Свойства идеального газа


Идеальный газ – это модель разреженного газа, в которой пренебрегается взаимодействием между молекулами. Силы взаимодействия между молекулами довольно сложны. На очень малых расстояниях, когда молекулы вплотную подлетают друг к другу, между ними действуют большие по величине силы отталкивания. На больших или промежуточных расстояниях между молекулами действуют сравнительно слабые силы притяжения. Если расстояния между молекулами в среднем велики, что наблюдается в достаточно разреженном газе, то взаимодействие проявляется в виде относительно редких соударений молекул друг с другом, когда они подлетают вплотную. В идеальном газе взаимодействием молекул вообще пренебрегают.

Теория создана немецким физиком Р. Клаузисом в 1957 году для модели реального газа, которая называется идеальный газ. Основные признаки модели:


  • ·         расстояния между молекулами велики по сравнению с их размерами;
  • ·         взаимодействие между молекулами на расстоянии отсутствует;
  • ·         при столкновениях молекул действуют большие силы отталкивания;
  • ·         время столкновения много меньше времени свободного движения между столкновениями;
  • ·         движения подчиняются законом Ньютона;
  • ·         молекулы — упругие шары;
  • ·         силы взаимодействия возникают при столкновении.

Границы применимости модели идеального газа зависят от рассматриваемой задачи. Если необходимо установить связь между давлением, объемом и температурой, то газ с хорошей точностью можно считать идеальным до давлений в несколько десятков атмосфер. Если изучается фазовый переход типа испарения или конденсации или рассматривается процесс установления равновесия в газе, то модель идеального газа нельзя применять даже при давлениях в несколько миллиметров ртутного столба.


Давление газа на стенку сосуда является следствием хаотических ударов молекул о стенку, вследствие их большой частоты действие этих ударов воспринимается нашими органами чувств или приборами как непрерывная сила, действующая на стенку сосуда и создающая давление.

Свойства идеального газаПусть одна молекула находится в сосуде, имеющем форму прямоугольного параллелепипеда (рис. 1). Рассмотрим, например, удары этой молекулы о правую стенку сосуда, перпендикулярную оси Х. Считаем удары молекулы о стенки абсолютно упругими, тогда угол отражения молекулы от стенки равен углу падения, а величина скорости в результате удара не изменяется. В нашем случае при ударе проекция скорости молекулы на ось У не изменяется, а проекция скорости на ось Х меняет знак. Таким образом, проекция импульса изменяется при ударе на величину, равную , знак «-» означает, что проекция конечной скорости отрицательна, а проекция начальной – положительна.


Определим число ударов молекулы о данную стенку за 1 секунду. Величина проекции скорости не изменяется при ударе о любую стенку, т.е. можно сказать, что движение молекулы вдоль оси Х равномерное. За 1 секунду она пролетает расстояние, равное проекции скорости . От удара до следующего удара об эту же стенку молекула пролетает вдоль оси Х расстояние, равное удвоенной длине сосуда 2L. Поэтому число ударов молекулы о выбранную стенку равно . Согласно 2-му закону Ньютона средняя сила равна изменению импульса тела за единицу времени. Если при каждом ударе о стенку частица изменяет импульс на величину , а число ударов за единицу времени равно , то средняя сила, действующая со стороны стенки на молекулу (равная по величине силе, действующей на стенку со стороны молекулы), равна , а среднее давление молекулы на стенку равно , где V – объем сосуда.

Если бы все молекулы имели одинаковую скорость, то общее давление получалось бы просто умножением этой величины на число частиц N, т.е. . Но поскольку молекулы газа имеют разные скорости, то в этой формуле будет стоять среднее значение квадрата скорости, тогда формула примет вид: .


Квадрат модуля скорости равен сумме квадратов ее проекций, это имеет место и для их средних значений: . Вследствие хаотичности теплового движения средние значения всех квадратов проекций скорости одинаковы, т.к. нет преимущественного движения молекул в каком-либо направлении. Поэтому , и тогда формула для давления газа примет вид: . Если ввести кинетическую энергию молекулы , то получим , где  — средняя кинетическая энергия молекулы.

