Свойства гравитационного поля



Известно, что все тела в природе притягивают друг друга. Такое притяжение называется гравитационным и описывается законом всемирного тяготения. Гравитационное взаимодействие осуществляется через гравитационное поле (поле тяготения). Всякое тело (масса) изменяет свойства окружающего его пространства: создает в нем гравитационное поле. Это поле проявляет себя в том, что помещенное в него другое тело (масса) оказывается под действием силы. Для количественного описания гравитационного поля вводятся понятия напряженности и потенциала.

Напряженностью гравитационного поля называют величину, равную силе, действующей на материальную точку массой 1 кг

 

Свойства гравитационного поля . (4.1)

 

Размерность напряженности гравитационного поля совпадает с размерностью ускорения. Вблизи поверхности Земли напряженность гравитационного поля равна ускорению свободного падения (с точностью до поправки, обусловленной вращением Земли).


Физическое поле тяготения называется однородным, если его напряженность во всех точках пространства одинакова. Поле называется центральным, если во всех точках поля векторы напряженности направлены вдоль прямых, пересекающихся в одной точке. На рисунке 7 представлено гравитационное поле Земли. Видно, что оно является центральным и неоднородным.

Любая масса, помещенная в гравитационное поле, обладает потенциальной энергией. Энергетической характеристикой гравитационного поля является потенциал, численно равный потенциальной энергии W, которой обладает в данной точке поля материальная точка массой 1 кг

 

φ=W/m.(4.2)

 

Две характеристики гравитационного поля – напряженность Свойства гравитационного поля и потенциал φ – связаны между собой соотношением

 

Свойства гравитационного поля . (4.3)

 

Знак “–“ в формуле (4.3) означает, что вектор напряженности гравитационного поля направлен в сторону уменьшения потенциала.

Физические поля удобно изображать графически с помощью силовых линий и эквипотенциальных поверхностей.

Силовой линиейгравитационного поляназывается воображаемая линия, касательная к которой в каждой точке совпадает с направлением вектора напряженности .


Эквипотенциальной поверхностьюназывается геометрическое место точек гравитационного поля с одинаковым потенциалом.

Легко показать, что силовая линия всегда пересекает эквипотенциальную поверхность под прямым углом.

Силовые линии гравитационного поля являются разомкнутыми: они приходят из бесконечности и заканчиваются на массах.

Сила гравитационного взаимодействия (тяготения) является консервативной, а гравитационное поле – потенциальным. В гравитационном поле выполняется закон сохранения механической энергии.

 

Свойства гравитационного поля

 

Рисунок 7 – Силовые линии и эквипотенциальные поверхности гравитационного поля Земли

<== предыдущая лекция | следующая лекция ==>
Тема 4 Корпускулярная и континуальная | Электростатическое поле

Источник: helpiks.org


Содержание

Введение____________________________________________________2

1 – Гравитация

    1– А) Гравитация___________________________________________3

    1 – В) Гравитационное поле__________________________________3

2 — Классические теории гравитации

    2-А) Гравитационное поле в общей теории относительности______6

    2-Б) Теория Эйнштейна — Картана___________________________7

    2-В) Теория Бранса -Дикке__________________________________8

3 — Гравитационное поле

    3-А) Гравитационное поле, поле тяготения_____________________9

    3-Б) Гравитационное поле земли_____________________________10

Список используемой литературы_____________________________14

Введение

Гравитация это тяготение, которое испытывают все материальные тела. Иными словами, гравитация – это невидимая сила, действующая между любыми телами во Вселенной. Термин «гравитация» в переводе с латинского означает «тяжесть». Согласно легенде, Закон всемирного притяжения был открыт Исааком Ньютоном после того, как на него с дерева упало яблоко. Явление гравитации наиболее полно описано Альбертом Эйнштейном в Общей теории относительности. Гравитационное притяжение любых тел зависит от их масс и расстояния между ними. Сила притяжения уменьшается обратно пропорционально квадрату расстояния. Также гравитация может изменять скорость и направление движения тел. Вне зависимости от массы, гравитация придает всем телам одинаковое ускорение – 9, 81 м за секунду.


1 — Гравита́ция.

1 – А) Гравита́ция (притяжение, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. Гравитация является самым слабым из четырёх типов фундаментальных взаимодействий. В квантовом пределе гравитационное взаимодействие должно описываться квантовой теорией гравитации, которая ещё полностью не разработана.

  1.  — Б) Гравитацио́нное по́ле

Гравитацио́нное по́ле, или по́ле тяготе́ния — физическое поле, через которое осуществляется гравитационное взаимодействие.

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы Свойства гравитационного поля и 
Свойства гравитационного поля, разделёнными расстоянием Свойства гравитационного поля, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:

Свойства гравитационного поля

Свойства гравитационного поля

Здесь Свойства гравитационного поля — гравитационная постоянная, равная примерно 6,6725×10−11 м³/(кг·с²).

Для расчёта поля в более сложных случаях, когда тяготеющие массы нельзя считать материальными точками, можно воспользоваться тем фактом, что поле ньютоновского тяготения потенциально. Если обозначить плотность вещества ρ, то потенциал поля φ удовлетворяет уравнению Пуассона:


Свойства гравитационного поля

Закон всемирного тяготения — одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений, и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.


Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.


2 — Классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

2 — А) Гравитационное поле в общей теории относительности.

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени.
ким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем — метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля — с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).


Пространство-время ОТО представляет собой псевдориманово многообразие с переменной метрикой. Причиной искривления пространства-времени является присутствие материи, и чем больше её энергия, тем искривление сильнее. Для определения метрики пространства-времени при известном распределении материи надо решить уравнения Эйнштейна. Ньютоновская же теория тяготения представляет собой приближение ОТО, которое получается, если учитывать только «искривление времени», то есть изменение временно́й компоненты метрики, Свойства гравитационного поля[2] (пространство в этом приближении евклидово). Распространение возмущений гравитации, то есть изменений метрики при движении тяготеющих масс, происходит с конечной скоростью, и дальнодействие в ОТО отсутствует.

