Сверхкритическая вода


Сверхкрити́ческий флюи́д (СКФ), сверхкрити́ческая жи́дкость — состояние вещества, при котором исчезает различие между жидкой и газовой фазой. Любое вещество, находящееся при температуре и давлении выше критической точки, является сверхкритической жидкостью. Свойства вещества в сверхкритическом состоянии промежуточные между его свойствами в газовой и жидкой фазе. Так, СКФ обладает высокой плотностью, близкой к жидкости, низкой вязкостью и при отсутствии межфазных границ поверхностное натяжение также исчезает. Коэффициент диффузии при этом имеет промежуточное между жидкостью и газом значение. Вещества в сверхкритическом состоянии могут применяться в качестве заменителей органических растворителей в лабораторных и промышленных процессах. Наибольший интерес и распространение в связи с определенными свойствами получили сверхкритическая вода и сверхкритический диоксид углерода[1][2]. Сверхкритическая вода

Свойства веществ в сверхкритическом состоянии

В Таблице 1 приведены критические параметры и молярная масса для практически наиболее применимых веществ.



Таблица 1. Критические параметры различных растворителей (Reid et al, 1987),[3],[4]
Растворитель Молярная масса Критическая температура, Tкрит Критическое давление, Pкрит Критическая плотность, ρкрит
г/моль K МПа (атм.) г/см3
Диоксид углерода (CO2) 44,01 303,9 7,38 (72,8) 0,468
Вода (H2O) 18,015 647,096 22,064 (217,755) 0,322
Метан (CH4) 16,04 190,4 4,60 (45,4) 0,162
Этан (C2H6) 30,07 305,3 4,87 (48,1) 0,203
Пропан (C3H8) 44,09 369,8 4,25 (41,9) 0,217
Этилен (C2H4) 28,05 282,4 5,04 (49,7) 0,215
Пропилен (C3H6) 42,08 364,9 4,60 (45,4) 0,232
Метанол (CH3OH) 32,04 512,6 8,09 (79,8) 0,272
Этанол (C2H5OH) 46,07 513,9 6,14 (60,6) 0,276
Ацетон (C3H6O) 58,08 508,1 4,70 (46,4) 0,278
Аммиак (NH3) 17,03 405,3 11,35 (115,7) 0,322
Ксенон (Xe) 131,29 289,5 5,84 (58,4) 1,110

Одно из наиболее важных свойств сверхкритического состояния — это способность к растворению веществ. Изменяя температуру или давление флюида, можно менять его свойства в широком диапазоне. Так, можно получить флюид, по свойствам близкий либо к жидкости, либо к газу. Растворяющая способность флюида увеличивается с увеличением плотности (при постоянной температуре). Поскольку плотность возрастает при увеличении давления, то меняя давление можно влиять на растворяющую способность флюида (при постоянной температуре). В случае с температурой зависимость свойств флюида несколько более сложная — при постоянной плотности растворяющая способность флюида также возрастает, однако вблизи критической точки незначительное увеличение температуры может привести к резкому падению плотности, и, соответственно, растворяющей способности[5].


Сверхкритические флюиды неограниченно смешиваются друг с другом, поэтому при достижении критической точки смеси система всегда будет однофазной. Приблизительная критическая температура бинарной смеси может быть рассчитана как среднее арифметическое от критических параметров веществ

Tc(mix) = (мольная доля A) × TcA + (мольная доля B) × TcB.

Если необходима бо́льшая точность, то критические параметры могут быть рассчитаны с использованием уравнений состояния, например с помощью уравнения Пенга-Робинсона.[6]

Области применения

Сверхкритическая флюидная экстракция

Одной из наиболее широких областей применения флюидов является сверхкритическая флюидная экстракция. Самым распространенным растворителем для СКФ-экстракции является углекислый газ, так как он дешев, экологичен и имеет относительно невысокие критические температуру Tкрит и давление Pкрит.

СКФ-экстракция имеет ряд значительных преимуществ перед экстракцией органическими растворителями[7]:

  • получаемый экстракт не нуждается в очистке от растворителя;
  • экологичность процесса («зелёный процесс»);
  • в некоторых случаях экстракция может быть селективной за счет контроля плотности растворителя.

Сверхкритическая флюидная хроматография

Сверхкритическая флюидная хроматография имеет ряд преимуществ перед жидкостной хроматографией (ЖХ) и газовой хроматографией (ГХ). В ней возможно применение универсальных ПИД-детекторов (как в ГХ и в отличие от ЖХ), разделение термически нестабильных веществ и нелетучих веществ (в отличие от ГХ). На данный момент, несмотря на все преимущества, не нашла широкого применения (за исключением некоторых особых областей, таких как разделение энантиомеров и высокомолекулярных углеводородов[8]). Несмотря на высокую чистоту получаемых соединений, высокая стоимость делает СКФ-хроматографию применимой только в случае очистки или выделения дорогих веществ. Очень перспективна и активно внедряется СКФ-хроматография, например, в фармацевтике.

Флюид как среда для проведения реакций

Уникальная способность сверхкритического флюида растворять большие объемы газа, в особенности H2 и N2, вкупе с высоким коэффициентом диффузии, делает чрезвычайно перспективным его использование в качестве растворителя.[9] Изменение температуры и давления позволяют влиять на свойства растворителя и маршрут реакции, что делает возможным более высокий выход целевого продукта.