Согласно Больцману средняя кинетическая энергия молекулы пропорциональна абсолютной температуре , и тогда давление идеального газа равно  или

Если ввести концентрацию частиц , то формула перепишется так:

Число частиц можно представить в виде произведения числа молей на число частиц в моле, равное числу Авогадро , а произведение . Тогда (1) запишется в виде:


Уравнения (1), (2) и (3) – это разные формы записи уравнения состояния идеального газа, они связывают давление, объем и температуру газа. Эти уравнения применимы как к чистым газам, так и к смесям газов, в последнем случае под N, n и ν следует понимать полное число молекул всех сортов, суммарную концентрацию или полное число молей в смеси. Для чистого газа число молей , где М – масса газа, а μ – масса одного моля (молярная масса). Тогда уравнение (3) примет вид:

Уравнение состояния в этой форме называют уравнением Клапейрона–Менделеева.

Рассмотрим частные газовые законы. При постоянной температуре и массе из (4) следует, что , т.е. при постоянной температуре и массе газа его давление обратно пропорционально объему. Этот закон называется законом Бойля и Мариотта, а процесс, при котором температура постоянна, называется изотермическим.


Для изобарного процесса, происходящего при постоянном давлении, из (4) следует, что , т.е. объем пропорционален абсолютной температуре. Этот закон называют законом Гей-Люссака.

Для изохорного процесса, происходящего при постоянном объеме, из (4) следует, что , т.е. давление пропорционально абсолютной температуре. Этот закон называют законом Шарля.

Эти три газовых закона, таким образом, являются частными случаями уравнения состояния идеального газа. Исторически они сначала были открыты экспериментально, и лишь значительно позднее получены теоретически, исходя из молекулярных представлений.

Источник: www.sites.google.com

   Как известно, многие вещества в природе могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном.

   Учение о свойствах вещества в различных агрегатных состояниях основывается на представлениях об атомно-молекулярном строении материального мира. В основе молекулярно-кинетической теории строения вещества (МКТ) лежат три основных положения:


  • все вещества состоят из мельчайших частиц (молекул, атомов, элементарных частиц), между которыми есть промежутки;
  • частицы находятся в непрерывном тепловом движении;
  • между частицами вещества существуют силы взаимодействия (притяжения и отталкивания); природа этих сил электромагнитная.

   Значит, агрегатное состояние вещества зависит от взаимного расположения молекул, расстояния между ними, сил взаимодействия между ними и характера их движения.

   Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

   Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи. Жидкости сохраняют объем.


   Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.

   Существует еще одно состояние вещества – плазма. Плазма — частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.

Модель идеального газа. Связь между давлением и средней кинетической энергией.

   Для выяснения закономерностей, которым подчиняется поведение вещества в газообразном состоянии, рассматривается идеализированная модель реальных газов – идеальный газ. Это такой газ, молекулы которого рассматриваются как материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие друг с другом и со стенками сосуда при столкновениях.

   Идеальный газэто газ, взаимодействие между молекулами которого пренебрежимо мало. (Ек>>Ер)

   Идеальный газ – это модель, придуманная учеными для познания газов, которые мы наблюдаем в природе реально. Она может описывать не любой газ. Не применима, когда газ сильно сжат, когда газ переходит в жидкое состояние. Реальные газы ведут себя как идеальный, когда среднее расстояние между молекулами во много раз больше их размеров, т.е. при достаточно больших разрежениях.

   Свойства идеального газа:


  1. расстояние между молекулами много больше размеров молекул;
  2. молекулы газа очень малы и представляют собой упругие шары;
  3. силы притяжения стремятся к нулю;
  4. взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими;
  5. молекулы этого газа двигаются беспорядочно;
  6. движение молекул по законам Ньютона.

   Состояние некоторой массы газообразного вещества характеризуют зависимыми друг от друга физическими величинами, называемыми параметрами состояния. К ним относятся объем V, давление p и температура T.

   Объем газа обозначается V. Объем газа всегда совпадает с объемом того сосуда, который он занимает. Единица объема в СИ м3.

   Давление физическая величина, равная отношению силы F, действующей на элемент поверхности перпендикулярно к ней, к площади S этого элемента.

   p = F/S       Единица давления в СИ паскаль [Па]


   До настоящего времени употребляются внесистемные единицы давления:

   техническая атмосфера 1 ат = 9,81-104 Па;

   физическая атмосфера 1 атм = 1,013-105 Па;

   миллиметры ртутного столба 1 мм рт. ст.= 133 Па;

   1 атм = = 760 мм рт. ст. = 1013 гПа.

