Тау нейтрино


Изучение почти неуловимых частиц-нейтрино уже давно привлекает внимание ученых. Для их обнаружения глубоко под землей или подо льдом строятся гигантские сооружения — нейтринные обсерватории. Одна из них, нейтринная обсерватория Сэдбери (Sudbury Neutrino Observatory, SNO), предназначалась для исследования нейтрино, порожденных ядерными реакциями на Солнце. Ее детектирующий комплекс был размещен на глубине около 2 км в бывшей шахте в Сэдбери в канадской провинции Онтарио. Он представлял собой 1000-кубометровый акриловый шаровой контейнер диаметром 12 м, наполненный тяжелой водой D2O, содержащей раствор поваренной соли NaCl. Контейнер со всех сторон окружали 9522 фотоумножителя, смонтированные на 17-метровой решетчатой сфере из нержавеющей стали. Весь детектор был погружен в цилиндрическую емкость высотой 30 м, выдолбленную в скальной породе и наполненную обычной водой. Двухкилометровый слой скальных пород защищал детектор от космических лучей, которые могли бы «затмить» слабые сигналы от солнечных нейтрино.

Солнечные нейтрино


Установка SNO с равным успехом регистрировала как электронные нейтрино, так и мюонные и тау-нейтрино. Столь универсальная чувствительность стала возможной благодаря измерению параметров ядерных реакций двух различных типов. В реакции первого типа электронное нейтрино с очень малой, но все же ненулевой вероятностью взаимодействует с нейтроном в ядре дейтерия, превращая его в протон и электрон, из-за чего ядро распадается на электрон и два протона. Электрон уносит почти всю кинетическую энергию нейтрино и потому приобретает скорость, превышающую скорость света в тяжелой воде. В результате он порождает черенковское излучение, которое отлавливается фотоумножителями.


Второй тип реакций — когда нейтрино «разваливает» дейтрон на протон и нейтрон, причем на эту реакцию в равной степени способны нейтрино всех трех типов. Высвободившийся медленный (как говорят физики, тепловой) нейтрон поглощается либо другим дейтроном, который превращается в ядро трития, либо ядром хлора-35, которое дает начало хлору-36. В обоих случаях испускаются гамма-кванты, которые ионизируют соседние атомы. В результате ионизации опять-таки возникают быстродвижущиеся электроны, которые тоже регистрируются фотоумножителями по их черенковскому излучению. Поваренная соль была добавлена из-за того, что ядра хлора куда лучше поглощают медленные нейтроны по сравнению с ядрами дейтерия.


Падающие нейтрино могут вообще не заметить ядра дейтерия и вместо этого претерпеть рассеяние на электронных оболочках. В этой реакции тоже участвуют нейтрино всех типов, хотя электронные вступают в нее в шесть раз чаще прочих. Однако она не дает четко выраженного характерного спектра и к тому же производит в десять раз меньше наблюдаемых событий (примерно 3 в сутки вместо 30), поэтому в работе детектора практически не использовалась.

Тау нейтрино

Обсерватория Сэдбери приступила к работе в мае 1999 года. Сначала она работала на чистой тяжелой воде; хлористый натрий был добавлен через два с лишним года, после завершения предварительной серии измерений. Весной 2002 года экспериментаторы объявили, что плотность потока солнечных нейтрино, вычисленная на основе детектирования продуктов реакции второго типа, составила 5,09 млн на квадратный сантиметр и примерно втрое превысила ее значение (1,75 млн на 1 см2), подсчитанное на базе выхода реакции первого типа.


о значение с хорошей точностью совпало с результатами, предсказанными на основе стандартной модели солнечного термояда. Так было впервые непосредственно доказано, что на Солнце рождается теоретически вычисленное количество электронных нейтрино, треть из которых по пути к Земле превращаются в мюонные, а еще треть — в тау-нейтрино (подобные переходы называются нейтринными осцилляциями). Позднее для контроля полученных результатов был использован другой метод детектирования, который применялся вплоть до прекращения эксперимента в ноябре 2006 года. После этого нейтринный телескоп Сэдбери был модифицирован и сейчас используется в новых исследовательских проектах.

Проблемы реликтов

Если задача обнаружения солнечных нейтрино сложна, но осуществима, то обнаружение реликтовых нейтрино представляет собой настоящую проблему. Дело не в том, что реликтовых нейтрино мало, — их плотность практически совпадает с плотностью реликтовых фотонов, которые отлично ловятся радиотелескопами в микроволновом диапазоне. Беда в том, что кинетическая энергия таких нейтрино совершенно ничтожна. В момент их высвобождения она составляла около миллиона электронвольт, но с тех пор уменьшилась в 10 млрд раз! Вспомним, с каким трудом и с помощью каких дорогостоящих гигантских установок физики регистрируют нейтрино, рожденные в ядерных реакторах и в недрах Солнца, — а ведь их энергии измеряются многими килоэлектронвольтами.


 случайно почти все специалисты считают создание аппаратуры для детектирования реликтовых нейтрино делом очень далекого будущего. Профессор астрономии и космологии Виргинского университета Марк Виттл и космолог из Fermilab Скотт Доделсон в беседе с «ПМ», не сговариваясь, выразили уверенность, что такие нейтринные телескопы не появятся в нынешнем столетии.

Тем не менее в Массачусетском технологическом институте развернута исследовательская программа, цель которой заключается именно в регистрации реликтовых нейтрино. Об этом проекте в эксклюзивном интервью «ПМ» рассказал один из его главных участников, профессор Джозеф Формажио.

Хронология Вселенной Хронология Вселенной Одна секунда кажется маленьким сроком. Однако для Вселенной секунда, прошедшая с момента Большого взрыва, — это огромный срок, за который успело произойти множество событий.


 мере расширения и остывания Вселенной фундаментальные взаимодействия начинают разделяться. Сразу же после планковского момента (10^-43 с) отделяется гравитационное взаимодействие. Сильное, слабое и электромагнитное взаимодействия до момента 10^-36 с представляют собой единое (это эпоха Великого объединения взаимодействий). После этого отделяется сильное взаимодействие. И наконец, электрослабое взаимодействие разделяется на слабое и электромагнитное.