Другие существенные отличия гравитационного поля ОТО от ньютоновского: возможность нетривиальной топологии пространства, особых точек, гравитационные волны.

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

2 — Б) Теория Эйнштейна — Картана

Теория Эйнштейна — Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время кроме энергии-импульса также и спина объектов. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса. Один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения. Получаемые поправки к ОТО в условиях современной Вселенной настолько малы, что пока не видно даже гипотетических путей для их измерения.

2 — В) Теория Бранса — Дикке

В скалярно-тензорных теориях, самой известной из которых является теория Бранса — Дикке (или Йордана — Бранса — Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая — для скалярного поля. Теория Бранса — Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля.

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского[7]. Благодаря наличию безразмерного параметра в теории Йордана — Бранса — Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана — Бранса — Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

3 — Гравитационное поле

3 — А)Гравитационное поле, поле тяготения

Каждое тело (например, Земля) создает вокруг себя силовое поле — поле тяготения. Напряженность этого поля в любой его точке характеризует силу, которая действует на находящееся в этой точке другое тело.

Свойства гравитационного поляЕсли:
g — напряженность гравитационного поля,
F — гравитационная сила действующая на тело массой m,
m — масса тела в гравитационном поле,
то

Напряженность поля g представляет собой векторную величину, направление которой определяется направлением гравитационной силы F, а численное значение — формулой ускорения свободного падения.

Напряженность гравитационного поля совпадает по величине, направлению и единицам измерения с ускорением свободного падения, хотя по своему физическому смыслу, это совершенно разные физические величины. В то время, как напряженность поля характеризует состояние пространства в данной точке, сила и ускорение появляются только тогда, когда в данной точке находится пробное тело.

Свойства гравитационного поля

Из графика функции g=g(r) наглядно видно, что напряженность гравитационного поля g стремится к нулю, когда расстояние r стремится к бесконечности. Поэтому утверждения типа «спутник покинул гравитационное поле Земли» неверны.

Гравитационные поля небесных тел перекрываются. Если двигаться вдоль прямой, соединяющей центры Земли и Луны, то, начиная с определенного места, будет преобладать напряженность гравитационного поля Луны.

3 — Б) Гравитационное поле земли

Гравитационное поле земли — силовое поле, обусловленное притяжением масс Земли и центробежной силой, которая возникает вследствие суточного вращения Земли; незначительно зависит также от притяжения Луны и Солнца и других небесных тел и масс земной атмосферы. Гравитационное поле Земли характеризуется силой тяжести, потенциалом силы тяжести и различными его производными. Потенциал имеет размерность м2•с-2, за единицу измерения первых производных потенциала (в т.ч. силы тяжести) в гравиметрии принят миллигал (мГал), равный 10-5 м•с-2, а для вторых производных — этвеш (Э, Е), равный 10-9•с-2. 

 Значения основных характеристик гравитационного поля Земли: потенциал силы тяжести на уровне моря 62636830 м2•с-2; средняя сила тяжести на Земле 979,8 Гал; уменьшение средней силы тяжести от полюса к экватору 5200 мГал (в т.ч. за счёт суточного вращения Земли 3400 мГал); максимальная аномалия силы тяжести на Земле 660 мГал; нормальный вертикальный градиент силы тяжести 0,3086 мГал/м; максимальное уклонение отвеса на Земле 120″; диапазон периодических лунно-солнечных вариаций силы тяжести 0,4 мГал; возможная величина векового изменения силы тяжести <0,01 мГал/год. 
Часть потенциала силы тяжести, обусловленная только притяжением Земли, называют геопотенциалом. Для решения многих глобальных задач (изучение фигуры Земли, расчёт траекторий ИСЗ и др.) геопотенциал представляется в виде разложения по сферическим функциям. Вторые производные потенциала силы тяжести измеряются гравитационными градиентометрами и вариометрами. Существует несколько разложений геопотенциала, различающихся исходными наблюдательными данными и степенями разложений. 
Свойства гравитационного поля
Обычно гравитационное поле Земли представляют состоящим из 2 частей: нормальной и аномальной. Основная — нормальная часть поля соответствует схематизированной модели Земли в виде эллипсоида вращения (нормальная Земля). Она согласуется с реальной Землёй (совпадают центры масс, величины масс, угловые скорости и оси суточного вращения). Поверхность нормальной Земли считают уровенной, т.е. потенциал силы тяжести во всех её точках имеет одинаковое значение (см. геоид); сила тяжести направлена к ней по нормали и изменяется по простому закону. В гравиметрии широко используется международная формула нормальной силы тяжести: 

g(р) = 978049(1 + 0,0052884 sin2р — 0,0000059 sin22р), мГал.

В CCCP и других социалистических странах в основном применяется формула Ф. Р. Гельмерта:

g(р) = 978030(1 + 0,005302 sin2р — 0,000007 sin 22р), мГал.

Из правых частей обеих формул вычитают 14 мГал для учёта ошибки в абсолютной силе тяжести, которая была установлена в результате многократных измерений абсолютной силы тяжести в разных местах. Выведены другие аналогичные формулы, в которых учитываются изменения нормальной силы тяжести вследствие трёхосности Земли, асимметричности её северного и южного полушарий и пр. Разность измеренной силы тяжести и нормальной называют аномалией силы тяжести (см. геофизическая аномалия). Аномальная часть гравитационного поля Земли по величине меньше, чем нормальная, и изменяется сложным образом. Поскольку положения Луны и Солнца относительно Земли изменяются, то происходит периодическая вариация гравитационного поля Земли. Это вызывает приливные деформации Земли, в т.ч. морские приливы. Существуют также неприливные изменения гравитационного поля Земли во времени, которые возникают из-за перераспределения масс в земных недрах, тектонических движений, землетрясений, извержения вулканов, перемещения водных и атмосферных масс, изменения угловой скорости и мгновенной оси суточного вращения Земли. Многие величины неприливных изменений Свойства гравитационного полягравитационного поля Земли не наблюдаются и оценены только теоретически. 