История


Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822 году, нагревая различные жидкости в паровом автоклаве Папена. Внутрь автоклава он поместил кремниевый шарик. Сам де ла Тур работал в области акустики — в частности, ему принадлежит изобретение сирены. При встряхивании автоклава он слышал всплеск, возникавший, когда шарик преодолевал границу раздела фаз. Повторяя встряхивание в процессе дальнейшего нагревания, Каньяр де ла Тур заметил, что звук, издаваемый шариком при столкновении со стенкой автоклава, в определённый момент резко меняется — становится глухим и более слабым. Для каждой жидкости это происходило при строго определенной температуре, которую стали именовать точкой де ла Тура.

В двух опубликованных де ла Туром статьях в Annales de Chimie et de Physique описаны его эксперименты по нагреванию спиртов в запаянных стеклянных трубках под давлением. Он наблюдал, как по мере нагревания объём жидкости увеличивался в два раза, а затем она вообще исчезала, превращаясь в некое подобие газа и становясь прозрачной, так что казалось, что трубка пуста. При охлаждении наблюдалось образование плотных непрозрачных облаков (явление, которое сейчас принято называть критической опалесценцией). Также де ла Тур установил, что выше определенной температуры увеличение давления не приводит к образованию жидкости.


В последующих работах де ла Тур сообщает о серии схожих опытов с различными веществами. Он экспериментировал с водой, спиртом, эфиром и дисульфидом углерода.

Фарадей по достоинству оценил выполненную работу — в частности, в своем письме Уильяму Уэвелу он пишет: «Cagniard de la Tour made an experiment some years ago which gave me occasion to want a new word»; также в этом письме он указывает на то, что точка перехода жидкости в состояние флюида не была названа де ла Туром. В своих дальнейших работах Фарадей называет сверхкритическое состояние «состоянием де ла Тура», а саму точку фазового перехода точкой де ла Тура.

В своих работах Д. И. Менделеев в 1861 г. назвал критическую температуру температурой абсолютного кипения.

Термин «сверхкритический флюид» (supercritical fluid) был впервые введен в работах Т. Эндрюса в 1869 году. Проводя опыты в толстостенных стеклянных трубках, он измерял зависимость объема от давления и построил линии сосуществования двух фаз для углекислоты.

В 1873 году Ван дер Ваальс показал, что экспериментально найденные уравнения состояния Эндрюса могут быть объяснены количественно с использованием расширенной модели идеального газа, где в простой форме учтены молекулярные притяжение и отталкивание на близких расстояниях.

В начале ХХ века все методы построения уравнений состояния, базирующиеся на приближении среднего поля, были систематизированы в феноменологической теории Л. Д. Ландау, описывающей в том числе и сверхкритические фазовые переходы системы.[10][11]


Первое промышленное производство на основе применения сверхкритических флюидов заработало в 1978 году — это была установка по декофеинизации кофе, за ним в 1982 году последовала промышленная экстракция хмеля (для пивоваренной промышленности).[12]

Отрывок, характеризующий Сверхкритическая жидкость

Все это странное, непонятное теперь противоречие факта с описанием истории происходит только оттого, что историки, писавшие об этом событии, писали историю прекрасных чувств и слов разных генералов, а не историю событий.
Для них кажутся очень занимательны слова Милорадовича, награды, которые получил тот и этот генерал, и их предположения; а вопрос о тех пятидесяти тысячах, которые остались по госпиталям и могилам, даже не интересует их, потому что не подлежит их изучению.
А между тем стоит только отвернуться от изучения рапортов и генеральных планов, а вникнуть в движение тех сотен тысяч людей, принимавших прямое, непосредственное участие в событии, и все, казавшиеся прежде неразрешимыми, вопросы вдруг с необыкновенной легкостью и простотой получают несомненное разрешение.
Цель отрезывания Наполеона с армией никогда не существовала, кроме как в воображении десятка людей. Она не могла существовать, потому что она была бессмысленна, и достижение ее было невозможно.
Цель народа была одна: очистить свою землю от нашествия.


ль эта достигалась, во первых, сама собою, так как французы бежали, и потому следовало только не останавливать это движение. Во вторых, цель эта достигалась действиями народной войны, уничтожавшей французов, и, в третьих, тем, что большая русская армия шла следом за французами, готовая употребить силу в случае остановки движения французов.
Русская армия должна была действовать, как кнут на бегущее животное. И опытный погонщик знал, что самое выгодное держать кнут поднятым, угрожая им, а не по голове стегать бегущее животное.

Когда человек видит умирающее животное, ужас охватывает его: то, что есть он сам, – сущность его, в его глазах очевидно уничтожается – перестает быть. Но когда умирающее есть человек, и человек любимый – ощущаемый, тогда, кроме ужаса перед уничтожением жизни, чувствуется разрыв и духовная рана, которая, так же как и рана физическая, иногда убивает, иногда залечивается, но всегда болит и боится внешнего раздражающего прикосновения.
После смерти князя Андрея Наташа и княжна Марья одинаково чувствовали это. Они, нравственно согнувшись и зажмурившись от грозного, нависшего над ними облака смерти, не смели взглянуть в лицо жизни. Они осторожно берегли свои открытые раны от оскорбительных, болезненных прикосновений. Все: быстро проехавший экипаж по улице, напоминание об обеде, вопрос девушки о платье, которое надо приготовить; еще хуже, слово неискреннего, слабого участия болезненно раздражало рану, казалось оскорблением и нарушало ту необходимую тишину, в которой они обе старались прислушиваться к незамолкшему еще в их воображении страшному, строгому хору, и мешало вглядываться в те таинственные бесконечные дали, которые на мгновение открылись перед ними.
Только вдвоем им было не оскорбительно и не больно.