Реакция без порога

«Все современные методы детектирования нейтрино перестают работать, если кинетическая энергия этих частиц оказывается меньше определенного нижнего порога, — говорит профессор Формажио. — К примеру, в канадской подземной обсерватории Сэдбери солнечные нейтрино либо непосредственно ‘расколачивают’ ядра дейтерия на составляющие их нейтроны и протоны, либо заставляют внутриядерные нейтроны трансформироваться в протоны, взаимодействуя с входящими в их состав кварками. Энергетический порог этих реакций неизмеримо выше энергии реликтовых нейтрино. Однако есть реакция, свободная от такого ограничения, — бета-распад трития, наиболее тяжелого изотопа водорода. Ядро этого радиоактивного элемента самопроизвольно распадается на ядро гелия-3, электрон и электронное антинейтрино. Аналогично нейтрино может столкнуться с ядром трития и заставить его превратиться в электрон и легкий изотоп гелия. А поскольку ядра трития сами по себе нестабильны, для запуска этой реакции пригодны нейтрино любых сколь угодно малых энергий, в том числе и реликтовые, рассеянные по космическому пространству».


Но как же отличить распады, стимулированные ударами нейтрино, от намного чаще встречающихся спонтанных распадов этих же ядер? Оказывается, для решения этой проблемы можно с успехом использовать закон сохранения энергии. Поскольку при спонтанном распаде ядра трития антинейтрино уносит часть его исходной энергии, суммарная кинетическая энергия обеих заряженных конечных частиц, то есть электрона и ядра гелия-3, оказывается чуть-чуть меньшей, нежели при распаде ядра после захвата нейтрино. Если сравнить энергетические спектры конечных продуктов бета-распада ядер трития, среди них можно выделить именно те, что обусловлены захватом реликтовых нейтрино.

Тау нейтрино

Тритий получают в атомных реакторах, он чрезвычайно дорог, а его общие запасы исчисляются всего лишь десятками килограммов. Сколько же нужно этого изотопа для обнаружения реликтовых нейтрино? По словам Джозефа Формажио, расчеты показывают, что для вполне достаточной для целей космологии ежегодной регистрации десяти реликтовых нейтрино вполне хватит 100 г трития.


нако для анализа спектров распада необходимы приборы, обладающие разрешением порядка массы покоя нейтрино. Создание такой аппаратуры — исключительно сложная задача, так как, по последним данным, масса покоя нейтрино лежит в диапазоне от 0,05 до 2 эВ. «Наша группа как раз сейчас ведет разработки, результаты которых могут лечь в основу создания таких высокочувствительных спектрометров, — говорит профессор Формажио. — Мы думаем, что это вполне возможно, хотя работа может растянуться на пару десятилетий. Но мне всего 36 лет, и впереди еще много времени. Хотя, конечно, настоящие нейтринные телескопы появятся намного позже».

История мироздания

А к чему вообще заниматься сложным и дорогостоящим отловом реликтовых нейтрино? Дело в том, что эти частицы некогда сыграли поистине гигантскую роль в формировании материального состава нашего мира. Если бы они не расстыковались со своими более массивными партнерами именно тогда, когда они это сделали, эволюция Вселенной пошла бы совершенно иначе. На чем основан такой прогноз? К тому времени, когда возраст Вселенной перешел за отметку в 10 микросекунд, в ней не осталось свободных кварков, которые слились в частицы семейства барионов — протоны и нейтроны (кварки объединялись также в очень нестабильные мезоны, но те быстро распались и, так сказать, исчезли из обращения).


мимо протонов и нейтронов, в тогдашней Вселенной в изобилии имелись электроны и позитроны (последних было чуть меньше, и поэтому к концу десятой секунды они полностью исчезли вследствие аннигиляции), а также фотоны и нейтрино, число которых почти в миллиард раз превышало число барионов. Пока материя оставалась достаточно плотной и горячей, нейтрино интенсивно взаимодействовали с протонами и нейтронами и заставляли их превращаться друг в друга (аналогичные процессы характерны для бета-распада атомных ядер). Но Вселенная расширялась и в результате этого остыла настолько, что нейтрино прекратили рассеиваться на барионах и ушли в свободный полет. Случилось это вскоре после того, как ее возраст достиг одной секунды. С этого момента космическое пространство стало прозрачным для нейтрино и остается таким до сих пор.

Во глубине канадских руд Во глубине канадских руд Нейтринная обсерватория SNO расположена в никелевой шахте «Крейтон» (Creighton mine) неподалеку от Сэдбери в канадской провинции Онтарио.


я размещения детектора был выбран уровень 6800 футов (2070 м). Более 2 км скального грунта защищают чувствительный детектор от космических лучей (это эквивалентно примерно 6 км воды). В настоящее время в связи с окончанием эксперимента SNO преобразована в самую глубокую в мире подземную лабораторию SNOLAB.

Распаривание нейтрино и барионов оставило после себя неодинаковые количества протонов и нейтронов. Поскольку нейтрон несколько тяжелее протона, для превращения в протон ему требовалась энергетическая подпитка со стороны нейтрино. До тех пор, пока плотность и температура материи не стали ниже определенной границы, нейтринная среда поддерживала плотность протонов и нейтронов практически на одном и том же уровне. Однако к моменту, когда нейтрино перестали рассеиваться на барионах, энергетически выгодный процесс перехода нейтронов в протоны сильно обогнал обратный процесс рождения нейтронов из протонов. После того как нейтрино вышли из игры, соотношение протонов и нейтронов оказалось равным 6:1. Благодаря этому во Вселенной вскоре начался синтез гелия, и она приобрела химический состав, который сохраняется и до настоящего времени (правда, позднее звезды переработали около двух процентов водорода и гелия в более тяжелые элементы, но львиная доля их ядер все равно сохранилась).

Альтернативная Вселенная


Попробуем представить, что бы произошло, если бы нейтрино перестали взаимодействовать с барионами несколько раньше или несколько позже. Допустим, это случилось, когда возраст Вселенной составлял одну десятую секунды. В тот момент в ней было практически одинаковое число протонов и нейтронов. Это означает, что позднее все они объединились бы в ядра основного изотопа гелия (два протона и два нейтрона) и во Вселенной практически не осталось бы свободного водорода. В принципе, гелиевые облака могли бы со временем претерпеть гравитационную конденсацию и дать начало звездам, часть из которых обзавелись бы планетными системами. Однако на этих планетах не было бы водорода и, следовательно, воды, без которой мы не мыслим зарождения жизни.

Проблески во тьме Проблески во тьме «Глаза» детектора — это чрезвычайно чувствительные фотоэлектронные умножители. Почти 9600 таких трубок закреплены на геодезическом каркасе, окружающем акриловую емкость с тяжелой водой. Солнечные нейтрино при попадании в тяжелую воду вызывают ряд реакций, ведущих к появлению электронов, движущихся быстрее скорости света в воде. Это ведет к появлению черенковского излучения, которое и засекают фотоумножители.