На основании гравитационного поля Земли определяется геоид, характеризующий гравиметрическую фигуру Земли, относительно которой задаются высоты физической поверхности Земли. Гравитационное поле Земли в совокупности с другими геофизическими данными используется для изучения модели радиального распределения плотности Земли. По нему делаются выводы о гидростатическом равновесном состоянии Земли и о связанных с этим напряжениях в её недрах. По наблюдениям приливных вариаций силы тяжести изучают упругие свойства Земли.

Гравитационное поле Земли используется при расчёте орбит искусственных спутников Земли и траекторий движения ракет. По аномалиям гравитационного поля Земли изучают распределение плотностных неоднородностей в земной коре и верхней мантии, проводят тектоническое районирование, поиски месторождений полезных ископаемых (см. гравиметрическая разведка). Гравитационное поле Земли используется для вывода ряда фундаментальных постоянных геодезии, астрономии и геофизики.

Список используемой литературы

  1.  Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900—1915). — М.: Наука, 1981. — 352c.
  2.  Визгин В. П. Единые теории в 1-й трети ХХ в. — М.: Наука, 1985. — 304c.
  3.  Иваненко Д. Д., Сарданашвили Г. А. Гравитация. 3-е изд. — М.: УРСС, 2008. — 200с.
  4.  Мизнер Ч., Торн К., Уилер Дж. Гравитация. — М.: Мир, 1977.
  5.  Торн К. Черные дыры и складки времени. Дерзкое наследие Эйнштейна. — М.: Государственное издательство физико-математической литературы, 2009.
  6.  Дубошин Г. Н. Небесная механика. Основные задачи и методы / Глав. ред. физ.-мат. лит. — М.: Наука, 1968. — 800 с.
  7.  Жонголович И., Внешнее гравитационное поле Земли и фундаментальные постоянные, связанные с ним, «Тр. института теоретической астрономии», 1952, в. 3;
  8.  Бровар В. В., Магницкий В. А., Шимбирев Б. П., Теория фигуры Земли, М., 1961;
  9.   Грушинский Н. П., Теория фигуры Земли, М., 1963.   

12

Источник: 5fan.ru

В наблюдаемой области Вселенной очевидна иерархическая структура и упорядоченность расположения бесконечного ряда величин масс, которые, являясь центральными для масс спутников в собственном гравитационном поле, в свою очередь, являются спутниками в гравитационных полях еще больших центральных масс. Поэтому гравитационное поле любого тела искривляет не просто пространство, а меняющееся гравитационное поле определенного интервала центральной массы. Известно, что на разном энергетическом фоне центральной массы в зависимости от особенностей интервала движение тела различно, поэтому и его гравитационное поле также должно быть разным и переменным. Это обуславливает необходимость понять влияние переменного гравитационного поля интервала центральной массы на существующие в нем массы и их поля.

Одной из характеристик неоднородности гравитационного поля массы является кривизна интервала, в формулу которой входит эксцентриситет (е), отражающий его геометрические свойства:

Свойства гравитационного поля,

где g t-1 < g t < g t+1 напряженности границ и среднего радиуса интервала от геометрического центра массы в соответствующие моменты времени t.

При учете знака эксцентриситет показывает долю и направление относительных изменений среднего радиуса поля каждой из противоположных сторон центральной массы за полупериод и зависит как от напряженности поля в интервале Свойства гравитационного поля, так и от скорости ее изменения ±Свойства гравитационного поля — относительного ускорения. Ранее был представлен анализ одного из возможных проявлений геометрических свойств переменного гравитационного поля — образования последовательности приливных волн, согласующейся с закономерностью Тициуса — Боде. При этом поляризация (приливное неравенство) приливной волны сопряжена с разницей величин и направлений относительных ускорений на разных сторонах центральной массы. Показана принципиальная возможность закономерной суперпозиции приливных волн в любой точке гравитационного поля и их влияния на центральную массу [1]. Практически не исследованными геометрическими свойствами, обусловленными скоростью и направлением изменения напряженности гравитационного поля, являются особенности относительных ускорений в интервале, связанные с изменением плотности его энергии.

Оценка любых геометрических изменений поля возможна только в совокупности близкорасположенных пробных частиц, составляющих отрезок, плоскость или объем. Эти геометрические изменения являются результатом неоднородности энергии гравитационного поля в области пробных частиц при их одновременном движении относительно центральной массы или неподвижности относительно нее в переменном гравитационном поле. В системе отсчета, связанной с геометрическим центром центральной массы, каждая частица отражает локальное ускорение свободного падения, с которым неизбежно сопряжены относительные ускорения изменений расстояний между частицами. Центральная симметрия гравитационного поля позволяет оценивать самое простое движение – динамику относительных расстояний в паре пробных частиц. Две частицы А и D находятся на расстоянии lг (1r << R) одной эквипотенциальной поверхности радиуса R массы М с центром в т.О. При одновременном свободном движении по своим вертикалям с ускорением а через интервал времени ∆ t частицы сближаются с горизонтальным относительным ускорением а г , которое равно сумме двух проекций общего ускорения на 1г, (рис.1а). Из подобия прямоугольных треугольников находим относительное ускорение сближения частиц а г (противоположно направленное движение с уменьшением относительного расстояния обозначим «-») [2].