   Как возникает давление газа? Каждая молекула газа, ударяясь о стенку сосуда, в котором она находится, в течение малого промежутка времени дей­ствует на стенку с определенной силой. В результате беспорядочных ударов о стенку сила со стороны всех молекул на единицу площади стенки быстро меняется со временем относительно некоторой (средней) величины.

   Давление газа возникает в результате беспорядочных ударов молекул о стенки сосуда, в котором находится газ.

   Используя модель идеального газа, можно вычислить давление газа на стенку сосуда.

   В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υx скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υy скорости, параллельная стенке, остается неизменной.

Свойства идеального газа 

   Приборы, измеряющие давление, называют манометрами. Манометры фиксиру­ют среднюю по времени силу давления, приходящуюся на единицу площади его чувствительного элемента (мембраны) или другого приемника давления.

Свойства идеального газа

   Жидкостные манометры:

  1. открытый – для измерения небольших давлений выше атмосферного 
  2. закрытый — для измерения небольших давлений ниже атмосферного, т.е. небольшого вакуума

Свойства идеального газа       Свойства идеального газа 

    Металлический манометр – для измерения больших давлений.

Свойства идеального газа

   Основной его частью является изогнутая трубка А, открытый конец которой припаян к трубке В, через которую поступает газ, а закрытый – соединен со стрелкой. Газ поступает через кран и трубку В в трубку А и разгибает её. Свободный конец трубки, перемещаясь, приводит в движение передающий механизм и стрелку. Шкала градуирована в единицах давления.

Свойства идеального газаСвойства идеального газа 

Основное уравнение молекулярно-кинетической теории идеального газа.

   Основное уравнение МКТ: давление идеального газа пропорционально произведению массы молекулы, концентрации молекул и среднему квадрату скорости движения молекул

   p = 1/3·mn·v2 

   m0 — масса одной молекулы газа;

   n = N/V – число молекул в единице объема, или концентрация молекул;

   v2 — средняя квадратичная скорость движения молекул.

   Так как средняя кинетическая энергия поступательного движения молекул E = m0*v2/2, то домножив основное уравнение МКТ на 2, получим p = 2/3· n·(m0· v2)/2 = 2/3·E·n

   p = 2/3·E·n

   Давление газа равно 2/3 от средней кинетической энергии поступательного движения молекул, которые содержатся в единичном объеме газа.

   Так как m0·n = m0·N/V = m/V = ρ,   где ρ – плотность газа, то имеем     p = 1/3· ρ· v2

Объединенный газовый закон.

   Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

   Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

   Всякое изменение состояния газа называется термодинамическим процессом.

   В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

   Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом.

   Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

p = nkT 

   Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V, давлением p, температурой T и количеством вещества ν. Для этого нужно использовать равенства

Свойства идеального газа 

   где n – концентрация молекул, N – общее число молекул, V – объем газа

   Тогда получим Свойства идеального газа или Свойства идеального газа     

   Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

Свойства идеального газа 

   При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

   Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клайперона.

   Уравнение Клайперона можно записать в другой форме.

p = nkT,

   учитывая, что

Свойства идеального газа 

   Здесь N – число молекул в сосуде, ν – количество вещества, NА – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Свойства идеального газа 

   Произведение постоянной Авогадро NА на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R.

   Ее численное значение в СИ   R = 8,31 Дж/моль·К

   Соотношение                                                        

Свойства идеального газа            

   называется уравнением состояния идеального газа.

   В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева.`

   Для одного моля любого газа это соотношение принимает вид: pV=RT

   Установим физический смысл молярной газовой постоянной. Предположим, что в некотором цилиндре под поршнем при температуре Е находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

   Запишем уравнение pV=RT для нагретого газа: p ( V + ΔV ) = R (T + 1)

   и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим   pΔV = R

   ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

   pSΔh = R

   pS = F – сила давления.

   Получим FΔh = R, а   произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

   Таким образом, R = A.

   Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Источник: infofiz.ru

Как уже указывалось, идеальный газ является воображаемой системой, которой приписываются определенные свойства. Прежде всего зависимость между параметрами идеального газа устанавливается уравнением состояния (напомним, что оно относится к 1 моль газа или смеси различных газов)

PV=RT (3 — 1)

Еще одно свойство газов при низких давлениях, т.е. приближающихся по свойствам к идеальному газу, было установлено Гей-Люссаком и подтверждено Джоулем и другими исследователями. Оно заключается в следующем.