Теперь рассмотрим обратный случай. Допустим, что нейтрино отстыковались от барионов, когда их энергия уже сильно упала по сравнению с той, какой она была, когда это на самом деле случилось, — скажем, когда возраст Вселенной дошел до 100 секунд. Тогда на каждые 100 млн протонов приходился бы всего один нейтрон. Но это означает, что во Вселенной не было бы гелия и вплоть до появления первых звезд она оставалась бы чисто водородной. Правда, звездам для первоначального поджога гелий и не нужен, так что они все равно бы возникали и рождали более тяжелые элементы, но все же это была бы совершенно другая Вселенная.

Существование реликтовых нейтрино вытекает из общепринятой космологической модели эволюции Вселенной. Поэтому регистрация этих частиц и определение их кинетической энергии позволят непосредственно проверить один из ключевых выводов этой модели (что наверняка будет вознаграждено Нобелевской премией). Картирование нейтринного небосвода даст возможность выявить корреляции между колебаниями плотности нейтринного потока и нынешним распределением галактик и галактических скоплений, что само по себе станет огромным научным достижением. И наконец, детектирование реликтовых нейтрино позволит уточнить массу этой частицы, которая пока известна лишь очень приблизительно. А если надежды Джозефа Формажио и других физиков, которые занимаются поиском реликтовых нейтрино, оправдаются, то таких открытий дождемся и мы сами, а не только наши внуки и правнуки.

Источник: www.PopMech.ru

Группа OPERA опубликовала результаты итогового анализа данных, собранных на детекторе нейтрино в Гран-Сассо в 2008–2012 годах. С помощью более аккуратного анализа ученым удалось разглядеть в этих данных десять событий, отвечающих превращению мюонных нейтрино в тау-нейтрино, измерить квадрат разницы масс этих типов нейтрино и сечение взаимодействия тау-нейтрино с заряженным током, а также подтвердить, что тау-нейтрино обладают отрицательным лептонным числом. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics.

В Стандартной модели масса нейтрино в точности равна нулю. Тем не менее, поставленные в конце прошлого века эксперименты (а также более поздние) показали, что в действительности нейтрино постоянно осциллируют, то есть превращаются из одного типа в другой. Так, электронные нейтрино, родившееся в термоядерных реакциях внутри Солнца, успевают много раз превратиться в мюонные и тау-нейтрино, пока летят до Земли, и в результате детекторы регистрируют примерно одинаковый поток различных типов нейтрино. Если бы масса нейтрино в самом деле была нулевой, как предсказывает Стандартная модель, такие осцилляции были бы невозможны. Эта несогласованность заставляет ученых разрабатывать новые теоретические модели, а также более внимательно изучать осцилляции нейтрино на практике.

В частности, детектор OPERA, расположенный в Гран-Сассо (Италия), предназначен для изучения мюонных нейтрино, которые рождаются в результате столкновений протонных пучков на суперсинхротроне SPS в ЦЕРНе и превращаются в тау-нейтрино по пути к детектору. В среднем энергия частиц, образующихся по такой схеме, составляет 17 гигаэлектронвольт — следовательно, нейтрино движутся с околосветовой скоростью, и времени на превращение у них практически нет (расстояние между Женевой и Гран-Сассо они пролетают чуть больше чем за 2,4 миллисекунды). Тем не менее, небольшая доля мюонных нейтрино все-таки успеет изменить свой тип, и за несколько лет наблюдений такие события можно увидеть.

Чтобы поймать и определить тип «неуловимых» частиц, в детекторе OPERA используется 1,5 тысячи свинцовых пластинок размерами примерно 13×10×7 сантиметров и весом около 8,3 килограмм, объединенных в 31 колонну и проложенных фотопленками. Когда нейтрино сталкивается с ядром свинца, оно обменивается с ним заряженным W-бозоном (это так называемый заряженный ток, charged current), и в результате в объеме пластинки рождаются новые частицы, которые регистрируются на фотопленке и отслеживаются с помощью магнитного детектора. Это позволяет проследить их траекторию и установить тип нейтрино, вступившего во взаимодействие с ядром.

Тау-нейтрино отличаются от остальных типов характерной топологией распада, оставляя после себя либо одну заряженную частицу (электрон, мюон или адрон), либо три адрона. Измеряя кинематические параметры родившихся частиц и соотнося их друг с другом, можно сказать, в какой точке детектора и в результате какого распада они появились. К сожалению, некоторые другие процессы (например, распад очарованных адронов), которые должны происходить в детекторе, также приводят к рождению похожих частиц и мешают выделить события, отвечающие тау-нейтрино, из общего потока. В предыдущем анализе данных, собранных в 2008–2012 годах, ученые сообщали о пяти достоверно обнаруженных тау-нейтрино. За это время на ускорителе в ЦЕРНе успели столкнуться почти 1,8×1020 протонов, а в объеме детектора OPERA было зарегистрировано 19505 нейтрино. В новой работе физики провели более глубокий анализ тех же самых данных, используя многомерный подход (multivariate approach). Это позволило им разглядеть еще пять событий, отвечающих тау-нейтрино и довести полное число событий до десяти: в шести случаях нейтрино превратилось в адрон, в трех случаях — в три адрона, и еще в одном случае — в мюон. В целом, такие результаты совпадают с теоретическими оценками на число реакций внутри детектора.

Увеличившаяся в два раза статистика по нейтрино позволила ученым уточнить несколько параметров, отвечающих за осцилляции. Например, квадрат разности масс нейтрино 2 и 3 типов физики оценивают величиной Δm232 ≈ (2,7±0,6)×10−3квадратных электронвольт, а измеренное сечение взаимодействия тау-нейтрино через заряженный ток — величиной σ ≈ (5,1±2,2)×10−36 квадратных сантиметров. Оба этих результата согласуются с теоретическими расчетами с помощью программы GENIE и результатами многочисленных предыдущих измерений, однако эксперимент OPERA — первый, в котором измерения проводились для «возникающей» моды (appearance mode). Кроме того, в этом эксперименте тау-нейтрино наблюдались независимо от тау-антинейтрино, что позволило физикам впервые напрямую измерить лептонное число частицы. Оказалось, что со статистической значимостью около 3,7σ тау-нейтрино обладают отрицательным лептонным числом.

В 2015 году Нобелевскую премию по физике присудили Такааки Кадзита и Артуру МакДональду «за открытие осцилляций нейтрино, которые доказывают, что у нейтрино есть масса».