а г = — а 1г/R

Пробная частица С находится на одной вертикали, но дальше от А на расстоянии от нее 1в = АС. Напряженность в А g А = — j M/(R)2 , j – гравитационная постоянная . В соответствии с биномом Ньютона, g C = — j M/(R + l в )2 = — j MR -2 (1+ 1в/R)-2 = j M R -2 [1-2 1в/R + 3 (1в/R)2 -…]. Если учесть, что расстояние между пробными частицами много меньше расстояния до тяготеющей массы, то можно пренебречь всеми членами разложения, кроме первых двух. Вычитая ускорение в С из ускорения в А получаем, что относительные ускорения между точками противоположно направлены, а расстояние между точками возрастает (изменяется противоположно горизонтальному), поэтому относительное вертикальное ускорение

а в = 2 а 1в/RСвойства гравитационного поля .

Если в начале движения пробных частиц без начальной скорости зафиксировать их одновременно падающий геометрический центр (начало собственной системы координат), то по отношению к нему выявляется поляризация в системе пробных частиц. Поскольку кривизна поля М в 1-2 меньше, чем в 3-4, то и относительные ускорения в области 1-2 меньше, чем в 3-4.

 

 

 

                 —

Свойства гравитационного поляСвойства гравитационного поляСвойства гравитационного поляСвойства гравитационного поля

 

Свойства гравитационного поляСвойства гравитационного поля

 

Рис. 1.Относительные ускорения пробных частиц в интервале поля центральной массы.

А, Д ,С пробные частицы, обозначения верхнего и нижнего рисунков совпадают; стрелками показаны  направления относительных ускорений, В и Г- вертикальная и горизонтальная оси системы координат, связанной с геометрическим центром О массы М. а. А и D на одной эквипотенциальной поверхности, А и С – на одной вертикали при возрастании (вверху) напряженности (↑g) поля и при ее уменьшении (внизу). б. Сплошными стрелками показаны равнодействующие ускорения в системе 4 частиц, расположенных в углах трапеции, на разном расстоянии от О, пунктиром – их вертикальные и горизонтальные проекции в системе координат, связанной с частицами. в.предполагаемые изменения относительных расстояний между частицами в их системе координат (пунктир).

 

Поэтому при возрастании напряженности ближе к центральной массе будет А — полупространство («-», полупространство апогелия), а дальше от центральной массы – П («+», полупространство перигелия). При уменьшении напряженности ближе к центральной массе будет П — полупространство, а дальше – А. В рассмотренных случаях пробные частицы находились либо на одной эквипотенциальной поверхности, либо на одной вертикали. В общем случае, линии, соединяющие частицы, могут иметь любой угол по отношению к осям системы координат, связанной с центром тяжести М. Для близкорасположенных частиц можно построить прямоугольные треугольники из расстояний  l = 1-4 = 2-3 и их вертикальных (1в) и горизонтальных (1 г) проекций, вдоль которых действуют относительные ускорения а в и а г. Результирующее относительное ускорение между частицами а 1 находим по теореме Пифагора

а1 = ( аг2в2)0,5 = [ а 1 ( 1+ 3 sin2 α)0,5] /R,

 где α – угол наклона 1 к горизонтальной оси координат (рис.1а, б),

l г = l cos α, 1в =1 sin α , a г = — a l cos α /R , a в = 2 a l sin α /R .

Тогда интервалу l будет соответствовать кривизна

К1 = а 1/ 1 = [а ( 1+ 3 sin2 α)0,5 ]/R

Если α = 0о, то К1 = Кг = -а/R, если α = 90о К1 = Кв =2а/R. В системе координат, связанной с пробными частицами, расстояние между частицами соответствует интервалу (диаметру) в системе координат, связанной с М. Поэтому радиусу R, соответствует расстояние

0,5 l = r. Тогда относительное горизонтальное ускорение для этого расстояния (полуинтервала) аг = — а 1г / 2R, Kг = -a/2R , а относительное вертикальное ускорение

 а в = а 1в/R, Кв = а в = а /R , (рис.1). Рассмотренная ранее кривизна является вертикальной для расстояния R интервала K = К в = 4e/∆ t2 = 4 ∆R/ R ∆ t2 = 4 a ∆ t2 /4R ∆ t2 = a/R, тогда горизонтальная кривизна Кг = — 2е/∆ t2 = — a/2R , [1]. Таким образом, кривизна поля интервала, расположенного на расстоянии среднего радиуса от геометрического центра массы М по отношению к ней, и кривизна поля внутри этого интервала по отношению к системе координат, связанной с пробными частицами, одна и та же величина.

Кривизна по направлению расстояния между двумя пробными частицами обуславливает относительное ускорение между ними и по теореме Пифагора превышает вертикальную К = ± К в √ 1,25 = 1,118 К в . Отличие периода (Т= π ∆ t /√ е) от времени изменения напряженности (∆t) в интервале означает, что обращение естественного спутника вокруг центральной массы является следствием относительного ускорения , т.е. отражает геометрические свойства интервала. Кривизна (К) создает тангенциальное ускорение (aτ) и тангенциальную скорость(Vτ = a τ ∆ t = (4,472 e2 R)/∆ t ), изменяющую среднюю скорость (Vcp = Rср √Kср ) движения на орбите ( «+» в П — полупространстве и «-» в А – полупространстве). Тогда скорость в полупространстве (V):

V = Vср ± Vτ = Vcp ± (4,472 e2 R)/∆ t , (табл.1).

Таким образом, тангенциальное ускорение одновременно геометрически обуславливает скорость и соответствующую ей траекторию движения, которую можно рассматривать как круговую по отношению к фиктивной массе. Очевидно, что реальный центр тяжести будет менять свое положение в собственном сложнопериодическом гравитационном поле.

