Существование одноклеточных организмов открыл


Животные, состоящие из единственной клетки, располагающей ядром, называются одноклеточными организмами.

В них сочетаются характерные особенности клетки и независимого организма.

  • Одноклеточные животные
  • Одноклеточные растения
  • Кто открыл одноклеточные организмы
  • Как выглядит клетка одноклеточного животного
  • Кто такие простейшие
  • В каких средах обитают одноклеточные
  • Заключение

Одноклеточные животные

Животные подцарства Одноклеточных или Простейших обитают в жидких средах. Внешние формы их разнообразны — от аморфных особей, не имеющих определенных очертаний, до представителей со сложными геометрическими формами.

Насчитывается около 40 тысяч видов одноклеточных животных. К наиболее известным относятся:

  • амеба;
  • зеленая эвглена;
  • инфузория-туфелька.

Амеба

Принадлежит классу корненожки и отличается непостоянной формой.

Существование одноклеточных организмов открыл

Она состоит из оболочки, цитоплазмы, сократительной вакуоли и ядра.

Существование одноклеточных организмов открыл

Усвоение питательных веществ осуществляется с помощью пищеварительной вакуоли, а кормом служат другие простейшие, такие как водоросли и бактерии. Для респирации амебе необходим кислород, растворенный в воде и проникающий через поверхность тела.

Зеленая эвглена

Обладает вытянутой веерообразной формой. Питается за счет превращения углекислого газа и воды в кислород и продукты питания благодаря световой энергии, а также готовыми органическими веществами при отсутствии света.

Существование одноклеточных организмов открыл

Относится к классу жгутиковые.

Инфузория-туфелька

Класс инфузории, своими очертаниями напоминает туфельку.

Существование одноклеточных организмов открыл

Пищей служат бактерии.

Одноклеточные грибы

Грибы отнесены к низшим бесхлорофилльным эукариотам. Они отличаются наружным пищеварением и содержанием хитина в клеточной стенке. Тело образует грибницу, состоящую из гифов.


Существование одноклеточных организмов открыл

Одноклеточные грибы систематизированы в 4 основных классах:

  • дейтеромицеты;
  • хитридиомицеты;
  • зигомицеты;
  • аскомицеты.

Ярким примером аскомицетов служат дрожжи, широко распространенные в природе. Скорость их роста и размножения велика благодаря особенному строению. Дрожжи состоят из одиночной клетки округлой формы, размножающейся почкованием.

Одноклеточные растения

Типичным представителем низших одноклеточных растений, часто встречающихся в природе, являются водоросли:

  • хламидомонада;
  • хлорелла;
  • спирогира;
  • хлорококк;
  • вольвокс.

Существование одноклеточных организмов открыл

Хламидомонада отличается от всех водорослей подвижностью и наличием светочувствительного глазка, определяющего места наибольшего скопления солнечной энергии для фотосинтеза.

Многочисленные хлоропласты заменены одним большим хроматофором. Роль насосов, откачивающих излишки жидкости, выполняют сократительные вакуоли. Передвижение осуществляется при помощи двух жгутиков.


Существование одноклеточных организмов открыл

Зеленые водоросли хлореллы, в отличие от хламидомонады, обладают типичными растительными клетками. Плотная оболочка защищает мембрану, а в цитоплазме расположено ядро и хроматофор. Функции хроматофора сходны с ролью хлоропласт наземных растений.

Существование одноклеточных организмов открыл

С хлореллой схожа водоросль шарообразной формы хлорококк. Местом ее обитания служит не только вода, но и суша, стволы деревьев, растущих во влажной среде.

Кто открыл одноклеточные организмы

Честь открытия микроорганизмов принадлежит голландскому ученому А. Левенгуку.

Существование одноклеточных организмов открыл

В 1675 году он разглядел их в микроскоп собственного изготовления. За мельчайшими существами закрепилось название инфузория, а с 1820 года их стали называть простейшими животными.

Зоологами Келлекером и Зибольдом в 1845 году одноклеточные были отнесены к особому типу животного царства и разделены на две группы:

  • корненожки;
  • инфузории.

Как выглядит клетка одноклеточного животного

Строение одноклеточных организмов возможно изучить лишь с помощью микроскопа. Тело простейших существ состоит из единственной клетки, выполняющей роль независимого организма.

Существование одноклеточных организмов открыл

В состав клетки входят:

  • цитоплазма;
  • органоиды;
  • ядро.

Со временем, в результате приспособления к окружающей среде, у отдельных видов одноклеточных появились специальные органоиды движения, выделения и питания.