В завершенном на данный момент эксперименте OPERA проводился поиск редких событий нейтринных осцилляций – появления тау-нейтрино в пучке мюонных нейтрино. OPERA – это гибридный детектор: электронные детекторы регистрируют нейтринные взаимодействия в режиме реального времени и позволяют выделить вершину с точностью до блока, а «тонкий» анализ события на микронном уровне делается путем изучения трековой информации в ядерной фотоэмульсии после извлечения блока из детектора. В этом состояло большое отличие установки от большинства детекторов.

ОИЯИ принимал участие в подготовке эксперимента с самого начала, вместе с группами из Франции, Бельгии и Швейцарии была разработана и создана трековая система целеуказания (ТСЦ). Трековые детекторы собирались из сцинтилляционных стрипов, которые были произведены в Харькове, в Институте монокристаллов, с которым ОИЯИ связывает многолетнее сотрудничество. Специалисты из Лаборатории ядерных проблем ОИЯИ участвовали в автоматизации производства и организации контроля качества продукции. Приняв активное участие в создании детектора, сравнительно небольшая группа ОИЯИ в дальнейшем была ответственной и за анализ информации ТСЦ. В Дубне были разработаны алгоритмы и созданы программы, с помощью которых определяется блок мишени, содержащий вершину, – основная задача электронных трековых детекторов.

Идея нейтринных осцилляций родилась в Дубне более 50 лет назад. Тогда существование нейтринных осцилляций первым предположил Бруно Понтекорво, ученый, который долгие годы жил и работал в Дубне. Автор многих блестящих идей в области физики нейтрино, он еще в 1957 году опубликовал работу, где обсуждалась возможность переходов нейтрино в антинейтрино.

Источник: www.atomic-energy.ru

Разница скоростей нейтрино – немного формул

Скорость частицы v в теории относительности Эйнштейна можно записать через массу частицы m и энергию E (это полная энергия, т.е. энергия движения плюс энергия массы E=mc2), и скорость света с, как:

$ v = c ( 1 - [frac{m c^2}{E}]^2 )^{1/2} $

Если у частицы очень большая скорость и её полная энергия Е гораздо больше энергии массы mc2, тогда

$ v = c (1 – [frac{m c^2}{E}]^2/2 + …) $

Где точки напоминают о том, что эта формула – не точное, но хорошее приближение к большому Е. Иначе говоря, скорость частицы, двигающейся почти со скоростью света, отличается от скорости света на величину, равную половине квадрата отношения энергии массы частицы к её полной энергии. Из этой формулы видно, что если у двух нейтрино есть разные массы m1 и m2, но одинаковая большая энергия Е, то их скорости отличаются очень мало.

Посмотрим, что это значит. Все измеренные нейтрино от взорвавшейся в 1987 году сверхновой прибыли на Землю в 10-секундном промежутке. Допустим, электронный нейтрино был испущен сверхновой с энергией в 10 МэВ. Этот нейтрино был смесью из нейтрино-1, нейтрино-2 и нейтрино-3, каждый из которых двигался с немного отличной скоростью! Заметили бы мы такое? Массы нейтрино нам точно неизвестны, но, допустим, что у нейтрино-2 энергия массы равна 0,01 эВ, а у нейтрино-1 энергия массы равна 0,001 эВ. Тогда две их скорости, учитывая, что их энергии равны, будут отличаться от скорости света и друг от друга менее, чем на одну часть от ста тысяч триллионов:

$ v_1 – v_2 = c [ (m_2^2 – m_1^2) c^4/ 2 E^2 + … ] = 0,0000000000000000005 c $

(погрешность всех уравнений не превышает 1%). Такая разница в скорости означает, что части нейтрино-2 и нейтрино-1 изначального электронного нейтрино прибыли бы на Землю с разницей в миллисекунду – такую разницу по множеству технических причин засечь невозможно.

* * *

А теперь от интересного мы переходим к реально странным вещам.

Эта крохотная разница скоростей заставляет точную смесь из нейтрино-1, нейтрино-2 и нейтрино-3, составляющую электронное нейтрино, постепенно меняться при движении в пространстве. Это значит, что то электронное нейтрино, с которого мы начали, со временем перестаёт быть собой и соответствовать одной конкретной смеси из нейтрино-1, нейтрино-2 и нейтрино-3. Различные массы нейтрино трёх массовых типов превращают начальное электронное нейтрино в процессе перемещения в смесь из электронного нейтрино, мюонного нейтрино и тау-нейтрино. Проценты смеси зависят от разницы скоростей, и, следовательно, от энергии начального нейтрино, а также от различия масс (точнее, от различия квадратов масс) нейтрино.

image
Рис. 2

Сначала эффект увеличивается. Но, что интересно, как показано на рис. 2, этот эффект не просто постоянно растёт. Он растёт, а потом снова уменьшается, а потом снова растёт, снова уменьшается, снова и снова, в процессе движения нейтрино. Это называется нейтринными осцилляциями. Как именно они происходят, зависит от того, какие у нейтрино массы и каким образом там смешаны массовые нейтрино и слабые нейтрино.

Эффект осцилляций можно измерить благодаря тому, что электронное нейтрино при столкновении с ядром (а именно так нейтрино и можно засечь) может превратиться в электрон, но не в мюон и не тау, в то время, как мюонное нейтрино может превратиться в мюон, но не в электрон или тау. Так что, если мы начали с луча мюонного нейтрино, и после перемещения на некое расстояние некоторые нейтрино столкнулись с ядрами и превратились в электроны, это значит, что в луче происходят осцилляции, и мюонные нейтрино превращаются в электронные нейтрино.

Один весьма важный эффект усложняет и обогащает эту историю. Поскольку обычная материя состоит из электронов, но не из мюонов и тау, электронные нейтрино взаимодействуют с ней не так, как мюонные или тау. Эти взаимодействия, происходящие посредством слабого взаимодействия, крайне малы. Но если нейтрино пройдёт через большую толщу материи (допустим, через ощутимую долю Земли или Солнца), эти небольшие эффекты смогут накопиться и сильно повлиять на осцилляции. К счастью, о слабом ядерном взаимодействии нам известно достаточно для того, чтобы детально предсказать эти эффекты, и просчитать всю цепочку задом наперёд, от измерений в эксперименте до выяснения свойств нейтрино.

Всё это делается с использованием квантовой механики. Если для вас это не интуитивно, расслабьтесь; для меня это тоже не интуитивно. Всю имеющуюся интуицию я получил из уравнений.

Оказывается, что тщательное измерение нейтринных осцилляций – наиболее быстрый способ изучения свойств нейтрино! За эту работу уже давали Нобелевскую премию. Вся эта история появилась из классического взаимодействия эксперимента и теории, протянувшегося с 1960-х годов до сегодняшнего дня. Я упомяну наиболее важные из проведённых измерений.