Если поместить твердое тело (стержень) в положение точек 1-3, то при возрастании напряженности в вертикальной плоскости центральной массы оно приобретает вращательный момент по часовой стрелке (рис. 1в, вверху), который может сохраниться и при уменьшении напряженности, если стержень займет положение 2-4 (рис.1в, внизу). При периодическом смене направления изменения напряженности, тело может вращаться в одном направлении вокруг оси, перпендикулярной плоскости расположения частиц.

Связь кривизны с множителем (1+ 3 sin2 α)0,5 показывает зависимость относительных ускорений между пробными частицами от направлений соединяющих их отрезков к осям системы координат, связанной с М. Максимум относительных ускорений имеет расположение при α=45о, создающее преимущество относительных смещений частиц. По отношению к системе координат, связанной с центральной массой, траектории относительных движений частиц направлены под определенными углами к вертикали и горизонтали (углы β) (рис.1 в):

tg β г = ∆lв/∆l г

При α=45о, горизонтальные и вертикальные проекции отрезка 1 одинаковы, как радиусы окружности. Поэтому удобно рассмотреть положения и величины относительных расстояний 1 при изменении исходно равных отрезков (цены деления) вертикальной и горизонтальной осей собственной системы координат при возрастании и уменьшении напряженности. При возрастании напряженности поля цена деления вертикальной оси будет возрастать в 2 раза быстрее, чем уменьшаться на горизонтальной оси. Тогда (tg β г = 2), β г = 63о27’ , β в = 26о33’, а траектории относительного движения частиц к вертикали будут направлены так, что их продолжения пересекутся в пространстве, образуя вершины конусов траекторий с углом при вертикали 53о 06’, а при горизонтальной плоскости 126о 54’ (рис.1в, вверху). Отсюда изменение относительного расстояния ∆l = 1,118 √ ∆lв . При уменьшении напряженности цена деления вертикальной оси уменьшается в 2 раза быстрее, чем возрастает по горизонтальной оси, поэтому (tg β г = 1/2). Траектории относительных движений частиц направлены противоположно: β г = 26о33’ , β в = 63о27’, при пересечении образуют конусы с углом при вертикали 126о 54’, а при горизонтальной плоскости 53о 06’(рис. 1в, внизу). Изменение относительного расстояния ∆l = 0,5 1,118 √∆lв. Очевидно, что исходная форма однородной области, занятой неподвижными пробными частицами, при периодическом изменении напряженности начнет периодически изменяться: возникнут стереотипно направленные ускоренные потоки частиц, неоднородность концентраций, зависимость движений от относительных расстояний, эволюционирует форма и др.

Существенным результатом является равенство величин кривизны поля в интервале (К 1) и его кривизны по отношению к центральной массе (К): К1 = К. Согласно существующим представлениям, гравитационное поле центральной массы на расстоянии полуинтервала R – это градиент энергии М к энергии интервала. Если поместить в начало системы координат, связанной с пробными частицами в интервале, массу m, то все рассуждения можно отнести и к этой массе. Тогда гравитационное поле массы m, расположенной в интервале, – это градиент ее энергии к энергии этого же интервала. Значит величины относительных ускорений в одном и том же интервале будут зависеть только от масс на соответствующих им относительных расстояниях:

j M/ [R3(1-e2)] = j m/ [r3(1-e2)] = j m/[(nR)3(1-e2)],

где n – показывает отличие характеристик m и ее поля от центральной массы М и ее поля. Масса m спутника через кривизну интервала связана с центральной массой М, обусловившей для нее фоновое гравитационное поле, поэтому m = М n3 , а m = n а, r = n R. Результаты оценки радиусов и ускорений минимальной (фоновой) кривизны собственных полей планет представлены в табл.1. Энергии (Е) этих масс на соответствующих расстояниях будут связаны

Е mM = (m/M)2/3 = n2.

Если предположить, что масса спутника пассивно движется в интервале центральной массы за счет его геометрических изменений, то она оказывается в поле периодически изменяющейся кривизны. Соответственно эксцентриситету, радиус интервала собственного гравитационного поля спутника m будет меняться с той же закономерностью, как и радиус соседней внутренней приливной волны центральной массы M, т.к. этот интервал является фоном и для нее [1]. Поэтому при возрастании напряженности фона полупространства возникают приливные волны А – полярности, а при уменьшении напряженности – П — полярности. Тогда и собственное поле спутника будет изменяться подобным образом, а приливные неравенства в нем будут обусловлены не только интервалом, но и его массой. В определенных условиях (например, формирования или разрушения) величина массы спутника может оказаться не случайной, а зависимой от центральной массы и интервала.

Таблица 1.

Расчетные значения радиусов (r) и ускорений (a) приливных волн фоновой

кривизны (интервала орбиты) гравитационных полей масс планет.

 

Жирным шрифтом обозначены характеристики орбиты:

R — средние расстояния орбитальных интервалов от Солнца

KR = a/R — кривизна поля орбитальных интервалов (а ~ g)

a ~ g напряженность на расстояниях R

n = 3√m/M

В поле массы при е ≠ 0 одновременно существуют два фоновых полупространства разных знаков. Анализ направлений относительных ускорений в полупространствах фона при возрастании напряженности гравитационного поля центральной массы показывает, что силовые линии «растягиваются» по вертикали к вершине конуса траекторий, образуя угол примерно 53о и сжимаются по горизонтальной плоскости с углом 127о (рис. 2б, внизу). При уменьшении напряженности силовые линии «сжимаются» по вертикали конуса под углом 127о и растягиваются в горизонтальной плоскости с углом 53о (рис.2б, вверху). Суммарный угол при горизонтальной плоскости σ = 90о. Т.о., фоновый орбитальный интервал соответствует минимальной кривизне собственного поля спутника и образует приливную эллиптическую волну, которая, в свою очередь, становится фоном для 2-х симметричных приливных волн примерно с периодом ~0,5 ее периода, и далее согласно закономерности Тициуса-Боде (рис. 2в) [1]. По-видимому, реальное изменяющееся гравитационное поле интервала при свободном падении тела, обращении в интервале орбиты или в состоянии неподвижности относительно системы координат, связанной с центральной массой, является фоном для его массы и обуславливает переменность его собственного гравитационного поля. Это свидетельствует в пользу представления о любом гравитационном поле, как переменном, а о любой массе, как частице-волне (массе — приливной волне).