Если газ быстро (без теплообмена) выпускать в пустоту, то его температура не изменится. При вытекании газа увеличивается его объем и падает давление. В то же время при истечении газа в пустоту он не испытывает сопротивления среды и, следовательно, не совершает работу. Отсутствие работы и теплообмена означает, что внутренняя энергия газа не изменяется.

Таким образом, не вызывающее изменения внутренней энергии истечение газа в пустоту влияет на объем и давление, но не влияет на температуру.

Внутренняя энергия идеального газа зависит только от темпера­туры.

Это утверждение, известное как закон Гей-Люссака — Джоуля, является вторым важнейшим свойством идеального газа.

Особенности идеального газа связаны также с его теплоемкостями.

Установлено, что теплоемкость газа при постоянном объеме Cv не зависит от температуры, но зависит от числа атомов, составляющих молекулу газа. В частности, для одноатомных молекул, к числу которых можно отнести атомы инертных газов, для теплоемкости Сv выполняется условие

Свойства идеального газа , (3 — 2)

для двухатомных молекул —

Свойства идеального газа , (3 — 3)

для молекул, состоящих из трех и более атомов —

Свойства идеального газа . (3 — 4)

Используя уравнение состояния для идеального газа, его энтальпию можно выразить следующим образом:

H = U + RT. (3 — 5)

Изменение энтальпии можно записать так:

dH = dU + RdT. (3 — 6)

Из равенств (2 — 11) и (2 — 15) следует

CpdT = CvdT + RdT

или

Cp = Cv + R (3 — 7)

Равенство (3 — 7) известно под названием формулы Майера, выведшего ее в начале 40-х годов XIX в.

Источник: helpiks.org

Идеальный газ. Уравнение идеального газа. Изопроцессы

Идеальный газ. Уравнение идеального газа. Изопроцессы

Газ — одно из четырёх агрегатных состояний, в которых может находиться вещество.

Частицы, из которых состоит газ, очень подвижны. Они практически свободно и хаотично движутся, периодически сталкиваясь друг с другом подобно биллиардным шарам. Такое столкновение называют упругим столкновением. Во время столкновения они резко изменяют характер своего движения.

Так как в газообразных веществах расстояние между молекулами, атомами и ионами намного превышает их размеры, то между собой эти частицы взаимодействую очень слабо, и их потенциальная энергия взаимодействия очень мала по сравнению с кинетической.

Связи между молекулами в реальном газе сложные. Поэтому также довольно сложно описывать зависимость его температуры, давления, объёма от свойств самих молекул, их количества, скорости их движения. Но задача значительно упрощается, если вместо реального газа рассматривать его математическую модель — идеальный газ.

Предполагается, что в модели идеального газа между молекулами нет сил притяжения и отталкивания. Все они движутся независимо друг от друга. И к каждой из них можно применить законы классической механики Ньютона. А между собой они взаимодействуют только во время упругих столкновений. Время самого столкновения очень мало по сравнению со временем между столкновениями.

Классический идеальный газ

Идеальный газ. Уравнение идеального газа. Изопроцессы 

Попробуем представить молекулы идеального газа маленькими шариками, находящимися в огромном кубе на большом расстоянии друг от друга. Из-за этого расстояния они не могут друг с другом взаимодействовать. Следовательно, их потенциальная энергия равна нулю. Но эти шарики двигаются с огромной скоростью. А значит, обладают кинетической энергией. Когда они сталкиваются друг с другом и со стенками куба, они ведут себя как мячики, то есть упруго отскакивают. При этом они меняют направление своего движения, но не меняют скорости. Примерно так выглядит движение молекул в идеальном газе.

Газ можно считать идеальным, если в нём выполняются следующие допущения:

  1. Потенциальная энергия взаимодействия молекул идеального газа настолько мала, что ею пренебрегают по сравнению с кинетической энергией.
  2. Молекулы в идеальном газе также имеют настолько маленькие размеры, что их можно считать материальными точками. А это означает, что и их суммарный объём также ничтожно мал по сравнению с объёмом сосуда, в котором находится газ. И этим объёмом также пренебрегают.
  3. Среднее время между столкновениями молекул намного превышает время их взаимодействия при соударении. Поэтому временем взаимодействия пренебрегают также.

Газ всегда принимает форму сосуда, в котором находится. Движущиеся частицы сталкиваются друг с другом и со стенками сосуда. Во время удара каждая молекула действует на стенку с некоторой силой в течение очень короткого промежутка времени. Так возникает давление. Суммарное давление газа складывается из давлений всех молекул.