Для начала, мы можем изучать электронные нейтрино, производимые в центре Солнца, в его хорошо изученной ядерной топке. Эти нейтрино путешествуют сквозь Солнце и через пустое пространство к Земле. Обнаружено, что когда они прибывают на Землю, они с одинаковой вероятностью могут принадлежать к типу мюонных или тау, как и к типу электронных нейтрино. Это само по себе служит доказательством нейтринной осцилляции, а точное распределение даёт нам подробную информацию о нейтрино.

Также у нас есть мюонные нейтрино, возникающие при распаде пионов, возникающих в космических лучах. Космические лучи — это частицы с высокой энергией, прибывающие из космоса, и сталкивающиеся с атомными ядрами в верхних слоях атмосферы. В получившихся в результате каскадах частиц часто встречаются пионы, многие из которых распадаются на мюонные нейтрино и антимюоны, или на мюонные антинейтрино и мюоны. Некоторые из этих нейтрино (и антинейтрино) мы засекаем в наших детекторах, и можем измерить, какая их часть принадлежит к электронным нейтрино (и антинейтрино) в зависимости от того, какую толщу Земли они прошли перед тем, как попасть в детектор. Это опять-таки даёт нам важную информацию о поведении нейтрино.

Эти «солнечные» и «атмосферные» нейтрино научили нас многому о свойствах нейтрино за последние двадцать лет (а первый намёк на нечто интересное случился почти 50 лет назад). И к этим естественным источникам энергии прибавляются различные исследования, проведённые при помощи лучей нейтрино, таких, как те, что используются в эксперименте OPERA, а также при помощи нейтрино из обычных ядерных реакторов. Каждое из измерений по большей части согласуется со стандартной интерпретацией солнечных и атмосферных нейтрино, и позволяет проводить более точные измерения смесей массовых типов и слабых типов нейтрино и различий в квадратах масс нейтрино массового типа.

Как и следовало ожидать, в экспериментах присутствуют небольшие расхождения с теоретическими ожиданиями, но ни одно из них не было подтверждено, а большинство, если не все, являются лишь статистическими случайностями или проблемами на экспериментальном уровне. Пока что ни одно противоречие с пониманием нейтрино и их поведения не было подтверждено в нескольких экспериментах. С другой стороны, вся эта картина довольно нова и достаточно плохо проверена, поэтому вполне возможно, хотя и маловероятно, что у неё могут существовать совершенно другие интерпретации. И действительно, уже предлагались довольно серьёзные альтернативы. Так что уточнение деталей свойств нейтрино – это активно развивающаяся область исследований, в которой по большей части возникает согласие, но кое-какие вопросы всё ещё остаются открытыми – включая полное и бесповоротное определение масс нейтрино.

Источник: habr.com

Различные типы нейтрино

Доказательство не тождественности нейтрино и антинейтрино

    Сразу же после открытия антинейтрино возник очевидный вопрос – тождественна ли открытая частица нейтрино или нет. Поскольку нейтрино не имеет электрического заряда, теоретически не было исключено, что оно по своим свойствам тождественно антинейтрино, т. е. является истинно нейтральной частицей. Такое нейтрино впервые было рассмотрено итальянским физиком Э. Майорана и поэтому называлось «майорановским». В противоположность этому типу, нейтрино, не являющееся истинно нейтральным, было названо «дираковским».
    Для выяснения этого вопроса Р. Дэвисом в 1955 г. был поставлен   эксперимент по регистрации реакции:

n + e → p + e−  (1)

Если нейтрино и антинейтрино являются тождественными частицами, то эта реакция должна наблюдаться. Это следует из того, что имеют место реакция:

p + e → n + e(2)

Обе реакции ((1) и (2)) при тождественности нейтрино и антинейтрино должны иметь одинаковые характерные для нейтрино (антинейтрино) сечения ≈ 10−43 см2.
     В качестве источника антинейтрино снова использовались реакторные антинейтрино. Так как в природе нет нейтронных мишеней, эксперимент можно было поставить на нейтронах, входящих в состав атомного ядра. В 1946 г. Б. Понтекорво предложил использовать для этой цели реакцию:

ν + 37Cl → e + 37Ar  (3)

    Если процесс (1) возможен, то под действием потока антинейтрино от реактора один из нейтронов, входящих в состав ядра 37Cl, должен превращаться в протон, что приводит к образованию радиоактивного изотопа 37Ar с периодом полураспада 35.04 суток. Регистрируя радиоактивность изотопа, можно судить о возможности протекания реакции (1).
    Для регистрации процесса (3) необходимо было использовать большую массу мишени, так как в случае тождественности нейтрино и антинейтрино, сечение реакции (3) должно мало. В качестве мишени использовалось около 4000 литров раствора четыреххлористого углерода. Каждый сеанс облучения продолжался 2 месяца. Была разработана специальная методика извлечения радиоактивного изотопа 37Ar из огромного объема мишени. Выделенный 37Ar помещался затем в низкофоновый пропорциональный счетчик для регистрации его радиоактивности. Реакция (3) не была зарегистрирована. Для величины измеренного сечения реакции (1) была получена лишь верхняя оценка, равная:

σ(n + e → p + e )  < 0.25·10-44 см2 << 10-432

Данное значения почти в 45 раз меньше ожидаемой величины сечения реакции, которую ожидали получили, если бы нейтрино и антинейтрино были тождественными частицами.
    Таким образом, эксперимент доказал, что нейтрино и антинейтрино являются разными частицами. А.Р. Дэвис, продолжая свои эксперименты по детектированию нейтрино, через 11 лет создал первый в мире детектор для солнечных нейтрино, используя для детектирования ту же реакцию на аргоне.
    Другим более точным методом проверки тождественности нейтрино и антинейтрино является исследование реакций:

νe + N → e+ + X  (4)

νe + N → e + X  (5)

под действием нейтрино, образующихся при распаде K+-мезонов:

K+ → νe+ e+ + X  (6)

    В формулах (4, 5) N обозначает нуклоны – протоны или нейтроны, а X — совокупность всех остальных частиц, образующихся в реакциях. Если нейтрино и антинейтрино являются тождественными частицами, то при облучении нуклонов должно образовываться примерно одинаковое количество электронов и позитронов.
    События, вызванные реакциями (4) и (5) регистрировались с помощью пузырьковой камеры. Пузырьковая камера представляет собой сосуд, заполненный прозрачной перегретой жидкостью, принцип действия которой основан на вскипании перегретой жидкости вдоль трека заряженной частицы.
    Идентифицировались случаи реакции с электроном и позитроном в конечном состоянии. Оказалось, что при облучении пузырьковой камеры пучком нейтрино образуются только электроны. Позитроны не наблюдались. С помощью этого метода было показано, что перекрытие состояний <ν>e|>e составляет меньше десятых долей процента.