Кто такие простейшие

Современная биология относит простейших к парафилетической группе животноподобных протистов. Наличие в клетке ядра, в отличие от бактерий, включает их в список эукариотов.

Клеточные структуры разнятся с клетками многоклеточных. В живой системе простейших присутствуют пищеварительные и сократительные вакуоли, у некоторых наблюдаются схожие с ротовой полостью и анальным отверстием органеллы.

Классы простейших

В современной классификации по признакам отсутствует отдельный ранг и значение одноклеточных.

Их принято подразделять на следующие типы:

  • саркомастигофоры;
  • апикомплексы;
  • миксоспоридии;
  • инфузории;
  • лабиринтулы;
  • асцестоспородии.

Устаревшей классификацией считается деление простейших на жгутиковых, саркодовых, ресничных и споровиков.

В каких средах обитают одноклеточные

Средой обитания простейших одноклеточных служит любая влажная среда. Амеба обыкновенная, эвглена зеленая и инфузория-туфелька являются типичными обитателями загрязненных пресных водных источников.

Существование одноклеточных организмов открыл

Такие организмы, как радиолярия и фораминифера населяют соленые водоемы. Встречаются среди одноклеточных паразиты человека и животных.

К крупным простейшим, ведущим паразитический образ жизни, относится опалина лягушачья. Это существо с многочисленными жгутиками поселяется в кишечнике головастика, где в дальнейшем размножается.

Наука долгое время относила опалин к инфузориям, благодаря внешнему сходству жгутиков с ресничками и наличию двух ядер. В результате тщательных исследований родство было опровергнуто. Половое размножение опалин происходит в результате копуляции, ядра одинаковые, а ресничный аппарат отсутствует.

Заключение

Биологическую систему невозможно представить без одноклеточных организмов, являющихся источником питания других животных.

Простейшие организмы способствуют образованию горных пород, служат показателями загрязненности водоемов, участвуют в круговороте углерода. Широкое применение микроорганизмы нашли в биотехнологиях.


Источник: 1001student.ru

5 положений современной клеточной теории

Основные положения современной клеточной теории:

  1. Клетка — основная структурная единица строения, функционирования и развития всех живых организмов, способная к самовоспроизведению и саморегуляции. 
  2. Клетки всех одноклеточных и многоклеточных организмов сходны по своему строению, химическому составу, основным процессам жизнедеятельности и обмену веществ. 
  3. Размножение клеток происходит путем их деления, каждая новая клетка образуется в результате деления исходной (материнской) клетки.
  4. В сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервной и гуморальной регуляциям.
  5. Клеточное строение организмов — доказательство единства происхождения всего живого

Создание клеточной теории привело к определению клетки, как элементарной структуре живых систем с сопутствующими признакам и свойствами. С возникновением клеточной теории стали появляться гипотезы о происхождении живых тел.

Развитие знаний о клетке

С появление микроскопа ученые получили возможность для пристального изучения живых клеток. Так, в 1665 г. Р. Гуком на срезе пробки было обнаружены маленькие ячейки, названные им клетками. Позднее такие образования внутри растений обнаружили Н. Грю и М. Мальпиги.

Позднее не имевшим специального образования голландским торговцем А. Левенгуком был создан самодельный микроскоп с увеличением в 270 раз. Ему удалось разглядеть:

  • хлоропласты;
  • ядро;
  • утолщения клеточных оболочек.

Увиденное в микроскоп А. Левенгук всегда описывал и аккуратно зарисовывал, без приведения соответствующих объяснений. Так, ему удалось разглядеть бактериальные клетки и одноклеточные организмы. 

Львиная доля открытий компонентов клетки выпала на первую половину XIX в.:

  • открытие пор и клеточного сока (Г. Моль);
  • выделение ядра (Броун Р.);
  • введение термина «протоплазма» (Я. Пуркинье);
  • единое происхождение всех клеточных структур (Шлейден М.). 

Исследования русского ученого-эмбриолога Карла Бэра (1827 г.) приводят к обнаружению яйцеклеток у млекопитающих животных и человека. Данное открытие «сломало» господствующее тогда утверждение о развитии организмов только из гамет мужского типа. Работы Карла Бэра доказали процесс формирования многоклеточных тел из оплодотворенных яйцеклеток. Сравнение им зародышей разных организмов на ранних этапах развития доказало сходство их организации и дало толчок к мысли о единстве появления всего живого на Земле. 

К 1850-у году в биологической науке было сформировано большое количество открытий, связанных с клеткой. Привести их в систему помогли работы немецкого зоолога Шванна Т. и М. Шлейдена. Они создали первую клеточную теорию, объясняющую многие процессы внутри живых тел. 