и мало говорили между собой. Ежели они говорили, то о самых незначительных предметах. И та и другая одинаково избегали упоминания о чем нибудь, имеющем отношение к будущему.
Признавать возможность будущего казалось им оскорблением его памяти. Еще осторожнее они обходили в своих разговорах все то, что могло иметь отношение к умершему. Им казалось, что то, что они пережили и перечувствовали, не могло быть выражено словами. Им казалось, что всякое упоминание словами о подробностях его жизни нарушало величие и святыню совершившегося в их глазах таинства.
Беспрестанные воздержания речи, постоянное старательное обхождение всего того, что могло навести на слово о нем: эти остановки с разных сторон на границе того, чего нельзя было говорить, еще чище и яснее выставляли перед их воображением то, что они чувствовали.

Но чистая, полная печаль так же невозможна, как чистая и полная радость. Княжна Марья, по своему положению одной независимой хозяйки своей судьбы, опекунши и воспитательницы племянника, первая была вызвана жизнью из того мира печали, в котором она жила первые две недели.


а получила письма от родных, на которые надо было отвечать; комната, в которую поместили Николеньку, была сыра, и он стал кашлять. Алпатыч приехал в Ярославль с отчетами о делах и с предложениями и советами переехать в Москву в Вздвиженский дом, который остался цел и требовал только небольших починок. Жизнь не останавливалась, и надо было жить. Как ни тяжело было княжне Марье выйти из того мира уединенного созерцания, в котором она жила до сих пор, как ни жалко и как будто совестно было покинуть Наташу одну, – заботы жизни требовали ее участия, и она невольно отдалась им. Она поверяла счеты с Алпатычем, советовалась с Десалем о племяннике и делала распоряжения и приготовления для своего переезда в Москву.
Наташа оставалась одна и с тех пор, как княжна Марья стала заниматься приготовлениями к отъезду, избегала и ее.
Княжна Марья предложила графине отпустить с собой Наташу в Москву, и мать и отец радостно согласились на это предложение, с каждым днем замечая упадок физических сил дочери и полагая для нее полезным и перемену места, и помощь московских врачей.
– Я никуда не поеду, – отвечала Наташа, когда ей сделали это предложение, – только, пожалуйста, оставьте меня, – сказала она и выбежала из комнаты, с трудом удерживая слезы не столько горя, сколько досады и озлобления.
После того как она почувствовала себя покинутой княжной Марьей и одинокой в своем горе, Наташа большую часть времени, одна в своей комнате, сидела с ногами в углу дивана, и, что нибудь разрывая или переминая своими тонкими, напряженными пальцами, упорным, неподвижным взглядом смотрела на то, на чем останавливались глаза. Уединение это изнуряло, мучило ее; но оно было для нее необходимо. Как только кто нибудь входил к ней, она быстро вставала, изменяла положение и выражение взгляда и бралась за книгу или шитье, очевидно с нетерпением ожидая ухода того, кто помешал ей.
Ей все казалось, что она вот вот сейчас поймет, проникнет то, на что с страшным, непосильным ей вопросом устремлен был ее душевный взгляд.
В конце декабря, в черном шерстяном платье, с небрежно связанной пучком косой, худая и бледная, Наташа сидела с ногами в углу дивана, напряженно комкая и распуская концы пояса, и смотрела на угол двери.
Она смотрела туда, куда ушел он, на ту сторону жизни. И та сторона жизни, о которой она прежде никогда не думала, которая прежде ей казалась такою далекою, невероятною, теперь была ей ближе и роднее, понятнее, чем эта сторона жизни, в которой все было или пустота и разрушение, или страдание и оскорбление.
Она смотрела туда, где она знала, что был он; но она не могла его видеть иначе, как таким, каким он был здесь. Она видела его опять таким же, каким он был в Мытищах, у Троицы, в Ярославле.
Она видела его лицо, слышала его голос и повторяла его слова и свои слова, сказанные ему, и иногда придумывала за себя и за него новые слова, которые тогда могли бы быть сказаны.
Вот он лежит на кресле в своей бархатной шубке, облокотив голову на худую, бледную руку. Грудь его страшно низка и плечи подняты. Губы твердо сжаты, глаза блестят, и на бледном лбу вспрыгивает и исчезает морщина. Одна нога его чуть заметно быстро дрожит. Наташа знает, что он борется с мучительной болью. «Что такое эта боль? Зачем боль? Что он чувствует? Как у него болит!» – думает Наташа. Он заметил ее вниманье, поднял глаза и, не улыбаясь, стал говорить.
«Одно ужасно, – сказал он, – это связать себя навеки с страдающим человеком. Это вечное мученье». И он испытующим взглядом – Наташа видела теперь этот взгляд – посмотрел на нее. Наташа, как и всегда, ответила тогда прежде, чем успела подумать о том, что она отвечает; она сказала: «Это не может так продолжаться, этого не будет, вы будете здоровы – совсем».
Она теперь сначала видела его и переживала теперь все то, что она чувствовала тогда. Она вспомнила продолжительный, грустный, строгий взгляд его при этих словах и поняла значение упрека и отчаяния этого продолжительного взгляда.
«Я согласилась, – говорила себе теперь Наташа, – что было бы ужасно, если б он остался всегда страдающим. Я сказала это тогда так только потому, что для него это было бы ужасно, а он понял это иначе. Он подумал, что это для меня ужасно бы было. Он тогда еще хотел жить – боялся смерти. И я так грубо, глупо сказала ему. Я не думала этого. Я думала совсем другое. Если бы я сказала то, что думала, я бы сказала: пускай бы он умирал, все время умирал бы перед моими глазами, я была бы счастлива в сравнении с тем, что я теперь. Теперь… Ничего, никого нет. Знал ли он это? Нет. Не знал и никогда не узнает. И теперь никогда, никогда уже нельзя поправить этого». И опять он говорил ей те же слова, но теперь в воображении своем Наташа отвечала ему иначе. Она останавливала его и говорила: «Ужасно для вас, но не для меня. Вы знайте, что мне без вас нет ничего в жизни, и страдать с вами для меня лучшее счастие». И он брал ее руку и жал ее так, как он жал ее в тот страшный вечер, за четыре дня перед смертью. И в воображении своем она говорила ему еще другие нежные, любовные речи, которые она могла бы сказать тогда, которые она говорила теперь. «Я люблю тебя… тебя… люблю, люблю…» – говорила она, судорожно сжимая руки, стискивая зубы с ожесточенным усилием.
И сладкое горе охватывало ее, и слезы уже выступали в глаза, но вдруг она спрашивала себя: кому она говорит это? Где он и кто он теперь? И опять все застилалось сухим, жестким недоумением, и опять, напряженно сдвинув брови, она вглядывалась туда, где он был. И вот, вот, ей казалось, она проникает тайну… Но в ту минуту, как уж ей открывалось, казалось, непонятное, громкий стук ручки замка двери болезненно поразил ее слух. Быстро и неосторожно, с испуганным, незанятым ею выражением лица, в комнату вошла горничная Дуняша.
– Пожалуйте к папаше, скорее, – сказала Дуняша с особенным и оживленным выражением. – Несчастье, о Петре Ильиче… письмо, – всхлипнув, проговорила она.

