционная эпоха

При происшествии планковского времени после Большого взрыва началось Инфляционное расширение, предполагающее период его более быстрого (почти моментального) расширения, нежели предусмотрено стандартной моделью. Разработчиком теории стал А. Гут в 1981 году, но значительный вклад был привнесён астрофизиками Старобинским, Линде, Мухановым и др.

Концепция теории

Кратко сформулировать концепцию инфляции можно тремя базовыми положениями:

  1. Инфляция неизбежна. Долгие и разнообразные исследования в области теоретической физики вселяют уверенность, что ранняя Вселенная обладала полями, которые отвечали за инфляционное расширение. Многочисленные варианты теории, объединяющей все физические взаимодействия, в частности, теория суперструн, подразумевают наличие больших количеств таких полей. Хотя бы одно поле имело условия для наступления инфляции.
  2. Однородная и плоскостная Вселенная объясняется теорией инфляции.Она упразднила вопросы о геометрических параметрах и степени однородности Вселенной, которыми она обладала сразу после Большого взрыва. Инфляционное расширение сглаживает все начальные условия.
  3. Теория инфляции неплохо может предсказывать наблюдения. Наблюдая космический микроволновый фон реликтового излучения и характер распределения галактик, подтверждается, что в ранней Вселенной вариации энергии в пространстве были масштабно-инвариантны.

Инфляция

Время, отведенное этой эпохе, составляют от 10-35 до 10-32 секунд. За это время экспоненциально увеличивается радиус Вселенной – на много порядков. Начинает создаваться крупномасштабная структура Вселенной. Происходит вторичный нагрев и начинается бариогенезис – объединение кварков и глюонов в адроны и барионы. Размеры Вселенной во время начала инфляционного процесса составляли 10-33 см. А, как нам известно, величина протона – 10-13 см.Что интересно, Луна соотносится с Вселенной нынешней примерно в той же пропорции. За величину, исчисляемую ничтожными долями секунды, размеры Вселенной увеличились в 1025 раз.  Причиной столь быстрого считается скалярное поле, именуемое инфлантонным. Это поле имеет напряжённость в каждой точке пространства-времени, а его потенциальная энергия является причиной ускоренного расширения Вселенной.

Инфляция не может полностью сгладить первичные неоднородности, которые сохраняются за счёт квантовых эффектов. Из законов квантовой физики известно, что поле инфлантона не имеет всюду в пространстве одинаковую напряжённость. Наличие случайных флуктуаций поля способствует неравномерному окончанию стадии инфляционного расширения в разных частях Вселенной. Температуры в этих частях тоже различаются. Из этих неоднородностей впоследствии будут образованы звёзды и галактики. Если бы Вселенная была абсолютно однородна, в ней бы не смогли  образоваться никакие структуры.

Проблемы модели и их разрешение

  1. Проблема крупномасштабности и изотропности Вселенной может быть разрешена благодаря тому, что на стадии инфляции расширение происходило необычайно высокими темпами. Из этого следует, что всё пространство наблюдаемой Вселенной – результат одной причинно-связанной области эпохи, предшествующей инфляционной.
  2. Разрешение проблемы плоской Вселенной. Это возможно потому, что на стадии инфляции происходит увеличение радиуса кривизны пространства. Эта величина такова, что позволяет современным параметрам плотности иметь значение, близкое к критическому.
  3. Инфляционное расширение ведёт к возникновению колебаний плотности с определённой амплитудой и формой спектра. Это даёт возможность развития этих колебаний (флуктуаций) в нынешнюю структуру Вселенной, сохраняя крупномасштабную однородность и изотропность. Это разрешение проблемы крупномасштабной структуры Вселенной.

 Например, модель базируется на теории единого поля, которая пока является просто гипотезой. Её невозможно проверить экспериментально в лабораторных условиях. Ещё один недостаток модели – непонятность, откуда взялась перегретая и расширяющаяся материя. Здесь рассматриваются три возможности:

  1. Стандартная теория Большого взрыва предполагает начало инфляции на самой ранней стадии эволюции Вселенной. Но тогда не разрешается проблема сингулярности.
  2. Вторая возможность – возникновение Вселенной из хаоса. Разные участки её имели различную температуру, поэтому в одних местах происходило сжатие, а в других – расширение. Инфляция должна была возникнуть в области Вселенной, которая была перегрета и расширялась. Но не ясно, откуда взялся первичный хаос.
  3. Третий вариант – квантово-механический путь, посредством которого возник сгусток перегретой и расширяющейся материи. Фактически, Вселенная возникла из ничего.