Исследования патологоанатома и врача из Германии – Рудольфа Вирхова дополнили созданную ранее Шванном Т. и М. Шлейденом клеточную теорию. Вирхов Р. указал на возникновения новых клеток путем деления исходных (материнских) структур. Таким образом, он доказал возникновение «клетки от клетки» и «живого от живого».


После создания основных положений теории о структурно-функциональной единице живого (клетке) были сделаны и другие открытия, касающиеся происходящих в ней процессов. Так, усовершенствование к концу XIX в. микроскопа дало толчок для уточнения состава клетки с проведением описания имеющихся органоидов. Органоидами стали именовать клеточные компоненты постоянного строения, которые выполняют разные функции. 

Позднее был изучен процесс деления, происходящий в процессе митоза либо мейоза. Данные процессы стали основой способов воспроизведения клеточных структур и получили статус «передатчиков» наследственной информации. С использованием современных физико-химических методик детальнее были изучены процессы передачи и хранения наследственных признаков. Также тщательнее были обследованы тончайшие детали всех клеточных компонентов постоянного и переменного состава. Таким образом, было выделено особое биологическое направление — «цитология», занимающееся изучением структуры и жизнедеятельности клеток живых организмов.


Дата Событие
Около 1590 г. З. Янсен изобрел микроскоп
1665 г. Р. Гук описал биологические исследования, проведения с использованием микроскопа. Применил термин «клетка»
1680 г. А. ван Левенгук открыл одноклеточные организмы и эритроциты; описал бактерии, грибы, простейших.
1826 г.

К. Бэр открыл яйцеклетки птиц и животных.

1831-1839 гг. Р. Броун описал ядро в клетке.
1838-1839 гг. М. Шлейдер и Т. Шванн обобщили знания о клетке и сформулировали клеточную теорию: «Клетка — единица структуры и функции в живых организмах».
1855 г.

Р. Вихров дополнил теорию: «Клетка — единица структуры и функции живых организмов».

1877-1900 гг. Усовершенствование микроскопа и методов фиксации и окрашивания. Цитология приобретает эксперементальных характер.
1931 г. Э. Руске и М. Кноль сконструировали электронный микроскоп.
1946 г. Начало широкого использования электронного микроскопа в цитологии.

Клеточное строение организмов

Клеточное строение организмов — основа единства органического мира, доказательство родства живой природы

Как уже было отмечено ранее, бактериям, грибам, растениям и животным свойственно наличие клеток разной формы и специализации. Вирусные частицы также не могут жить без живых клеток, так как там происходят процессы их размножения, хотя сами они являются неклеточными формами жизни.

В полноценной живой клетке постоянно происходят следующие процессы:

  • раздражение;
  • развитие;
  • рост;
  • метаболизм (обмен веществ);
  • гомеостаз (саморегуляция) — способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание равновесия;  
  • способность к воспроизведению себе подобных. 

Наличие совокупности данных признаков отличает живые организмы от неживых тел. Кроме этого, внутри живых клеточных структур хранятся, а при размножении передаются наследственные признаки, заключенные в генах. При половом размножении наследственные признаки комбинируются, что приводит к формированию новых генетических наборов и появляются новые признаки у организмов. Таким образом происходит жизнедеятельность живых организмов.

В природе существует великое множество живых клеток, которые различаются строением, формами и специализацией, но для всех их характерно наличие:

  • наследственного аппарата;
  • плазматической мембраны;
  • цитоплазмы.

Возникновению современных клеточных структур сопутствовал длительный эволюционный процесс, происходящий в биосфере. Он делился на:

  • химическую;
  • биологическую;
  • биохимическую эволюции.

Образование многоклеточных форм жизни не является банальным суммированием клеток, а выступает результатом сложных эволюционных преобразований, происходящих с сохранением присущих живому признаков. Таким образом организмы приобретали новые свойства и функции. В результате менялось их строение и образ жизни. Происходящие эволюционные преобразования привели к появлению новых видов и указали на общность происхождения всего живого — единого предка.

Полноценное существование живых организмов возможно лишь тогда, когда входящие в его состав клетки будут выполнять присущие им функции. Простое сложение клеток друг с другом не приведет к созданию целостного организма, так как полноценно функционировать он не сможет. Так, было открыто единство целостного и дискретного составляющего. 

Увеличение скорости метаболизма достигается ростом количества маленьких клеток у многоклеточных тел. При нарушении функций одной клетки (ее гибель) происходит восстановление ее деятельности вследствие воспроизведения клеточных структур. Без клеток гены существовать не могут, а значит. невозможно хранить и передавать наследственную информацию. Аналогично и с энергией, которая также не сможет аккумулироваться от Солнца, если не будет растительных клеток с хлоропластами.