Кроме общего чувства отчуждения от всех людей, Наташа в это время испытывала особенное чувство отчуждения от лиц своей семьи. Все свои: отец, мать, Соня, были ей так близки, привычны, так будничны, что все их слова, чувства казались ей оскорблением того мира, в котором она жила последнее время, и она не только была равнодушна, но враждебно смотрела на них. Она слышала слова Дуняши о Петре Ильиче, о несчастии, но не поняла их.

Источник: wiki-org.ru

Окислительные методы уничтожения органических отходов.

Таблица 1. Характеристики окислительных методов переработки органических отходов

 

Способ окисления Преимущества Недостатки Стоимость в усл.единицах
Биологическая очистка Экологическая безопасность Высокая стоимость сооружений, высокие эксплуатационные расходы, нестабильность очистки  

200

Сжигание

в воздухе

Оперативность Сложность и высокая стоимость газоочистки 100
Химическое окисление

3, Н2О2 и др.)

Простота оборудования, оперативность Большой расход окислителей, низкая степень очистки  

60

Сверхкритическое водное окисление Кратковременность процесса, экологическая безопасность, оперативность Высокое давление в реакторе, сложность оборудования  

<10

Скорость реакции окисления при сверхкритических параметрах водной среды соизмерима со скоростью реакции горения топлива на воздухе с температурой во фронте горения  ~ 2500оС. Это связано с тем, что реакции протекают в условиях молекулярной дисперсности реагентов, находящихся в гомогенном высокотемпературном флюиде невысокой плотности. Продолжительность пребывания в реакторе – меньше 1 минуты. В качестве окислителя может быть использован кислород воздуха, как, впрочем, и любые другие окислители.

Таким образом, метод СКВО претендует на наиболее высокую экологическую и экономическую эффективность среди других окислительных технологий. Он практически абсолютно универсален, обеспечивая полное одностадийное и очень быстрое окисление любых органических веществ с образованием безвредных продуктов. Происходит полное превращение исходных органических продуктов в углекислый газ и воду, аммонийные и нитратные группы разлагаются с выделением газообразного  N2, галогены, фосфор и сера из органических веществ образуют кислотные остатки, металлы переходят в неорганические соли или окислы.

Компактные установки СКВО для переработки органических отходов

Специалистами нашей компании могут быть изготовлены установки СКВО различной производительности, контейнерного и стационарного типа, различного климатического исполнения. Для получения полной информации  просим Вас заполнить форму обратной связи, заказать обратный звонок или просто связаться с нашим оператором по телефону.

С описанием работы установки и ее типовой схеме можно ознакомиться по этой ссылке.

Источник: 3a-e.ru

Сейчас вы можете подумать: «Как же это возможно?» Ну, для этого нужно соблюсти очень много условий. В большинстве случаев главными факторами являются время, температура и давление. В других случаях с водой происходят странные вещи, когда ее смешивают с другими субстанциями.