Противники инфляционной модели

Инфляционная модель Вселенной устраивает не всех. Знаменитый английский учёный Р. Пенроуз – один из основных её противников. Он считает, что те решения, что предлагаются данной моделью, схожи с процессом заметания мусора под ковёр. Сложности, возникающие в отсутствии некоторых фундаментальных обоснований, носят название проблем начальных значений. Например, на стадии, предшествующей инфляции, возмущения плотности должны иметь определённые, очень малые значения. Именно этот фактор делает реальной наблюдаемую степень однородности, но вот инфляционная модель этого никак не объясняет. Пространственная кривизна при инфляции уменьшается значительно, но и до инфляционного периода она вполне могла иметь такие большие значения, чтобы быть заметной в современной фазе развития Вселенной. И этому объяснений тоже нет. Вот лекция Пенроуза где он детально обо всем рассказывает:

Образование нашего мира после инфляции

Большой взрыв включил гигантский ускоритель частиц, и Вселенная стала стремительно расширяться и эволюционировать. Процессы рождения и гибели частиц менялись стремительно и непрестанно. Это предопределило всю дальнейшую эволюцию Вселенной и тот облик её, который нам знаком. Расширение Вселенной представляет собой процесс, в ходе которого при непрерывно возрастающем объёме количество элементарных частиц остаётся прежним.

В первый момент Большого взрыва всё вещество представляло собой раскалённую, очень насыщенную смесь различных частиц, античастиц и гамма-фотонов высоких энергий. Частицы, сталкиваясь, взаимоуничтожались и рождались вновь. Мы уже рассматривали и инфляционную модель расширения Вселенной, теперь посмотрим как она эволюционировала после неё:

Рождение галактик

Иерархическая теория

Окончание Тёмных Веков стало началом образования галактик. Современное видение этого процесса подразумевает объединение этих объектов из небольших образований. Эта теория названа иерархической. Из положений этой теории следует, что гравитационное объединение стало собирать звёзды в скопления, а потом и в галактики. Однако не доказано, что процесс протекал именно так. Новейшие телескопы могут «увидеть» объекты, которые существовали уже через 400000 лет после свершения Большого взрыва. Значит, в этот период галактики были уже сформировавшимися.

Инфляционная теория

Этот вариант базируется на особенностях квантовых флуктуаций, непрерывно происходящих в вакууме. В ходе инфляционного расширения тоже имели место эти флуктуации. Расширение Вселенной происходило со сверхсветовыми скоростями, поэтому расширялись и флуктуации, а параметры их могли превышать начальные в (1010)12 раз. Из-за этих флуктуации Вселенная стала  неоднородной, и за 400000 лет под действием гравитационного сжатия из этих неоднородностей получились газовые туманности, позднее ставшие галактиками. Согласно ей, сначала образовывались крупные галактики, а потом уже более мелкие.

Рождение звёзд

Процесс массового формирования звёзд из межзвёздного газа получил название звёздообразования. Обычно для протекания этого процесса достаточно области, имеющей размеры не более 100 пк. Но бывают и сверхассоциации, которые можно сопоставить с размерами галактики. И наш Млечный Путь, и другие галактики имеют объекты, находящиеся на стадии звёздообразования. Процесс образования и эволюции звёзд проходит в несколько этапов:

  • Формируются большие газовые комплексы (масса – от  107 солнечных);
  • В комплексах появляются молекулярные облака;
  • Происходит гравитационное сжатие облаков до образования звезды;
  • Непосредственно жизнь звезды, под действием термоядерной реакции в недрах звёзд образуются новые элементы;
  • Вспышки новых и сверхновых за счет выгорания топлива, или образование звёзд-карликов;

Жизнь самых массивных звёзд не очень долгая – миллионы лет, а сам факт их существования подтверждает, что процессы звёздообразования происходят и теперь. Молодые звёзды чаще всего существуют в виде рассеянных скоплений и звёздных ассоциаций, составляющие десятки и сотни объектов. В созвездии Орион можно наблюдать действующий процесс звёздообразования из гигантского газового комплекса.

Рождение планет

Пока не совсем ясно, какие процессы формировали планеты и планетные системы. Но по всем имеющимся данным определённо можно сказать, что:

  • Планеты образовываются ещё до того, как рассеялся протопланетный диск звезды;
  • Большое значение имеет аккреция (вещество падает на поверхность звезды из окружающего пространства);
  • Набирают массу рождающиеся планеты за счёт планетезималей (постепенно приращивая массу за счет мелких частиц).

Формирование планет заканчивается, когда молодая звезда включает свой термоядерный реактор. В результате ядерных реакций создаётся солнечный ветер, который своим давлением рассеивает протопланетный диск. Создание планет из протопланетного диска может происходить по двум основным сценариям.