Благодаря разделению клеточных функций в многоклеточных телах (организмах) живые системы смогли приспосабливаться к разным условиям существования и средам обитания. В результате возникали новые систематические категории – виды, роды, классы. Таким образом, шло длительное усложнение их организационного строения

После установления единого плана строения клеточных структур у всего живого возникли предпосылки единого происхождения живых организмов на Земле. Данные предпосылки были доказаны многочисленными открытиями в области палеонтологии, эмбриологии и других областях биологии. Так, возникло представление не только о едином плане строения живых организмов, но и доказательство единства происхождения органического мира.

Источник: bingoschool.ru

Открытие одноклеточных

Существование одноклеточных организмов открыл
Микроскоп Левенгука

Еще 3 тысячи лет назад великий древнегреческий целитель Гиппократ выдвинул гипотезу, что инфекционные заболевания вызываются живыми микроорганизмами.  Но изучение простейших началось значительно позже, чем изучение большинства других групп животного мира. Оно стало возможным лишь после изобретения микроскопа, что произошло в начале XVII века. Голландец Антони Левенгук, владелец магазина оптики, увлёкся изучением образцов через микроскоп при ярком дневном свете, и в 1675 г., рассматривая каплю воды, впервые открыл в ней множество микроскопических, ранее неведомых организмов, среди которых были и простейшие. Это было первое документальное свидетельство наблюдения микромира, недоступного для обнаружения невооружённым глазом.

24 апреля 1676 года Антони ван Левенгук впервые рассмотрел свою слюну под микроскопом и обнаружил, что «там живых существ больше, чем людей в Соединенном Королевстве». Когда он отослал в Лондонское королевское общество копию своих наблюдений одноклеточных организмов, о существовании которых до этого времени ничего не было известно, достоверность его исследований была поставлена под сомнение. Для того, чтобы проверить достоверность наблюдений Левенгука, в Делфт отправилась группа учёных во главе с Неемией Грю, который подтвердил подлинность всех исследований. 8 февраля 1680 года Левенгук был избран действительным членом Лондонского Королевского общества.

Наблюдения Левенгука вызвали большой интерес к изучению этого нового мира живых существ. В конце XVII и первой половине XVIII в. появляется большое число работ, посвященных изучению микроскопических организмов. Однако исследований, соответствующих современному представлению о простейших как одноклеточных организмах тогда не существовало, так как само определение клетки было сформулировано позднее.

Существование одноклеточных организмов открыл

Открытие живой клетки связано еще с одним исследователем — Робертом Гуком, автором знаменитого закона, известным изобретателем и эрудитом. С помощью усовершенствованного им микроскопа Гук изучал структуру растений и сделал точные зарисовки, впервые показавшие клеточное строение обычной пробки. Ученый обнаружил, что пробка состоит из множества очень маленьких ячеек, напоминавших ему монашеские кельи в монастырях. Эти ячейки он в своей работе «Микрография» назвал клетками. Гук подробно зарисовал и описал клетки моркови, бузины, укропа, привел изображения весьма мелких объектов, таких как глаз мухи, комара и его личинки, детально описал клеточное строение пробки, крыла пчелы, плесени, мха.

Определение и описание

К подцарству Одноклеточных, или Простейших, относят животных, тело которых состоит из одной клетки. Размеры простейших в среднем 0,1—0,5 мм. Бывают особи ещё меньшей величины — около 0,01 мм. Встречаются и довольно крупные организмы, длиной в несколько миллиметров и даже сантиметров. Форма тела простейших разнообразна. Оно может быть постоянным, иметь лучевую, двустороннюю симметрию (жгутиковые, инфузории) или вообще не иметь постоянной формы (амеба).

Одноклеточные организмы выполняют те же функции, что многоклеточные: питаются, двигаются и размножаются. Их клетки должны быть невероятно многофункциональны, чтобы делать все то, за что у других животных отвечают особые органы. Одноклеточные животные настолько непохожи на остальных, что их выделяют в отдельные подцарство простейших.