10. Лед VII

Сверхкритическая вода

Лед холодный. Но не лед VII (так называемый «горячий лед»), который, вообще-то, горячий. Ученые называют обычный лед, который есть у нас на Земле «лед Ih», где маленькая «h» означает «шестигранник», так как атомы кислорода выстраиваются в форме шестигранника, когда вода замерзает при нормальном давлении.

Но лед Ih превращается в лед II, когда давление увеличивается. Лед II превращается в лед III при еще большем увеличении давления, и так продолжается все дальше и дальше, пока он не превращается в лед VII, в котором атомы расположены в форме куба.

Лед VII горячий, потому что он формируется под высоким давлением и температурой. На Земле он теоретически может существовать только глубоко под мантией, где давление достаточно высокое, чтобы превратить обычную воду в лед VII. Но, с другой стороны, он не может там сформироваться, потому что высокая температура превратит воду в пар раньше, чем давление превратит ее в лед VII.

Ученые создали лед VII в лабораторных условиях. Они так же обнаружили его в составе алмазов, сформированных глубоко в мантии Земли. Лед был создан из капель воды, которые попали в алмазы в то время, когда те только формировались в мантии.

9. Сухая вода

Сверхкритическая вода

Мы получаем сухую воду при смешивании обычной воды с двуокисью кремния (при помощи машин). Она ведет себя как сухое твердое вещество, хотя и является водой на 95 процентов. Она состоит из сахарообразных крупинок, которые на самом деле являются капельками воды, покрытыми двуокисью кремния. Кремний не дает каплям соединиться и превратиться в жидкость.

Сухая вода была создана в 1968 г., и в то время использовалась в косметологии. Вскоре все про нее забыли, пока в 2006 году ее не открыли заново в Университете Халла, Великобритания.

Ученые считают, что сухую воду можно использовать для поглощения углекислого газа из атмосферы. Это может сработать, учитывая, что сухая вода поглощает в три раза больше углекислого газа, чем просто обычная вода. Ученые также рассматривают возможность использования ее для хранения и транспортировки вредных химических веществ.

8. Сверхкритическая вода

Сверхкритическая вода

Вещество достигает сверхкритического состояния, когда его температура и давление становятся настолько высокими, что границы между жидким и газообразным состояниями стираются. В случае с водой это происходит после газообразного состояния. Вода становится твердой, жидкой, газообразной и сверхкритической – именно в таком порядке. Вода в этой точке существует как странный пар, который фактически газом и не является.

Вода достигает сверхкритического состояния при 373 градусах по Цельсию и при давлении в 220 бар. В таком состоянии она не может вернуться в жидкое состояние. Сверхкритическая вода (как и любая сверхкритическая жидкость) в таком состоянии может проходить через твердое вещество – как газ, но все еще может растворять другие вещества – как жидкость.

7. Плазменная вода

Сверхкритическая вода

Глис 1214 б – одна из самых странных планет. Она в шесть раз больше Земли и полна воды – включая плазменную воду, то есть вода там существует в плазменном состоянии.

Материя в плазменном состоянии немного похожа на газ. У нее низкая плотность, а также нет определенной формы или объема – прямо как у газа. Но с другой стороны, в отличие от газа, атомы материи лишены своих электронов. И положительно заряженные ядра перемещаются свободно. Вот почему некоторые ученые считают плазму электрически заряженной версией газа.

Возвращаясь к Глис 1214 б. Планета находятся так близко к своей звезде, что год на ней длится всего лишь 38 часов. Для сравнения Земля находится в 70 раз дальше от Солнца. Дневная температура может достигать 282 градуса по Цельсию, что слишком горячо для любой формы жизни.

Близость Глис 1214 б к своей звезде может быть причиной того, что вода на ней существует в форме плазмы. Непомерно высокая температура и высокое давление на самой планете заставляют воду нагреваться и сжиматься настолько, что она превращается в плазму. Плазменная вода считается одной из сверхкритических форм воды, о которых мы упоминали ранее.

6. Тройная точка воды

Сверхкритическая вода

Тройная точка вещества определяется как условия, когда вещество может существовать в твердом, жидком и газообразном состоянии и находится в термодинамическом равновесии. Это может случиться, только если вещество достигает специфической температуры и давления. Для воды эта температура, равная 273,16 по Кельвину (0,01 по Цельсию) и давление, равное 611,66 Паскалей (6,1166 мБар, 0,0060366 атмосфер), соответственно.

Тройную точку воды используют для определения температуры по Кельвину, калибровки термометров и определения тройной точки других жидкостей. Вода в своей тройной точке может быть превращена в твердое вещество, жидкость или газ, просто регулировкой давления и температуры соответственно.

5. Сверхзвуковой лед

Сверхкритическая вода

Сверхзвуковой лед, или лед XVIII – это еще одна форма льда, сформированная массивным повышением температуры и давления. Он горячий, черный, плотный и ведет себя как металл. Твердый куб изо льда XVIII в четыре раза тяжелее, чем такой же куб из обычного льда. Некоторые ученые верят, что лед XVIII может быть обычной формой воды во вселенной, существуя на «ледяных гигантах», как Уран и Нептун.