    Тау нейтрино
Рис. 6 Диаграмма Фейнмана для двойного безнейтринного бета-распада

   Наиболее точным методом, с помощью которого можно установить тождественность нейтрино и антинейтрино является наблюдение безнейтринного двойного бета-распада:

(A,Z) → (A,Z+2) + e+ + e

    Нейтрино, образовавшееся при бета-распаде одного из нейтронов ядра (A,Z) взаимодействует с другим нейтроном образовавшегося ядра (A,Z+1). В результате такого процесса, который возможен только в случае, если нейтрино и антинейтрино тождественны, рождаются 2 электрона, а заряд ядра увеличивается на две единицы. Данный процесс лежит за рамками Стандартной Модели.
    Все попытки обнаружить безнейтринный двойной бета-распад пока окончились безрезультатно, что дало ограничение на перекрытие состояний:

e>|e> < 10-12.

      В настоящий момент готовится новый эксперимент — NEMO-3 (Neutrinoless Experiment with MOlybdenum) — по поиску безнейтринного двойного бета-распада, о котором будет рассказано ниже, который кроме того может дать ограничение на нижний порог массы электронного нейтрино.
    Подведем итоги. Электронное нейтрино всегда в конечном состоянии появляется в паре с позитроном, а электронное антинейтрино — в паре с электроном. При облучении нуклонов в пучке нейтрино в конечном состоянии всегда наблюдаются электроны. Если реакция происходит под действием антинейтрино, среди продуктов реакции всегда присутствуют позитроны, и никогда не наблюдаются электроны.
     Различие в свойствах нейтрино и антинейтрино можно описать, если ввести квантовое число — электронный лептонный заряд Le, приписав электрону и электронному нейтрино значение Le = +1, а их античастицам − позитрону и электронному антинейтрино − Le = -1 и постулируя закон сохранения лептонного заряда (числа). Это было сделано в 1955 г. Из закона сохранения лептонного числа следует, какие реакции с участием нейтрино возможны, а какие запрещены.

Мюонное нейтрино

    Мюонное нейтрино было открыто в 1961 году в эксперименте на протонном синхротроне с переменным градиентом AGS (Alternating Gradient Synchrotron) в Брукхейвенской лаборатории, США. Это событие стало возможным благодаря возможности получения пучков высокоэнергетичных нейтрино на ускорителе.
    После экспериментов Райнеса и Коэна по наблюдению антинейтрино, образующихся при β-распаде, существование этой частицы сомнения не вызывало. Однако были обнаружены нейтрино, образующиеся и в других процессах, и, в частности, при распаде π-мезонов.

π± → μ± + νμ(μ)

Поэтому возник вопрос − тождественны ли нейтрино, образующееся при распаде π-мезонов, и нейтрино, образующееся при β-распаде.
    Были и другие проблемы, связанные с нейтрино. Был предсказан ряд процессов, которые в действительности не происходили. Типичный пример таких ненаблюдаемых процессов — так называемый радиационный распад мюона, т.е. испускание мюоном электрона и фотона:

μ → e + γ

В течение долгого времени физики безуспешно пытались обнаружить этот процесс. Что же запрещает мюону превращаться в электрон и фотон?
    Для объяснения этого факта можно ввести новый закон сохранения некого заряда. Например, мы знаем, что нуклоны — протоны и нейтроны — никогда не распадаются только на "легкие частицы". Это позволяет утверждать, что нуклон имеет так называемый барионный заряд, а никакая комбинация легких частиц барионного заряда не имеет.
    Сразу возникает подозрение, что процессы типа распада мюона на электрон и фотон, которые ожидались теоретически, но в действительности не происходят, запрещены законом сохранения некоторого до сих пор неизвестного заряда, скажем, "мюонного" заряда, характерного для мюона, но не для электрона. Здесь следует напомнить, что фотон — истинно нейтральная частица и не имеет никаких зарядов.
    Однако имеется один процесс — распад мюона, в котором мюон и электрон участвуют совместно. Такой процесс состоит в испускании мюоном электрона совместно с двумя разными частицами ничтожно малой массы, о чем свидетельствуют экспериментальные исследования формы спектра электронов в этом процессе. На этом основании первоначально считали, что μ+ -распад идет по схеме:

 μ+→ e+ + ν +

    Но такая схема трудно совместима с предположением о существовании мюонного заряда, запрещающего переход мюона в электрон и фотон. Ведь пара, по определению частицы и античастицы, не имеет никаких зарядов, как и фотон, так что в описанной схеме мюонный заряд, если он существует, не сохраняется.

    Тогда можно предположить, что имеются два сорта пар нейтрино-антинейтрино: "мюонные" и "электронные". При этом они отличаются друг от друга тем, что у "мюонных" нейтрино νμ (но не у "электронных" νe) имеется мюонный заряд. В этом случае распад мюона может происходить по схеме:

μ+→ e+ + νe + μ,

где происходит сохранение как мюонного, так и электронного заряда, поскольку разница зарядов мюона и электрона, так сказать, компенсируется разницей зарядов испускаемых нейтрино.
    Все приведенные выше аргументы заставили в 1957 г. М. А. Маркова, а также параллельно ему
Ю. Швингера и К. Нишиджима высказать предположение о существовании двух типов нейтрино. Существование двух типов нейтрино означало бы, что нейтрино, участвующие в разных реакциях совместно с электроном, отличаются от нейтрино, участвующих в реакциях совместно с мюоном.

    Тау нейтрино

Рис. 7. Наиболее вероятные каналы распада пиона

    Схема опыта по доказательству тождественности или не тождественности этих 2 типов нейтрино похожа на доказательство различия нейтрино и антинейтрино. В качестве источника мюонных нейтрино можно использовать реакцию распада пиона. В данном процессе вероятность распада по мюонному каналу в 1000 раз больше, чем по электронному (почему так происходит – будет объяснено позже).
    В опытах Л. Ледермана, М. Шварца и
Дж. Стейнбергера в 1962 году было показано, что нейтрино, образующиеся при распаде π-мезона, не является электронным. Нейтрино, образующиеся при распаде π-мезона, были названы мюонными нейтрино, т.к. они всегда образуются совместно с мюоном.
    В результате взаимодействия пучка протонов с энергией 15 ГэВ с бериллиевой мишенью в большом количестве образуются вторичные π+ и π-мезоны. Детектирование π+ и π-мезонов осуществлялось с помощью черенковских счетчиков. Мюонные нейтрино образовывались в результате последующего распада π+ и π-мезонов:

π+ → μ+ + νμ,    π → μ + μ

    Схема этого эксперимента представлена на рисунке 8.