Существование одноклеточных организмов открыл
Строение эвглены зеленой

Тело простейших состоит из цитоплазмы и ядра. Снаружи клетка защищена особой мембраной, или пелликулой — обычно эластичной, более или менее толстой оболочкой, включающую в себя помимо клеточной мембраны ряд опорных структур. Цитоплазма ограничена наружной цитоплазматической мембраной, в ней находятся органоиды — митохондрии, рибосомы, эндо-плазматическая сеть, аппарат Гольджи. Помимо типичных органоидов, характерных для животной клетки, в клеточном теле простейших имеются специализированные органоиды, характерные только для одноклеточных:

  • Органоиды передвижения – ложноножки (псевдоподии), жгутики или реснички;
  • Органоиды, отвечающие за питание – пищеварительные вакуоли, клеточный рот, клеточная глотка, анальная пора (порошица);
  • Органоиды выделения (экскреции) и регуляции осмотического давления – сократительные вакуоли;
  • Органоиды размножения — за это отвечает ядро, у некоторых богатых одноклеточных их несколько;
  • Органоиды защиты и нападения – трихоцисты (особые стрекательные образования, находящиеся по краю цитоплазмы).

Простейшие способны передвигаться с помощью ложноножек, жгутиков или ресничек, они также реагируют на различные раздражения: свет — фототаксис, химические вещества — хемотаксис, температуру — термотаксис и др. Питаются простейшие самыми разнообразными мельчайшими животными, растительными организмами и гниющими органическими веществами. Паразитические формы обитают как на поверхности тела своих хозяев, так и в полостях их тела или тканях организмов хозяев.

До 1969 г. биологи классифицировали жизнь на царства (от двух до шести). С 1990 г. учёные договорились о трёхдоменной систематизации из бактерий, архей и эукариотов, в которой лишь последние включают в себя как одноклеточные, так и многоклеточные организмы. Большинство специалистов сейчас используют эту таксономию.

Особенность одноклеточных организмов переносить неблагоприятные условия окружающей среды заключается в способности инцистироваться, т.е. образовывать цисту. При образовании цисты органоиды движения исчезают, объем животного уменьшается, оно приобретает округлую форму, клетка покрывается плотной оболочкой. Животное переходит в состояние покоя и при наступлении благоприятных условий возвращается к активной жизни.

Отличие от вирусов

Несмотря на схожесть между одноклеточными организмами и вирусами, между ними существуют принципиальные отличия. Вирусы не считаются живым организмом, это внеклеточная форма жизни, обладающая собственным геномом и способностью воспроизводиться только в живых клетках. По содержанию нуклеиновых кислот вирусы отличаются от живых систем, тем, что у них одна кислота (РНК или ДНК), а у других организмов их две. По сути, вирус, это только ДНК (или РНК) в оболочке. У него нет никаких механизмов репликации, транскрипции, нет ферментов для проведения реакций. Все это за него делают механизмы клеток-хозяев, в которые он внедряется. Вне клетки хозяина вирусные частицы ведут себя как химические вещества. В настоящее время известны вирусы, размножающиеся в клетках растений, животных, грибов и бактерий (последних обычно называют бактериофагами). Обнаружены также вирусы, поражающие другие вирусы (вирусы-сателлиты).

Доядерные формы

Прокариоты — это доядерные организмы, у которых клетки не имеют окруженного мембраной ядра (то есть они не имеют ядерной оболочки и все содержимое ядра находится просто в цитоплазме и ничем не отграничено). Помимо отсутствующей ядерной мембраны, у прокариот нет ни одной мембранной органеллы, таких как митохондрии, пластиды, аппарат Гольджи, ЭПР, лизосомы, кроме самой плазматической мембраны, окружающей клетку. Все их функции исполняют складки из плазматической мембраны — мезосомы. У прокариот нет разделения на компартменты, то есть все обменные процессы происходят в цитоплазме.

Прокариоты – одноклеточные и колониальные организмы, среди цианобактерий встречаются и многоклеточные (нитчатые) организмы. В клетках отсутствует ядро, генетическая информация прокариот представлена голой (без белков) кольцевой молекулой ДНК. Это самые древние и примитивные организмы на Земле. Распространены повсеместно: в воде, почве, воздухе, живых организмах. Они обнаруживаются как в самых глубоких океанических впадинах, так и на высочайшей горной вершине Земли – Эвересте, как во льдах Арктики и Антарктиды, так и в горячих источниках (с температурой воды более 90ºС). В почве они проникают на глубину до 4 и более км, споры бактерий в атмосфере встречаются на высоте до 20 км, гидросфера вообще не имеет границ обитания этих организмов.

Особенностью прокариот является наличие толстой клеточной стенки, содержащий пептидокликан (муреин). Клеточная стенка прокариот, в зависимости от вида (грам-отрицательные или грам-положительные) содержит либо две мембраны и тонкий слой муреина либо одну мембрану и толстый слой муреина. Сверху клеточной стенки очень часто встречается слизистая капсула. Свободное пространство между клеточной стенкой и мембраной является резервуаром протонов при аэробном дыхании и фотосинтезе.