В приливной волне определенной кривизны К (периода) можно выделить ее орбитальную часть, где ускорение соответствует центральной массе, и радиальную часть, где при такой же кривизне на других расстояниях относительное ускорение линейно связано с относительным расстоянием. Поэтому на расстояниях, меньших среднего радиуса орбиты, это ускорение меньше и соответствует некоторой меньшей фиктивной массе. В радиальной ее части на расстояниях, превышающих орбитальное, ускорение и радиус при сохранении кривизны возрастают и соответствуют большей фиктивной массе. В результате суперпозиции на орбитах далеких от Солнца планет должны присутствовать и колебания с периодами орбит внутренних планет. В фрагменте орбиты Нептуна за 1991-1993 гг. существуют колебания кривизны по расположению экстремальных точек и среднему периоду, близкие к орбите Венеры.Свойства гравитационного поля

Рис. 2. Относительные ускорения в поле противоположных сторон массы при изменении кривизны интервала.

Формы эквипотенциальной поверхности поля радиуса r массы спутника m с геометрическим центром О при: а. е = 0 ; б. стрелки показывают относительные ускорения изменения радиуса при возрастании абсолютной величины кривизны |K| интервала в зависимости от знака полупространств фона («-», «+» ); в. поляризация поля m при максимальном е ( «-» , «+») и 2-е внутренние приливные волны противоположной полярности («+» вверху, «-» внизу).

 

Если ускорение и радиус приливной волны связаны с центральной массой, то ее можно назвать основной, а если ускорение и радиус приливной волны относятся к фиктивной массе, то – модулирующей (колебания орбиты Нептуна с периодом орбиты орбиты Венеры являются моделирующими). Наличие модулирующих колебаний в любых точках гравитационного поля ставит вопрос о скорости распространения приливной волны. Если считать, что она соответствует скорости света, то для волны определенного периода существует предельное расстояние, на которое она может распространиться. Например, за период орбиты Венеры расстояние распространения волны R = c ∆ t = 1,5 10 14 м, т.е приливная волна ее орбиты должна не только влиять на Солнце, но и иметь место на орбитах планет и более долгопериодных приливных волн.

В результате сложнопериодного действия относительных ускорений (приливных волн) собственного гравитационного поля любая масса в пределах ее размеров подвергается относительным движениям и изменениям, совершая работу (А). Одинаковая работа по деформации, формообразованию и разрушению массы М может совершаться за небольшое время при большом ускорении или при малом ускорении и длительном интервале времени

А = [М (а ∆t)2]/2.

Одной из иллюстраций возможности влияния относительных ускорений на массу является изменчивость кометы [3]. В строении и изменении массы и формы есть особенности, которые могут быть следствием динамики ее собственного гравитационного поля. Движение комет вокруг Солнца происходит внутри сферы, диаметром порядка 1015 м, поэтому можно предположить, что, подобно планетной, существует кометная система приливных волн, соответствующая закономерности Тициуса-Боде, а само обращение вокруг Солнца связано с изменением направления напряженности фона [1]. Возможно 4 вида таких движений комет в орбитальных частях этих волн: при возрастании и уменьшении напряженности в фоновых интервалах в П- и А- полупространствах поля Солнца. Вследствие значительных эксцентриситетов, большая часть обращения кометы происходит в А — полупространстве ее орбиты, где ускорение движения аА = g/(1-e2А), (табл.2), поэтому и период ее обращения связан, в основном, с ним.

В точке среднего радиуса (е=0) орбиты кометы граница ее собственного поля обусловлена, в основном, массой и практически является окружностью. При приближении к Солнцу, возрастает напряженность поля, обуславливающая фоновую кривизну собственного поля кометы. Наличие «хвоста» показывает, что масса и средний радиус приливной волны минимальной кривизны уменьшаются, а ускорение ее поля и относительные расстояния между частицами возрастают. Частицы «хвоста», соответственно относительным ускорениям, расходятся: в направлении Солнца больше, образуя А-полупространства, чем с противоположной стороны (П — полупространства). С.В. Орлов обнаружил, что наибольшие ускорения расхождения частиц от ядра происходит с концов, удаленных от него (проявляется зависимость относительных ускорений от расстояний). «Оболочки» в области головы кометы могут свидетельствовать о расслоении собственного гравитационного поля кометы на внутренние приливные волны, действие которых усиливает разрушение ядра (чему способствует и более высокая температура). Относительные ускорения 2-х внутренних приливных волн собственного гравитационного поля ( рис. 1в, вверху, и 2в) в результате суперпозиции могут проявить себя в эллиптичной форме полупространства хвоста кометы в виде 2-х симметричных впадин при противоположной поляризации и двух выступов при одинаковой. При удалении от Солнца «хвост» кометы (m) уменьшается, что может быть связано с уменьшением напряженности поля Солнца (М) и изменением направления относительных ускорений расхождения на противоположное (рис.1в, внизу).