Тау нейтрино
Рис. 8. Схема установки в эксперименте Л. Ледермана, М. Шварца и Дж. Стейнбергера

    На пролетном расстоянии l = 20 м между черенковским счетчиком и железной защитной стеной происходил распад π-мезонов. Все частицы, кроме нейтрино, поглощались в защитной стене. Интенсивность фона адронов при этом уменьшалась примерно на 20 порядков. Взаимодействия с нейтронами и протонами регистрировались в детекторе, состоящем из набора искровых камер, каждая из которых состояла из 9 алюминиевых пластин размером ~110 см х 110 см и толщиной 2.5 см. Зазор между пластинами составлял ~1 см. Между искровыми камерами располагались сцинтилляционные счетчики, регистрирующие появление заряженной частицы в детекторе. При появлении в детекторе заряженной частицы подавался импульс высокого напряжения на искровые камеры. Тип заряженной частицы (мюон или электрон) определялся по характеру искрового пробоя в искровых камерах. Общая масса нейтринного детектора составляла ~10 тонн.

μ + p → μ+ + n       νμ + n → e + p

 νμ + n → μ + p(*)        νμ + p → e+ + n(**)

    В результате этих экспериментов было показано, что при взаимодействии нейтрино, образующихся при распаде π-мезонов, с протонами и нейтронами, наблюдаются только мюоны (*), и не было обнаружено ни одного случая образования электронов или позитронов (**). А если бы мюонные и электронные нейтрино были тождественными частица, то реакции (*) и (**) происходили бы с равной вероятностью.
    В 1988 г. Л. Ледерману, М. Шварцу, Дж. Стейнбергеру была присуждена Нобелевская премия за изобретение метода нейтринного пучка и демонстрацию дублетной структуры лептонов в результате открытия мюонного нейтрино.

Тау нейтрино
Рис. 9. М. Шварц, Дж. Стейнбергер, Л.М. Ледерман,

    В 1964-67 гг. в аналогичных опытах было установлено, что  νμ при столкновении с ядрами рождает μ и не рождает μ+, т. е. мюонные нейтрино и антинейтрино также не тождественны. Все это позволило ввести ещё одно сохраняющееся лептонное число Lμ.

Тау-нейтрино

    До 1975 года было известно лишь 2 типа нейтрино: электронное и мюонное. А в 1975 году на коллайдере SPEAR (Stanford Positron Electron Accelerating Ring) в лаборатории SLAC (Стэнфордского центра линейного ускорителя) (США) группой под руководством Мартина Перла был открыт τ-лептон. Это привело к введению 3-го лептонного квантового числа Lτ. За данное открытие Мартин Перл получил Нобелевскую премию в 1995 году.
    Эксперименты, проведенные в 1989 году в Стэнфорде и в CERN, показали, что могут существовать только три вида нейтрино, представляющих полный набор частиц этого класса: электронное нейтрино, мюонное нейтрино и тау-нейтрино.
    Однако соответствующее таону тау-нейтрино впервые наблюдалось лишь в 2000 г. в лаборатории имени Ферми (США) на детекторе DONUT (Direct Observation of the NU Tau). Такая временная задержка объясняется большими энергиями сталкивающихся частиц, необходимых для образования данного типа нейтрино. Эксперимент был начат в 1997 году усилиями ученых из США, Японии, Кореи и Греции на крупнейшем ускорителе Tevatron.
    Для получения тау-нейтрино пучок протонов направлялся на вольфрамовую мишень. Одним из продуктов взаимодействия протонов с ядрами вольфрама являются тау-лептоны, которые вскоре претерпевают распад с образованием тау-нейтрино. Для отсечения всех «побочных» частиц, образующихся в мишени, в опыте использовалось магнитное поле и защитный блок.  На рисунке изображена схема получения пучка тау-нейтрино:

Тау нейтрино
Рис. 10. Схема получения пучка тау-нейтрино в эксперименте по обнаружению тау-нейтрино на детекторе DONUT

    Для детектирования использовались реакции, аналогичные реакциям детектирования других типов нейтрино:

τ + p → τ+ + n,    ττ + n → τ + p

    Нейтринный детектор DONUT  состоял из железных пластин, между которыми располагались слои фотоэмульсии. В результате взаимодействия  с железом образовывались тау-лептоны, которые оставляли в фотоэмульсии след ~ 1 мм.
    По словам участника эксперимента Байрона Лундберга (Byron Lundberg), детектирование тау-нейтрино можно сравнить поиском иголки в стоге сена: в общей сложности было зарегистрировано шесть миллионов (6·106) потенциальных взаимодействий частиц. Проанализировав сигналы от различных элементов 15-метрового детектора, ученые отобрали лишь около тысячи событий-претендентов. И только 4 из них были признаны подлинными свидетельствами существования тау-нейтрино.

Тау нейтрино
Рис. 11.  Принцип детектирования тау-нейтрино в детекторе DONUT

          Тау нейтрино
Рис. 12 Общая схема детектора DONUT

Источник: nuclphys.sinp.msu.ru

В туннелях глубоко внутри гранитной скалы в Дайя-Бей, на ядерном реакторе в 55 километрах от Гонконга, чувствительные детекторы уловили намек на существование новой формы нейтрино, одной из самых неуловимых и многочисленных частиц в природе. Нейтрино, электрически нейтральные частицы, которые откликаются лишь на гравитацию и слабое ядерное взаимодействие, взаимодействуют с материей так слабо, что сотни триллионов нейтрино ежесекундно пролетают через ваше тело, а вы даже не замечаете. Они бывают трех типов: электронные, мюонные и тау. Результаты Дайя-Бей указали на возможное существование четвертого, еще более загадочного и неуловимого типа частиц.

Стерильное нейтрино, как его обозвали, не является переносчиком какого-либо заряда и будет непроницаемым для всех сил, кроме гравитации. И только сбрасывая свою накидку невидимости, превращаясь в электронное, мюонное или тау-нейтрино, стерильное нейтрино становится уязвимым для обнаружения. Окончательно подтверждение его существования «откроет целый проспект новых исследований», говорит физик частиц Стивен Парке из Национальной ускорительной лаборатории Ферми в Батавии.