Существование одноклеточных организмов открыл

Обладают возможностью использовать широкий спектр органики и неорганики в обмене веществ, в том числе серы, целлюлозы, аммиака и нитритов. По типу питания различают 8 типов микроорганизмов (фотоорганогетеротрофы, фотолитогетеротрофы, хемоорганогетеротрофы, хемолитогетеротрофы, фотоорганоавтотрофы, фотолитоавтотрофы, хемоорганоавтотрофы, хемолитоавтотрофы).

Прокариоты способны существовать в самых экстремальных условиях. Все их клетки имеют общие четыре элемента:

  1. Плазменная мембрана — внешнее покрытие, отделяющее организм от окружающей среды.
  2. Цитоплазма — желеобразная масса внутри, содержащая другие компоненты.
  3. ДНК — генетический материал.
  4. Рибосомы — ответственные за синтез белка органеллы.

Многие из прокариотов заключены в полисахаридную капсулу. Такая оболочка служит дополнительным слоем защиты, помогая сохранять форму и предотвращая обезвоживание. Капсула также позволяет прикрепиться к какой-либо поверхности в окружающей среде. Иногда прокариоты имеют особые жгутики, используемые для передвижения. Паразитические формы наделены фимбриями (бахромой) для прикрепления к клетке-хозяину.

Царство бактерий

Бактерии — одни из самых распространённых видов одноклеточных организмов на Земле. По некоторым оценкам, человеческое тело является домом для 100 триллионов таких существ. Типичные размеры бактерий — несколько тысячных долей миллиметра в поперечнике. Бактерии можно увидеть только в микроскоп, по­этому их называют микроорганизмами. Микроорганизмы изучает наука микробиология. Раздел микробиологии, изу­чающий бактерии, называется бактериологией. Несмотря на то что большая их часть относится к паразитам, многие виды крайне полезны и важны для сельского хозяйства и пищевой промышленности.

Бактерии — самая обширная группа одноклеточных микроорганизмов — прокариотов, характеризующихся отсутствием окруженного оболочкой клеточного ядра. Вместе с тем генетический материал бактерии (дезоксирибонуклеиновая кислота, или ДНК) занимает в клетке вполне определенное место – зону, называемую нуклеоидом.

Существование одноклеточных организмов открыл

Бактерии, ранее считавшиеся микроскопическими растениями, сейчас выделены в самостоятельное царство Monera – одно из пяти в нынешней системе классификации наряду с растениями, животными, грибами и протистами.

Снаружи клетка бактерии покрыта плотной оболочкой, которая защищает ее от внешних факторов и придает постоянную форму. Данная оболочка имеет пористую структуру, через которую проникают различные питательные вещества, необходимые для поддержания жизнедеятельности самой бактерии.

Различают следующие формы бактерий:

  • круглые (кокки);
  • извитые (спириллы, вибрионы);
  • палочковидные (псевдомонады, бациллы);
  • редкие формы — формы куба, тетраэдра, звезды, О- и С-образные.

Боль­шинство бактерий являются гетеротрофами, но есть и автотрофы. Размножаются делением. При наступлении небла­гоприятных условии некоторые бактерии образуют споры.

Существование одноклеточных организмов открыл

Обобщённо царство бактерий можно свести в две крупные категории по питанию:

  1. Автотрофные. Способны синтезировать пищу из неорганических веществ. Этот тип организмов использует углекислый газ для получения углерода. Одни из них применяют фотосинтез, другие питаются неорганическими веществами без помощи солнечного света.
  2. Гетеротрофные. Тип бактерий, извлекающих энергию только из органических соединений. Гетеротрофы либо секретируют ферменты, необходимые для процесса гниения, либо получают энергию из тканей других живых существ. Среди последних — не только хищники и паразиты, но и прокариоты, способные к установлению симбиотических отношений с хозяином.

Самые примитивные бактерии живут глубоко под водой. Для развития им не нужен доступ к кислороду. Более развитые колонии выбрались на сушу и живут на поверхностях. Для размножения и развития колонии этим микроорганизмам нужен кислород. Учитывая зависимость от кислорода, группы микроорганизмов носят названия аэробных и анаэробных.

Клетку бактерии относят к простым (примитивным) микроорганизмам потому, что у нее как у большинства клеток других живых организмов нет ядра. Такие безъядерные клетки ученые называют  прокариотами. Вероятней всего такое строение бактерий обусловлено тем, что они являются самыми древними существами на Земном шаре. Клетки других живых существ, которые со временем появились в процессе эволюции, имеют более сложное многоклеточное строение. Наследственная информация самой бактерии содержится не в ядре, как в других клетках живых организмов, а в специальной зоне и представлена она генами. Такая специальная зона клетки, где находятся гены, называется нуклеоид.