Интересно, что ученые подтвердили существование льда XVIII только в 2019 году, хотя о его существовании говорилось еще в 1988 году. В том году группа ученых предположила, что вода может вести себя как металл, если температура и давление достаточно высоки. Лед XVIII образуется, только если температура достигает тысячи градусов, а давление – миллион атмосфер.

Ученые получили лед XVIII в результате эксперимента, в котором они использовали мощные лазеры, чтобы создать ударные волны, которые мгновенно повышали температуру и давление, оказываемое на капли воды. Ученые наблюдали, как молекулы водорода и кислорода моментально разделялись по мере того, как вода превращалась в кристаллы льда.

Молекулы кислорода формировали замороженные, твердые структуры, называемые кубическими решетками, в то время как молекулы водорода стекали, как жидкость, вокруг затвердевшего кислорода. Некоторые ученые говорят, что этот так называемый лед нельзя считать водой, потому что молекулы водорода и кислорода разделены. Они говорят, что молекулы водорода и кислорода должны быть вместе, чтобы считаться водой.

4. Аэролед

Сверхкритическая вода

Аэролед – это самая легкая версия льда извне. Он был «обнаружен» в симуляции в 2017 году исследователями из Университета Окаяма в Японии во время эксперимента, проводимого, чтобы понять, как вода превращается в лед. Исследовательская группа создала эту форму льда, когда они попытались выяснить, что происходит, когда вода замерзает при отсутствии давления.

Остальные формы льда, упомянутые здесь, были созданы при экстремально высоком давлении, оказываемом на воду. Эта симуляция была проведена при нулевом давлении.

Ученые создали аэролед путем извлечения двух атомов кислорода в диоксиде кремния (так называемом кварце), оставив только кремний. Затем они заменили атомы кремния атомами кислорода, прежде чем присоединить два атома водорода для образования льда. Это решение может иметь разные последствия того, как вода поведет себя в нанотрубках, нанопорах или других частях космоса.

3. Аморфный лед

Сверхкритическая вода

Аморфный лед был создан мгновенным охлаждением жидкой воды, так что у молекул не было времени, чтобы образовать кристаллическое вещество. Не имея нормальной упорядоченной кристаллической структуры обычного льда, аморфный лед считается стеклом, то есть жидкостью, которая движется очень медленно. Аморфный лед не распространен на Земле, но считается одной из самых распространенных форм воды во вселенной.

Исследование 2007 года, включающее компьютерные симуляции аморфного льда, подразумевало, что это стекло может представлять собой состояние между кристаллическим и жидким. Смоделированный аморфный лед показал неупорядоченную гиперуниформность, в которой есть порядок на больших пространственных расстояниях, но нет на коротких расстояниях.

2. Горящий лед

Сверхкритическая вода

Гидраты метана – это своего рода лед, который действительно может гореть, так что вы можете поджечь его, как лист бумаги. Лед, о котором идет речь, содержит метан. Он естественным образом образуется на определенных глубинах океана, в вечной мерзлоте и даже в нефте- и газопроводах, где может вызвать засоры. Это последнее состояние, которое было обнаружено еще в 1930-х годах.

Горящий лед считается сжатым и замороженным метаном. Замороженный метан вскоре покрывается льдом, создавая горящий лед. Ученые считают этот лед возможным источником топлива, исходя из того, что он содержит много метана. Кубометр горящего льда может высвободить 160 кубометров метана. Он также считается более чистым, чем уголь.

К сожалению, многие страны не могут заменить свой уголь горящим льдом, потому что его трудно добывать из-под воды. Он также становится нестабильным, когда его выносят на поверхность. Ученые говорят, что горящий лед может также обернуться в другую сторону и усугубить изменение климата. Это может произойти, когда гидрат метана, содержащийся в вечной мерзлоте, расплавится и выпустит метан в атмосферу.

1. Квантовая вода

Сверхкритическая вода

В 2016 году ученые из Национальной лаборатории Оук-Ридж Министерства энергетики США создали новое квантовое состояние воды. Они сделали свое открытие, «продавливая» молекулы воды между шестиугольными кристаллами берилла.

Массивное сжатие увеличило давление настолько, что атомы молекул воды стали неровными, и с этого момента вода больше не подчиняется ряду физических законов. Молекулы смогли пройти через барьеры на атомном уровне, и их поведение теперь объясняется квантовой механикой и называется «туннелированием».

Это поведение возникает только, когда вещество находится в квантовом состоянии. Ученые верят, что вода часто переходит в квантовый режим, проходя через очень узкие полости в скалах, почве или даже через стенки клеток живых существ.

Источник: kramtp.info

Критическая точка.