  1. Аккреционный. Из пыли образуются планетезимали. Некоторые из них становятся доминирующими, и именно они и станут протопланетами. Если протопланета окружена большим количеством газа, то может получиться планета-гигант, которая будет наращивать массу за счёт аккреции.
  2. Гравитационный коллапс. Протопланетный диск является объектом самогравитирующим, поэтому он подвержен нестабильностям. Из таких нестабильностей и образуются планеты, постепенно наращивая свою массу.

Солнечная система

4,6 млрд. лет назад начала формироваться наша планетная система из части молекулярного облака, в центре которого образовалось Солнце. По последним данным, в начале своей жизни наша планетная система имела несколько иной вид: внешние её границы были более компактны, пояс Койпера был придвинут намного ближе к Солнцу. Количество планет, находящихся во внутренней части и имевших размеры не меньше, чем у Меркурия, было гораздо большим.

Таким образом, после Большого взрыва и образовался наш мир, каким мы его видим и сейчас.

Источник: light-science.ru

Спиральная Галактика
Рис. 1.6. Спиральная Галактика.

Структура Млечного Пути
Рис. 1.7. Структура Галактики – Млечного Пути с её характерными размерами.

    Наша Галактика – Млечный Путь – принадлежит к так называемым Галактикам спирального типа (S – Галактики), представляющие собой вращающийся диск из водородного газа, пыли и звёзд с ярко выраженными спиральными рукавами (рис. 1.6). Это – сложный астрономический объект, состоящий из ядра, — утолщения в центральной части – балджа (от английского слова “buldge”), гало и собственно самого диска (рис. 1.7). В плотном ядре в центре диска находятся, в основном, старые звёзды и в нём нет газа и пыли. В сердце нашей Галактики находится чёрная дыра (О черных дырах прекрасно рассказано в книге А.М. Черепащука “Черные дыры”).
    Недавно орбитальная рентгеновская обсерватория Chandrа зафиксировала мощную рентгеновскую вспышку в центре Галактики, что позволило определить размер чёрной дыры – не более расстояния от Земли до Солнца.
    Диск Галактики заполнен газом, пылью и, в основном, молодыми звёздами. Поперечник диска имеет размер около 30000 парсек (Пк), балджа – 8000 Пк. В спиральных рукавах диска сосредоточены почти все звёзды и – большая часть газово-пылевой материи.
    Диск окружен сферическим гало. Его размер на порядок превышает поперечный размер диска. В гало находятся редкие звёзды и скопления звёзд – кластеры, насчитывающие многие сотни тысяч звёзд. Кроме этого, в Гало есть тёмная материя (“dark matter”), которая была идентифицирована по гравитационным эффектам. Тёмная материя увеличивает массу Галактики, по крайней мере, в несколько раз.
    Солнце – ближайшая к нам звезда – находится в спирали Ориона на расстоянии ~25000 Пк от центра нашей галактики. Солнце – относительно молодая звезда – ему 5 миллиардов лет. Млечный путь, по крайней мере, вдвое старше, чем Солнце: возраст звёздных кластеров может насчитывать 10 миллиардов лет.
    Общее число звёзд в диске Галактике – 1011 (сто миллиардов). Помимо звёзд Галактика включает и межзвёздную среду. Основным компонентом межзвёздной среды является межзвёздный газ, состоящий в основном (~90%) из водорода и межзвёздной пыли (~1%). В составе межзвёздной среды магнитные поля, электромагнитные излучения. Галактика вращается дифференциально: на периферии скорость её вращения меньше, чем в центральных областях. Период обращения нашей Солнечной системы вокруг центра Галактики составляет приблизительно 200 миллионов лет. Запомним эту цифру. Мы ещё к ней   вернемся.
    Средняя плотность межзвёздного вещества в диске оценивается как 10-24 г/см3 (грубо – 1 атом водорода на см3). Существуют большие отклонения от этой величины: это – плотные облака, протяжённостью до десятков парсек с плотностями от 100 до 1000 атомов/см3.
    Вещество, находящееся в Галактике в атомарном состоянии под действием ультрафиолетового излучения звёзд ионизируется (нейтральные атомы “теряют” свои электронные оболочки). Так, например, до 90% водорода составляют его ионы – протоны.
    Масса всей Вселенной, а это – оптически яркие звёзды, межзвёздная пыль и газ, молекулярные облака, планеты, сосредоточена в протонах и нейтронах (85% приходится на протоны, а 15% на нейтроны). Нейтроны, будучи нестабильной частицей, существуют только внутри ядер. Всё это составляет так называемую барионную материю.

Структура материи во Вселенной

Рис. 1.8. Структура материи во Вселенной. Вклад барионной материи – не более 5%. Остальное приходится на так называемую небарионную “тёмную материю” и “тёмную энергию”, природа которых – неизвестна.