В таблице 2 показаны вертикальные ускорения поля орбиты и связанные с интервалом орбиты характеристики поля кометы Энке-Баклунда, n = 2,154 10-5 . За полупериод приливной волны орбиты собственное поле кометы фоновой кривизны, которому соответствует Т = 3,28 года, ∆ t = 1,606 10 7 c, частицы «хвоста» проходят со средним ускорением 0,94 10-7 м/с2 , ∆r = 6,055 106 м . Для расчета относительных изменений диаметра поля кометы были взяты средние характеристики: при возрастании напряженности поля Солнца вертикальное изменение диаметра 12,13 107 м, которое при сложении с его средним значением составляет 19 км. При уменьшении напряженности (движении от Солнца) аналогичное расстояние примерно 10 км. Реально большие размеры (порядка 109 -1011 м), обозначенные частицами «хвоста», возможно, связаны с их распространением вместе с приливными волнами ее собственного гравитационного поля, которые могут проходить расстояние Rc = c ∆t = 4,818 1015 м. При этом каждая частица-волна «хвоста» кометы должна испытывать сложные движения и изменения своего поля

Таблица 2.

Некоторые характеристики орбиты и собственного поля кометы Энке-Баклунда

 

* Масса m = 2 1016 кг.

 Обозначения: R , м — расстояния перигелия (П), апогелия (А) и среднего радиуса орбиты; r — такие же расстояния поля кометы минимальной кривизны и все обозначения для него; g и a , м/с2 , – напряженности и ускорения, е – эксцентриситеты орбиты (R) и ее П- и А-полупространств.

 

 (своего рода, сопротивление) в поле Солнца, которые уменьшают расстояние их распространения. Движение кометы в области перигелия своей орбиты с ускорением а П = g/(1-e2П) имеют аналогичные, но значительно большие изменения, о чем свидетельствует разрушение ее ядра, однако на близком расстоянии от Солнца, вследствие высокой температуры, изменения поля комет не обозначаются частицами ее массы.

Относительные движения меняют и, в конечном счете, разрушают массу, но темп ее разрушения будет зависеть не только от вещества массы, его состояния и условий, но и от кривизны (эксцентриситетов) приливных волн собственного гравитационного поля. Если этот процесс заметен для наблюдателя, то процесс разрушения может отразить характерные для относительных ускорений геометрические особенности: слоистость, углы конусов траекторий, суперпозицию приливных волн (разрушение через формообразование) и др. Значимость долгопериодной динамики относительных ускорений гравитационного поля для массы можно увидеть в форме Земли, ее континентов и океанов. В ряде специальных исследований причиной геологических изменений Земли и ее живой природы рассматриваются колебания энергии ее гравитационного поля [4,5,6]. Земная кора непрерывно испытывает изменения, которые носят неравномерный периодический характер – наблюдаются чередования более интенсивных движений и их замедлений. Движения разных континентов могут быть синхронными. Возвышение материков и снижение уровня океанов чередуется с их погружением в расширяющиеся водные бассейны. По-видимому, дрейф и формообразование материков происходит под действием собственного поля Земли, изменяющегося в ответ на суммарное влияние приливных волн как Галактического, так и Солнечного интервалов. Поскольку южное полушарие Земли обращено к центру Галактики, то, при возрастании напряженности поля галактического интервала, масса Земли может перераспределиться с севера на юг (рис. 1в, вверху), что также отражается заостренностью формы материков южного полушария (рис.4).Скорость колебательных движений составляет, в основном, доли сантиметров в год [7]. Относительные ускорения переменного гравитационного поля Земли совершают работу как по движению и формообразованию ее массы, так и динамике подвижных сред (атмосферы и гидросферы). Если эта работа продолжается в течение Галактического года при эксцентриситете ( е = 0,15) T = 200 млн. лет = 6 1015 с, кривизне галактического интервала К = 10-30 с-2 , то для среднего расстояния толщины коры Земли (∆R = 30 км) скорость относительного движения V = а ∆t = K ∆R ∆t = 2,2 10 -11 м/с = 0,7 мм/год, а для радиуса Земли около 5 см/год.

Работу поля по формообразованию Земли, в течение миллиардов лет с периодом Галактического года и иерархической лестницей периодов приливных волн, начиная с геологического ( порядка 60-80 млн. лет), можно обнаружить на глобусе. При этом сами материки, по-видимому, имеют собственные сложные периодические гравитационные поля, следствием приливных волн которых могут являться движения воды в виде течений, разломы и границы с повышенной сейсмической и вулканической активностью. Например, в области Мексиканского залива находится точка пересечения конуса траекторий приливной волны, где относительные ускорения имеют максимальное значение. В орбитальных частях таких приливных волн могут также быть циркуляционные или вихревые движения воды и воздуха. В крупном плане глобусов и карт в форме континентов и океанических течений наиболее часто встречаются углы, характерные для «конусов траекторий»: примерно 53о , 127 о , 27о , и 63о (рис.4). На глобусах разного масштаба эти углы выражены с разной четкостью, однако их наличие очевидно.

Таким образом, градиент энергии гравитационного поля проявляется в ускоренном движении тел относительно центральной массы. Однако, неизбежно сопряженной с изменением поля, является плотность его энергии, которая геометрически выражается в динамике относительных расстояний силовых линий и эквипотенциальных поверхностей. Адекватной оценкой этой стороны гравитационного поля является кривизна его интервала, на основе которой можно рассчитать все характеристики относительных движений, отражаемые массами пробных тел.

Сделано предположение, что основой механизма взаимодействия гравитационного поля и массы тела, является энергия интервала, общая как для центральной массы, так и для массы тела. Отличие характеристик полей масс обусловлено отношением их величин. Периодичность изменения энергии поля интервала центральной массы через скорости изменения напряженности образует систему взаимообусловленных поляризованных приливных волн, как на центральной массе, так и на массе в интервале. При этом их одноименные экстремальные значения относительно масс последовательно расположены в виде спиралей. Периодичность характеристик приливных волн соответствует закономерности Тициуса-Боде, а создающие их относительные ускорения существуют в каждой точке гравитационного поля в виде суперпозиции. Поэтому любая масса подвергается действию относительного ускорения собственного гравитационного поля сложной периодичности, которое через формообразование разрушает ее.