Бакте­рии встречаются везде: в воде, почве, воздухе, в тканях рас­тений, телах животных и человека. Они живут там, где на­ходят достаточно пищи, влаги и благоприятную температуру (10-40 °С). Большинству из них необходим кислород. Есть также бактерии, которые живут в горячих источниках (с температурой 60-90 °С), экстремально соленых водоемах, в жерлах вулканов, глубоко в океанах, куда не проникает солнечный свет. Даже в самых холодных регионах (Антарк­тике) и на высоких горных вершинах живут бактерии.

Одноклеточные микроорганизмы бактерии размножаются путем деления клетки пополам. Скорость размножения бактерий зависит от состояния окружающей среды. При благоприятных условиях (соответствующая температура, питательная среда) бактерии способны размножаться каждые 20-30 минут. А при наступлении неблагоприятных условий, при которых жизненные функции сведены к минимуму, бактерии образуют споры. Споры бактерий характерны тем, что они практически не нуждаются ни в пище ни в воде, погибают лишь при температуре выше 120°С и могут сохранять жизнеспособность в течении сотен лет.

Прокариоты археи

Археи — одноклеточные прокариоты, на молекулярном уровне заметно отличающиеся как от бактерий, так и от эукариотов. Отличия наблюдаются в компонентах синтеза белка, структуре клеточной стенки, биохимии (например, только среди архей есть организмы, живущие в атмосфере метана) и устойчивости к факторам внешней среды (большая часть архей выживает в самых экстремальных условиях окружающей среды).

Археи считаются одной из древнейших форм жизни, если не самой древней. Остатки характерных для архей липидов датируются возрастом 2,7 миллиарда лет. Из-за отсутствия высокоэффективных методов молекулярной биологии в течение практически всего XX века, архей не выделяли в отдельную группу прокариот, а сделали это лишь в 1977 году.

Большинство видов архей автотрофы, у которых происходит хемосинтез. Среди них практически нет паразитов и возбудителей болезней. Некоторые учёные считают, что археи — самые массовые организмы, которые когда-либо существовали на Земле.

Существование одноклеточных организмов открыл

Как и у бактерий, у архей отсутствуют мембранные органоиды, однако имеется клеточная мембрана, иногда одна или несколько флагелл. Практически все археи имеют одинарную плазматическую мембрану и клеточную стенку, периплазматическое пространство отсутствует. Морфологически археи сходны с бактериями: их клетки размером в среднем 1-2 мкм представляют собой палочки или кокки, в некоторых случаях спириллы, иногда собраны в агрегаты, размножаются делением клетки на две дочерние, подвижные формы снабжены одним или несколькими жгутиками, в состав которых, в отличие от бактериальных жгутиков, входит несколько видов флагеллинов. Самыми маленькими среди архей являются клетки вида Nanoarchaeum equitans, размером всего 0,4 мкм. В то же время спорообразование у архей неизвестно.

Есть несколько признаков, отделяющих архей от остальных одноклеточных организмов:

  • Клеточная мембрана состоит из разветвлённых углеводородных цепей, в отличие от бактерий и эукариотов, чьи оболочки скреплены глицерином с помощью эфирных связей.
  • Не реагируют на антибиотики, поражающие бактерии, но подвержены воздействию веществ, угнетающих эукариот.
  • Содержат РНК, специфичную только для этой группы организмов.

Надцарство эукариот

Главная особенность эукариот, по которой они и получили название, — наличие настоящего ядра: генетический аппарат эукариотной клетки защищен оболочкой, схожей с мембраной самой клетки. Связь ядра и цитоплазмы осуществляется через особые отверстия — поры. Наличие ядра — не единственный признак, отличающий эукариотную клетку от прокариотной. Не менее важен второй признак: превращения, которые претерпевает генетический аппарат эукариот в течение жизни.

Как правило, эукариотные организмы проходят в развитии две стадии. Их называют гаплофазой и диплофазой. В гаплофазе генетический аппарат клетки одинарный гаплоидный (от греческого «гаплос» — единичный, одинокий). При переходе в диплофазу две гаплоидные клетки сливаются, и генетический аппарат становится диплоидным («двойным»). После нескольких делений в диплофазе клетка опять становится гаплоидной.

Точное происхождение эукариот доподлинно не известно, ученые предполагают, что они произошли от прокариот. Самые древнейшие останки эукариотических клеток обнаружены в породах возрастом полтора миллиарда лет. Древние эукариоты имели одноклеточную структуру.