   Обратимся теперь к проблеме о количественных соотношениях между различными формами материи в современной Вселенной. На рис. 1.8 дан ответ на этот вопрос. Ответ согласно уровню наших знаний на сегодня. Из диаграммы, приведённой на рис. 1.8, видно, что лишь несколько процентов (около 4 %) состава Вселенной относится к тому, из чего, как мы полагаем, образован наш мир. Это – барионная материя. Всё остальное, а это практически 96% — тёмная материя и тёмная энергия – пока малопонятные для нас материальные субстанции Вселенной. Мы знаем, что они определённо существуют. Но мы не знаем, что это такое. Мы только строим гипотезы и пытаемся поставить эксперименты, в надежде доказать их справедливость. Но факт остаётся – у нас пока нет аргументов в пользу окончательного выбора гипотезы, объясняющей состав тёмного вещества и тёмной энергии во Вселенной.
    Тёмная энергия, согласно современным воззрениям, — это как раз та сила, которая заставляет Вселенную расширяться. Если привычная нам гравитация заставляет тела притягиваться друг к другу, то тёмная энергия – скорее антигравитация, способствующая разлёту тел во Вселенной. По-видимому, сразу после Большого взрыва расширение Вселенной происходило с замедлением, но после этого “тёмная энергия” преодолела гравитацию и вновь началось ускорение – расширение Вселенной. Это — не гипотеза, a экспериментальный факт, обнаруженный из излучения красного смещения — уменьшения яркости далёких сверхновых звёзд: они ярче, чем им следовало бы быть из картины замедления расширения Вселенной. Эффект “красного смещения” – регистрируемое наблюдателем увеличение длины волны спектра наблюдаемого источника (именно поэтому звезды кажутся ярче) – одно из замечательных экспериментальных астрономических фактов. Космологическое “красное смещение” наблюдаемых галактик было предсказано А. Эйнштейном и является по сей день одним из убедительных доказательств расширяющейся Вселенной.
    Окунаясь в эпоху ранней космологии, можно вспомнить, что именно великий А. Эйнштейн, стараясь сохранить статичность Вселенной, ввёл, ставшей исторической, космологическую константу lambda— уравновешивающую силы притяжения небесных тел. Но вслед за открытием “красного смещения” он вычеркнул константу из своих уравнений. Видимо, А. Эйнштейн был неправ, отказавшись от неё: Ведь – это есть та тёмная энергия, которая интригует современных астрофизиков.
    Не ясно, повезло или нет человечеству, но оно живёт в период развития Вселенной, когда тёмная энергия преобладает, способствуя расширению. Но этот процесс, вероятно, не вечен и через временной отрезок, сопоставимый с возрастом Вселенной (10-20 миллиардов лет) история может повернуть вспять – наш мир начнёт сжиматься. Наступит или нет момент Большого Схлопывания – альтернативы Большого взрыва, безусловно, большой вопрос современной космологии.
    Учёные сумели доказать существование расширяющейся Вселенной – это красное смещение оптического излучения Галактики и реликтовое электромагнитное излучение – реликтовые фотоны, о которые пойдёт речь ниже. Возможно, учёным удастся в будущем установить и существование “предвестников” надвигающегося сжатия Вселенной.
   Другой экспериментальный факт – изучение отклонения света от далёких галактик в гравитационных полях Вселенной привёл астрофизиков к выводу о существовании скрытой – тёмной материи – где-то вблизи нас. Именно эта тёмная материя изменяет траектории световых лучей на большую величину, чем это следовало ожидать в присутствии лишь видимых близлежащих галактик. Учёные изучили распределение на звёздном небе более 50000 галактик в попытке построить пространственную модель структуры тёмной материи. Все полученные результаты неумолимо свидетельствуют в пользу её существования, причём Вселенная – это в основном и есть тёмная материя. Современные оценки говорят о величине около 80%. Здесь мы вновь повторим – нам неизвестно, из каких частиц состоит эта тёмная материи. Учёные лишь предполагают, что она состоит из двух частей: пока неизвестных каких-то экзотических массивных частиц и физического вакуума.
   Мы ещё вернёмся к этой проблеме, а пока обратимся вновь к привычной для нас формы вещества, соcтоящей из барионов (протонов и нейтронов) и электронов – “барионной материи”. О ней мы знаем гораздо больше. Более чем за столетний период истории развития физики – от открытия элементарных частиц и строения атома до результатов исследований в этой области, а также в астрофизике, наука получила в своё распоряжение множество новых результатов о строении привычного нам вещества.

Источник: nuclphys.sinp.msu.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.