Возможное доказательство существования стерильной частицы вытекает из несоответствия между теорией и экспериментом. Если ядерный реактор производит пучок только одного типа нейтрино, теория предсказывает, что некоторые из них должны изменить свою сущность по мере движения к удаленному детектору. Проанализировав более 300 000 электронных антинейтрино, собранных ядерными реакторами Дайя-Бей за 217 дней работы, ученые обнаружили нехватку 6% частиц, предсказанных стандартной моделью физики элементарных частиц. Физик частиц Кам-Бью Люк из Калифорнийского университета в Беркли и его коллеги сообщили о находке в феврале в журнале Physical Review Letters.

Одним из объяснений этого дефицита может быть то, что некоторые электронные антинейтрино трансформировались в недетектируемые и легкие стерильные нейтрино, с одной миллионной массой электрона. Другие исследования на ядерных реакторах, включая эксперимент на реакторе Bugey в Сен-Вюльба, Франция, также показали подобный дефицит электронных антинейтрино. Исследования пучков мюонных антинейтрино на некоторых ускорителях частиц показали еще и излишек электронных антинейтрино, что тоже можно отнести на счет «ловкости рук» невидимых стерильных нейтрино.

Результат Дайя-Бей обеспечивает самые точные на текущий момент измерения энергий антиэлектронных нейтрино в ядерном реакторе. Но статистическая значимость дефицита недостаточно высока, чтобы можно было огласить об открытии. Это открытие на «три сигма», то есть существует 0,3-процентная вероятность, что недостаток электронных нейтрино мог бы образоваться и в отсутствие стерильных нейтрино. Физики, как правило, стремятся к значению в пять сигма, чтобы открытие могло быть ошибочным лишь с вероятностью в 0,00003%.

Помимо намека на стерильные нейтрино, результаты на Дайя-Бей выявили вторую странную особенность — излишек электронных антинейтрино (по сравнению с теоретическими прогнозами) на энергии в 5 миллионов электрон-вольт. Это могло бы быть знаком, указывающим на открытие совершенно новой физики (или просто чего-то, что физики смогут объяснить за пределами ядерного реактора). Возможно, объяснение этого всплеска могло бы даже устранить необходимость привлечения стерильных нейтрино для объяснения общего дефицита электронных антинейтрино.

Если же окончательное доказательство существования легкого стерильного нейтрино будет обнаружен, «сообщество теоретиков перевернется», говорит Парке, и это открытие могло бы оказать большее влияние, чем бозон Хиггса, за обнаружение которого присудили Нобелевскую премию и который объясняет, почему у элементарных частиц есть масса.

«Найти стерильное нейтрино чрезвычайно важно, поскольку это будет первое открытие частицы, которая не вписывается в рамки так называемой Стандартной модели», говорит физик частиц Карло Джунти из Университета Турина в Италии.

Один из самых первых экспериментов, который позволил предположить наличие стерильных нейтрино, проходил с участием Liquid Scintillator Neutrino Detector (LSND), который работал при Лос-Аламосской национальной лаборатории в Нью-Мексико с 1993 по 1998 год. LSND обнаружил, что мюонные антинейтрино, пропущенные через 167 тонн нефтепродуктов, превратились в электронные антинейтрино, указав при этом на возможное наличие четвертого типа нейтрино. Затем, с 2002 по 2012 год, в Лаборатории Ферми проводился эксперимент под названием MiniBooNE, который привел к подобным результатам. Очередной эксперимент MiniBooNE начался в октябре. MicroBooNE — это первый из трех жидких аргоновых детекторов, расположенный на трех различных расстояниях от источников нейтрино в Лаборатории Ферми, который будет с беспрецедентной точностью оценивать преобразование нейтрино из одного типа в другой.

Расположенный в 470 метрах от Booster Neutrino Beamline при Fermilab, MicroBooNE — это центр тройки детекторов, в которую в 2018 году войдут ICARUS, самый дальний детектор (на расстоянии 600 метров), и Short-Baseline Near Detector (в 100 метрах от источника). Первые результаты тройки детекторов ожидаются в 2021 году, говорит физик элементарных частиц Питер Уилсон из Fermilab.

Эти детекторы также послужат прототипом для Deep Underground Neutrino Experiment, масштабного эксперимента, который будет посылать созданные на Fermilab нейтрино в 1300-километровое путешествие на Сэнфордскую подземную исследовательскую станцию недалеко от Лида.

В то же время коллаборация Дайя-Бей объединилась с другим экспериментом Лаборатории Ферми, Main Injector Neutrino Oscillation Search, чтобы продолжить поиски стерильных нейтрино. Хотя данные с экспериментов на ускорителе и реакторе пока не демонстрируют законченную картину, «скоро мы узнаем получше, ждут ли нас стерильные нейтрино», говорит Люк.

Если легкие стерильные нейтрино существуют, у них могут быть братья и сестры в 1000 раз тяжелее. Эти частицы могли бы внести свой вклад в пока не определенную темную материю, невидимый гравитационный клей, который удерживает галактики от разбегания и формирует крупномасштабную структуру Вселенной. Отпечатки этой частицы будет искать эксперимент KATRIN, изучающий радиоактивный распад трития, тяжелого изотопа водорода, в Технологическом институте Карлсруэ, Германия.

Стерильные нейтрино, которые еще более массивны, в триллион раз тяжелее электрона, могли бы объяснить невероятную космическую загадку — несоответствие количеств вещества и антивещества в космосе. Обладая энергией, которая хотя бы в миллион раз будет больше той, которую способен производить Большой адронный коллайдер, мощнейший в мире ускоритель частиц, сверхтяжелое стерильное нейтрино в юной Вселенной могло сделать немного больше материи, чем антиматерии. Со временем этот крошечный дисбаланс был воспроизведен в бесчисленных ядерных реакциях, что и привело к преобладанию материи над антиматерией в нашей современной Вселенной.

«Для космологии, стерильные нейтрино, о которых идет речь, вряд ли смогут решить проблему асимметрии материи-антиматерии, но вполне вероятно, что окажутся связанными с другими новыми частицами, которые могут решить эту проблему».

Ученые видят другую, более практичную выгоду в изучении нейтрино. Записывая выходной сигнал антинейтрино из ядерных реакторов, детекторы могут определить относительные количества плутония и урана, сырья для изготовления ядерного оружия. Каждый грамм плутония и урана в процессе деления ставит определенный отпечаток на энергию и скорость производства антинейтрино, говорит физик Адам Бернштейн из Ливерморской национальной лаборатории в Калифорнии. Детекторы способны наблюдать за ядерной активностью с расстояния в несколько сотен километров, но это потребует дополнительных исследований. Сейчас же их диапазон действия составляет от 10 до 500 метров.

Источник: ucrazy.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.