Уравнение состояния идеального газа

Идеальный газ. Уравнение идеального газа. Изопроцессы 

Состояние идеального газа характеризуют три параметра: давление, объём и температура. Зависимость между ними описывается уравнением:

Идеальный газ. Уравнение идеального газа. Изопроцессы 

где р — давление,

VM — молярный объём,

R — универсальная газовая постоянная,

T — абсолютная температура (градусы Кельвина).

Так как VM = V/n, где Vобъём, n — количество вещества, а n = m/M, то

Идеальный газ. Уравнение идеального газа. Изопроцессы 

где m — масса газа, М — молярная масса. Это уравнение называется уравнением Менделеева-Клайперона.

При постоянной массе уравнение приобретает вид:

Идеальный газ. Уравнение идеального газа. Изопроцессы 

Это уравнение называют объединённым газовым законом.

Используя закон Менделеева-Клайперона, можно определить один из параметров газа, если известны два других.

Изопроцессы

С помощью уравнения объединённого газового закона можно исследовать процессы, в которых масса газа и один из важнейших параметров — давление, температура или объём — остаются постоянными. В физике такие процессы называются изопроцессами.

Из объединённого газового закона вытекают другие важнейшие газовые законы: закон Бойля-Мариотта, закон Гей-Люссака, закон Шарля, или второй закон Гей-Люссака.

Изотермический процесс

Идеальный газ. Уравнение идеального газа. Изопроцессы

Процесс, в котором изменяются давление или объём, но температура остаётся постоянной, называется изотермическим процессом.

При изотермическом процессе T = const, m = const.

Поведение газа в изотермическом процессе описывает закон Бойля-Мариотта. Этот закон открыли экспериментальным путём английский физик Роберт Бойль в 1662 г. и французский физик Эдм Мариотт в 1679 г. Причём сделали они это независимо друг от друга. Закон Бойля-Мариотта формулируется следующим образом: В идеальном газе при постоянной температуре произведение давления газа на его объём также постоянно.

Уравнение Бойля-Мариотта можно вывести из объединённого газового закона. Подставив в формулу Т = const, получаем

p·V = const

Это и есть закон Бойля-Мариотта. Из формулы видно, что давление газа при постоянной температуре обратно пропорционально его объёму. Чем выше давление, тем меньше объём, и наоборот.

Как объяснить это явление? Почему же при увеличении объёма газа его давление становится меньше?

Так как температура газа не меняется, то не меняется и частота ударов молекул о стенки сосуда. Если увеличивается объём, то концентрация молекул становится меньше. Следовательно, на единицу площади придётся меньшее количество молекул, которые соударяются со стенками в единицу времени. Давление падает. При уменьшении объёма число соударений, наоборот, возрастает. Соответственно растёт и давление.

Графически изотермический процесс отображают на плоскости кривой, которую называют изотермой. Она имеет форму гиперболы.

Идеальный газ. Уравнение идеального газа. Изопроцессы

Каждому значению температуры соответствует своя изотерма. Чем выше температура, тем выше расположена соответсвующая ей изотерма.

Изобарный процесс

Идеальный газ. Уравнение идеального газа. Изопроцессы

Процессы изменения температуры и объёма газа при постоянном давлении, называются изобарными. Для этого процесса m = const, P = const.

Зависимость объёма газа от его температуры при неизменяющемся давлении также была установлена экспериментальным путём французским химиком и физиком Жозефом Луи Гей-Люссаком, опубликовавшем его в 1802 г. Поэтому её называют законом Гей-Люссака: «При постоянном давлении отношение объёма постоянной массы газа к его абсолютной температуре является постоянной величиной».

При Р = const уравнение объединённого газового закона превращается в уравнение Гей-Люссака.

Идеальный газ. Уравнение идеального газа. Изопроцессы 

Пример изобарного процесса — газ, находящийся внутри цилиндра, в котором перемещается поршень. При повышении температуры растёт частота ударов молекул о стенки. Увеличивается давление, и поршень приподнимается. В итоге увеличивается объём, занимаемый газом в цилиндре.

Графически изобарный процесс отображается прямой линией, которая называется изобарой.

Идеальный газ. Уравнение идеального газа. Изопроцессы

Чем больше давление в газе, тем ниже расположена на графике соответствующая изобара.

Источник: ency.info


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.