Поскольку относительные вертикальные ускорения в два раза превышают горизонтальные и направлены противоположно, то в переменном гравитационном поле эти направления периодически меняются. В системе координат, связанной с пробными телами в интервале, траектории движений закономерны, величины их относительных смещений линейно связаны с исходными расстояниями и обуславливают тангенциальную скорость на орбитах. Результаты предполагаемых стереотипных геометрических действий приливных волн гравитационных полей были обнаружены в формах комет и материков (океанов) Земли.

Скорости движений, формы, периоды и координаты массы или ее частей, связанные с определенными геометрическими изменениями ее собственного гравитационного поля, в своей основе являются закономерными и поэтому принципиально прогнозируемы. Учет периодичности изменения собственных гравитационных полей масс является не только теоретически, но и практически, очень важным, в частности, для оценки режимов функционирования сооружений, корректности работы измерительных приборов (особенно измеряющих вертикальные расстояния), состояния и динамики биологических систем. Такая информация необходима и для установления пространственно-временных причинно-следственных воздействий гравитации на геосферы с целью оптимизации прогнозов эволюционных и катастрофических природных изменений

 

Литература:

1.                  Бортникова Г.И. Гипотеза механизма закономерности Тициуса-Боде. Журнал Молодой ученый, № 7, 2009, с. 7-14. (http:// www.moluch.ru/ )

2.                  Тейлор Э., Уиллер Дж. Физика пространства-времени. М., Мир, 1971, с.229

3.                  Орлов С.В. Кометы. БСЭ, т.22, госиздат. БСЭ, 1953. с.134

4.                  Балуховский Н.Ф. Геологические циклы.Изд-во Наукова Думка, Киев, 1966,167 с.

5.                  Лавров А.А. Некоторые следствия движения Земли в гравитационном поле Галактики. Географический сборник, №15, Астрогеология.Изд-во АНСССР, М-Л, 1962, с.162-167.

6.                  Личков Б.Л. К основам современной теории Земли. Изд-во ЛГУ, 1965.

7.                  Грушинский Н.П., Сажина Н.Б. Гравитационная разведка. М. Недра, 1981, 391 с.

 

Источник: moluch.ru

Потенциал гравитационного поля

Пусть гравитационное поле создается закрепленной в начале координат материальной точкой массы $m$. Тогда на материальную точку массы $m’$, находящуюся в точке с радиус-вектором $r$, будет действовать сила:

$F=Gm’=-gamma frac{mm’}{r^{2}} e_{r}$ (2)

Потенциальная энергия точки $m’$ определяется в этом случае выражением:

$U=-gamma frac{mm’}{r} $. (3)

(потенциальная энергия при $r=infty $ принята равной нулю). Выражение (3) можно трактовать также как взаимную потенциальную энергию материальных точек $m’$и $m$.

Из (3) видно, что каждой точке поля, создаваемого материальной точкой $m$, соответствует определенное значение потенциальной энергии, которой обладает в этом поле материальная точка $m’$. Поэтому поле можно характеризовать потенциальной энергией, которой обладает в данном месте материальная точка с $m’=1$ Величину

$varphi =frac{U}{m’} $. (4)

называют $потенциалом$ гравитационного поля. В этой формуле $U$ есть потенциальная энергия, которой обладает материальная точка массы $m’$ в данной точке поля.

Потенциал поля, созданного материальной точкой массы $m$на расстоянии $r$ от нее:

Зная потенциал поля, можно вычислить работу, совершаемую над частицей $m’$ силами поля при перемещении ее из положения 1 в положение 2. Эта работа будет равна:

$A_{1-2} =U_{1} -U_{2} =m(varphi _{1} -varphi _{2} )$. (5)

Согласно (4) сила, действующая на частицу $m’$, равна $F=m’G$, а потенциальная энергия этой частицы равна $U=m’varphi $.

Так как $F=-nabla U$, т. е. $m’G=-nabla (m’varphi )$. Вынеся из-под знака градиента константу $m’$ и сократив затем на эту константу, придем к соотношению между напряженностью и потенциалом гравитационного поля:

Принцип суперпозиции гравитационных полей

Принцип независимости действия сил для полей приводит к принципу их суперпозиции: гравитационное поле, создаваемое несколькими телами, равно геометрической сумме гравитационных полей, возбуждаемых этими телами в отдельности. Математически этот принцип выражается формулами:

На основе этих формул можно вычислить гравитационное поле любого тела. Для этого надо мысленно разбить тело на малые части, и подсчитать характеристики поля.

Гравитационное поле Земли является силовым полем, которое обусловлено притяжением ее массы и центробежной силой, возникающей как следствие вращения Земли. Гравитационное поле Земли:

  • зависит (хотя и в незначительной степени) от притяжения Луны, Солнца и прочих тел, а также массы земной атмосферы;
  • характеризуется силой тяжести, потенциалом и рядом различных производных (часть потенциала называют геопотенциалом — он обусловлен только притяжением Земли);
  • является основанием для определения геоида, который характеризует гравиметрическую фигуру Земли — по этой фигуре задаются высоты поверхности планеты;
  • по нему делают заключение о гидростатическом равновесном состоянии планеты и возникающих из-за этого напряжениях в её недрах, исследуют упругие свойства Земли;
  • помогает производить расчеты орбит искусственных спутников, траектории движения ракет;
  • аномалии поля помогают узнавать распределение неоднородностей по плотности в земной коре, верхней части мантии, проводить тектоническое районирование, искать полезные ископаемые.

Источник: spravochnick.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.