При изменении температуры или давления происходят взаимные переходы: твердое тело – жидкость – газ, например, при нагревании твердое тело переходит в жидкое, при повышении температуры или при понижении давления жидкость превращается в газ. Все эти переходы, как правило, обратимы. В общем виде они представлены на рисунке:

Сверхкритическая вода

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояния, а также положение тройной точки, где сходятся эти три области, для каждого вещества свои. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой и давлением (так же, как точка кипения). Понижение либо температуры, либо давления ниже критического выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот, кислород долгое время не удавалось получить в жидком виде с помощью повышенного давления, из-за чего их ранее называли перманентными газами (лат. permanentis – постоянный). Из приведенного выше рисунка видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого либо газа необходимо его вначале охладить до температуры ниже критической. У таких газов как СО2 или Cl2 критическая температура выше комнатной (31° С и 144° С соответственно), поэтому их можно сжижать при комнатной температуре, только повышая давление. У азота критическая температура много ниже комнатной: –239,9° С, поэтому, если сжимать азот, находящийся при нормальных условиях (исходная точка желтого цвета на приведенном ниже рисунке), то можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо вначале охладить азот ниже критической температуры (зеленая точка) и затем, повышая давление, достичь области, где возможно существование жидкости – красная точка (твердое состояние азота возможно только при очень высоких давлениях, поэтому соответствующая область на рисунке не показана):

Сверхкритическая вода

Аналогичная ситуация для водорода, кислорода (критические температуры соответственно –118,4° С, –147° С), поэтому перед сжижением их вначале охлаждают до температуры ниже критической, и лишь затем повышают давление.

Сверхкритическое состояние

возможно для большинства жидких и газообразных веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. Вещества, для которых такое состояние наиболее легко достижимо (т.е. нужны сравнительно невысокие температура и давление), показаны на диаграмме:

Сверхкритическая вода

В сравнении с указанными веществами критическая точка для воды достигается с большим трудом: tкр = 374,2° С и ркр = 21,4 МПа.

Начиная с середины 1880-х критическая точка признается всеми как важный физический параметр вещества, такой же, как точка плавления или кипения. Плотность СКФ исключительно низка, например, вода в форме СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять твердые вещества, что газам не свойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl2, KBr, KI). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – камфару, стеариновую кислоту, парафин и нафталин. Свойства сверхкритического СО2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается:

Сверхкритическая вода

Опыты, поставленные для визуального наблюдения сверхкритического состояния, были опасны, поскольку не каждая стеклянная ампула способна выдержать давление в десятки МПа. Позже для того, чтобы установить момент, когда вещество становится флюидом, вместо визуальных наблюдений в стеклянных трубках вернулись к методике, близкой к той, что использовал Каньяр де ла Тур. С помощью специальной аппаратуры стали измерять скорость прохождения звука в изучаемой среде, в момент достижения критической точки скорость распространения звуковых волн резко падает.

Применение СКФ.

К середине 1980-х справочники содержали сведения о критических параметрах сотен неорганических и органических веществ, но необычные свойства СКФ все еще не находили применения.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития индустрии позволил сделать установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. В первую очередь исследователи сосредоточили внимание на высокой растворяющей способности СКФ. На фоне традиционных методов использование сверхкритических флюидов оказалось очень эффективным. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широко стали применять сверхкритический СО2, который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, поскольку обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (tкр – 31° С, ркр – 73,8 атм.), кроме того, он не токсичен, не горюч, не взрывоопасен и к тому же дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО2 можно считать экологически абсолютно чистым растворителем.

Фармацевтическая промышленность одна из первых обратилась к новой технологии, поскольку СКФ позволяют наиболее полно выделять биологически активные вещества из растительного сырья, сохраняя неизменным их состав. Новая технология полностью соответствует современным санитарно-гигиеническим нормам производства лекарственных препаратов. Кроме того, исключается стадия отгонки экстрагирующего растворителя и последующей его очистки для повторных циклов. В настоящее время организовано производство некоторых витаминов, стероидов и других препаратов по такой технологии.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без предварительного их измельчения. Полнота извлечения достигается за счет высокой проникающей способности СКФ. Зерна помещают в автоклав – емкость, выдерживающую повышенное давление, затем подают в него газообразный СО2, и далеесоздают необходимое давление (>73 атм.), в результате чего СО2 переходит в сверхкритическое состояние. Все содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде:

Сверхкритическая вода

В производстве косметических и парфюмерных препаратов СКФ-технологии используютсядля извлечения эфирных масел, витаминов, фитонцидов из растительных и животных продуктов. В извлеченных веществах нет следов растворителя, а мягкий способ извлечения позволяет сохранить их биологическую активность.

В пищевой промышленности новая технология позволяет деликатно извлекать из растительного сырья различные вкусовые и ароматические компоненты, добавляемые в пищевую продукцию.

Радиохимия использует новую технологию для решения экологических задач. Многие радиоактивные элементы в сверхкритической среде легко образуют комплексы с добавленными органическими соединениями – лигандами. Образующийся комплекс, в отличие от исходного соединения радиоактивного элемента, растворим во флюиде, и потому легко отделяется от основной массы вещества. Таким способом можно извлекать остатки радиоактивных элементов из отработанных руд, а также проводить дезактивацию почвы, зараженной радиоактивными отходами.

Удаление загрязнений при использовании СК-растворителя особенно эффективно. Есть проекты установок для устранения загрязнений с одежды (сверхкритическая химчистка), а также для очистки различных электронных схем в процессе их производства.

Помимо упомянутых преимуществ новая технология в большинстве случаев оказывается дешевле, чем традиционная.

Основной недостаток сверхкритических растворителей состоит в том, что емкости, заполненные СКФ, работают в режиме периодического процесса: загрузка сырья в аппарат – выгрузка готовой продукции – загрузка свежей порции сырья. Не всегда можно повысить производительность установки, увеличивая объем аппаратов, поскольку создание больших емкостей, выдерживающих давление, близкое к 10 МПа, – трудная техническая задача.