Классификация эукариот основана на царствах, к которым они принадлежат, и выглядит так:

  • Растения. Уникальны среди эукариот по нескольким причинам. Их относительно толстая клеточная стенка состоит в основном из целлюлозы. Для одноклеточных этой группы характерно наличие большой сократительной вакуоли, управляющей плавучестью. Растительные клетки содержат органеллы, называемые хлоропласты с молекулами хлорофилла. Благодаря такому качеству растения получают энергию из солнечного света, углекислого газа и воды. Пример — одноклеточные зелёные водоросли.
  • Грибы. К ним относят организмы из подцарства простейших грибов и дрожжи. Клеточная стенка состоит из хитина (основное вещество экзоскелета насекомых). Характерная особенность строения простейших грибов — многоядерность некоторых видов и наличие перегородок в клетках с отверстиями для прохождения органоидов и цитоплазмы.
  • Животные. Клеточные стенки отсутствуют, организмы заключены только в плазматическую мембрану. Это даёт им возможность приобретать различные формы, позволяет питаться с помощью фагоцитоза. Не имеют хлоропластов, содержат несколько маленьких вместо одной большой вакуоли. Характерные представители — амёбы и корненожки.
  • Протисты, получили название от древнегреческого слова, означающего «первейшие». Способны самостоятельно передвигаться и питаться, переваривая пищу в вакуолях. Некоторые имеют множество ресничек, наделяющих их подвижностью, другие способны перетекать или образовывать ложноножки. В эту группу внесены все организмы, не входящие в первые три. Разнообразие протистов можно оценить по несхожести и экзотичности таких известных представителей, как инфузория-туфелька и эвглена обыкновенная.

Подробнее о эукариотах можно прочитать в статье «Надцарство эукариоты»

Эволюционная роль одноклеточных

Жизнь получила свое начало с появлением простейших форм жизни – одноклеточных организмов. Первыми одноклеточными организмами были прокариоты. Эти организмы появились первыми после того, как Земля стала пригодной для начала жизни, около 3,5 млрд. лет назад. Возможно, они представляли собой одноклеточные существа, сходные с современными бактериями, например клостридиями, живущими на основе брожения и использования богатых энергией органических соединений, возникающих абиогенно под действием электрических разрядов и ультрафиолетовых лучей. Этим организмам был не обязателен кислород для своего существования, но они могли вырабатывать его в процессе жизнедеятельности.

Гигантский шаг на пути эволюции жизни был связан с повышением концентрации кислорода в атмосфере и возникновением основных биохимических процессов обмена — фотосинтеза и дыхания и с образованием клеточной организации, содержащей ядерный аппарат (эукариоты).

Oт этих первобытных oргaнизмов всeм eгo нынешним пoтoмкaм дoстaлись общие чeрты стрoeния (всe oни сoстoят из клeтoк, oкрyжённых oбoлoчкoй), спoсoб хрaнeния гeнeтичeскoгo кoдa (в зaкрyчeнных двoйнoй спирaлью мoлeкyлaх ДНК), спoсoб хрaнeния энeргии (в мoлeкyлaх AТФ) и т. д. Oт этoгo oбщeгo прeдкa прoизoшли три oснoвныe грyппы oднoклeтoчных oргaнизмoв, сyщeствyющих дo сих пoр. Снaчaлa рaздeлились мeждy сoбoй бaктeрии и aрхeи, a зaтeм oт aрхeй прoизoшли эyкaриoты — oргaнизмы, клeтки кoтoрых имeют ядрo.

По сравнению с архейским временем в протерозое толщина биосферы увеличилась. В растительном царстве господствовали сине-зеленые водоросли, а животное царство было менее обильным. Наиболее многочисленной группой были бактерии, которые принимали активное участие в процессах разложения, окисления и аккумуляции неорганических соединений.

Существование одноклеточных организмов открыл
Происхождение многоклеточных организмов

Появление первых многоклеточных организмов было связано с постепенным увеличением в атмосфере и гидросфере кислорода. Переход от брожения к кислородному дыханию сопровождался огромным выигрышем энергии и усилением обменных реакций.

Дальнейшая эволюция биосферы приводила к усложнению ее структуры в результате появления многоклеточных организмов и прогрессивного развития различных групп растений и животных. При этом в процессе эволюции соотношение различных групп организмов отражало их взаимозависимость. Например, с расцветом покрытосеменных растений связан взрыв видообразования насекомых. Крупнейшим событием в истории биосферы было появление наземных позвоночных животных, и особенно теплокровных, резко изменивших уровень трансформации энергии. Каждый шаг в эволюции жизни определял и развитие биосферы.

Источник: www.polnaja-jenciklopedija.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.