Для некоторых процессов химической технологии удалось разработать непрерывные процессы – постоянная подача сырья и непрерывный вывод полученного продукта. Производительность повышается, т.к. что не нужно тратить время на загрузку и выгрузку. В этом случае объем аппаратов можно заметно уменьшить.

Газообразный водород хорошо растворяется в сверхкритическом CO2, что позволяет непрерывно гидрировать органические соединения в среде флюида. В реактор, содержащий катализатор гидрирования, непрерывно подают реагенты (органическое вещество и водород), а также флюид. Продукты выводятся через специальный клапан, при этом флюид просто испаряется и его можно вновь направить в реактор. Описанным способом удается за две минуты прогидрировать почти килограмм исходного соединения, причем реактор с такой производительностью буквально умещается на ладони. Изготовить столь небольшой реактор, выдерживающий высокие давления, намного проще, чем крупный аппарат.

Сверхкритическая вода

Такой реактор испытан в процессах гидрирования циклогексена до циклогексана (применяумого как растворитель эфирных масел и некоторых каучуков), а также изофорона до триметилциклогексанона (используют в органическом синтезе):

Сверхкритическая вода

В химии полимеров сверхкритический СО2 как среда для полимеризации используется редко. Большинство мономеров в нем растворимо, но в процессе полимеризации растущая молекула теряет растворимость задолго до того, как успевает заметно вырасти. Этот недостаток удалось превратить в преимущество. Полимеры, полученные обычным путем, затем эффективно очищают от примесей, извлекая не прореагировавший мономер и инициатор полимеризации с помощью СКФ. Благодаря исключительно высоким диффузионным свойствам, флюид легко проникает в массу полимера. Процесс технологичен – не нужны громадные количества органических растворителей, которые, кстати, трудно удаляются из полимерной массы.

Кроме того, полимеры легко набухают при пропитывании флюидом, поглощая его до 30 %. Резиновое кольцо после набухания увеличивает свою толщину почти вдвое:

Сверхкритическая вода

При медленном снижении давления прежний размер восстанавливается. Если взять не эластичный материал, а твердый и после набухания резко сбросить давление, то СО2 быстро улетает, оставляя полимер в виде микропористого материала. Это, по существу, новая технология получения поропластов.

СК-флюид незаменим для введения в массу полимера красителей, стабилизаторов, а также различных модификаторов. Например, в полиарилат вводят комплексы меди, которые при последующем восстановлении образуют металлическую медь. В итоге из полимера и равномерно распределенного металла возникает композиция, обладающая повышенной износоустойчивостью.

Некоторые полимеры (полисилоксаны и фторированные полиуглеводороды) растворяются в СК-СО2 при температуре, близкой к 100 0С и давлении 300 атм. Этот факт позволяет использовать СКФ в качестве среды для полимеризации обычных мономеров. К полимеризующемуся акрилату добавляют растворимые фторированные полиуглеводороды, при этом растущая молекула и фторированная «добавка» удерживают друг друга полярными взаимодействиями. Таким образом, фторированные группы добавленного полимера играют роль «поплавков», поддерживающих всю систему в растворе. В результате растущая молекула полиакрилата не выпадает из раствора в осадок и успевает вырасти до значительных размеров:

Сверхкритическая вода

В полимерной химии используется и ранее упомянутое свойство флюидов – изменять растворяющую способность при повышении давления (см. график растворения нафталина). Полимер помещают в среду флюида и, постепенно увеличивая давление, отбирают порции раствора. Таким образом удается достаточно тонко разделить полимер на составляющие его фракции, то есть рассортировать молекулы по величине.

Вещества, используемые как флюиды. Перспективы.

Сейчас 90% всех СКФ – технологий ориентированы на сверхкритический СО2. Помимо диоксида углерода начинают постепенно входить в практику другие вещества. Сверхкритический ксенон (tкр – 16,6° С, ркр – 58 атм.) представляет собой абсолютно инертный растворитель, и потому химики используют его как реакционную среду для получения нестабильных соединений (чаще всего, металлоорганических), для которых СО2 является потенциальным реагентом. Широкого применения этого флюида не ожидается, поскольку ксенон – дорогой газ.

Для извлечения животных жиров и растительных масел из природного сырья более подходит сверхкритический пропан (tкр – 96,8, ркр – 42 атм.), поскольку он лучше, чем СО2, растворяет указанные соединения.

Одно из самых распространенных и экологически безвредных веществ – вода, но перевести ее в сверхкритическое состояние достаточно трудно, поскольку параметры критической точки очень велики: tкр – 374° С, ркр – 220 атм. Современные технологии позволяют создавать установки, отвечающие таким требованиям, но работать в этом диапазоне температур и давлений технически сложно. Сверхкритическая вода растворяет практически все органические соединения, которые не разлагаются при высоких температурах. Такая вода, при добавлении в нее кислорода, становится мощной окислительной средой, превращающей за несколько минут любые органические соединения в Н2О и СО2. В настоящее рассматривают возможность перерабатывать таким способом бытовые отходы, прежде всего пластиковую тару (сжигать такую тару нельзя, т.к. при этом возникают токсичные летучие вещества).

Михаил Левицкий

Источник: www.krugosvet.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.