Способы изучения мантии


Мантия Земли — часть геосферы, расположенная между корой и ядром. В ней находится большая доля всего вещества планеты. Изучение мантии важно не только с точки зрения понимания внутренней структуры Земли. Оно может пролить свет на формирование планеты, дать доступ к редким соединениям и породам, помочь понять механизм землетрясений и движения литосферных плит. Однако получить информацию о составе и особенностях мантии непросто. Бурить скважины так глубоко люди пока не умеют. Мантия Земли в основном сейчас изучается при помощи сейсмических волн. А также путем моделирования в условиях лаборатории.

Согласно современным представлениям, внутреннее строение нашей планеты подразделяется на несколько слоев. Верхний — это кора, далее лежат мантия и ядро Земли. Кора — твердая оболочка, делящаяся на океаническую и континентальную. Мантия Земли отделена от нее так называемой границей Мохоровичича (по имени хорватского сейсмолога, установившего ее местоположение), которая характеризуется скачкообразным ростом скоростей продольных сейсмических волн.


Мантия составляет примерно 67 % массы планеты. По современным данным, ее можно разделить на два слоя: верхний и нижний. В первом выделяют также слой Голицына или среднюю мантию, являющуюся переходной зоной от верхней к нижней. В целом мантия простирается на глубине от 30 до 2900 км.

Ядро планеты, по представлению современных ученых, состоит в основном из железоникелевых сплавов. Оно также подразделяется на две части. Внутреннее ядро — твердое, его радиус оценивается в 1300 км. Внешнее — жидкое, имеет радиус в 2200 км. Между этими частями выделяют переходную зону.

Кора и верхняя мантия Земли объединяются понятием «литосфера». Это твердая оболочка, имеющая стабильные и подвижные области. Твердая оболочка планеты состоит из литосферных плит, которые, как предполагается, перемещаются по астеносфере — довольно пластичному слою, вероятно, представляющему собой вязкую и сильно нагретую жидкость. Она является частью верхней мантии. Нужно отметить, что существование астеносферы как непрерывной вязкой оболочки не подтверждается сейсмологическими исследованиями. Изучение структуры планеты позволяет выделить несколько подобных слоев, размещающихся по вертикали. В горизонтальном же направлении астеносфера, видимо, постоянно прерывается.

Способы изучения мантии

Слои, лежащие ниже коры, малодоступны для изучения. Огромная глубина, постоянное увеличение температуры и возрастание плотности являются серьезной проблемой для получения информации о составе мантии и ядра. Однако представить структуру планеты все-таки можно. При изучении мантии главными источниками информации становятся геофизические данные. Скорость распространения сейсмических волн, особенности электропроводности и силы тяжести позволяют ученым делать предположения о составе и других особенностях нижележащих слоев.


Кроме того, некоторую информацию удается получить из магматических горных пород и фрагментов мантийных пород. К числу последних относятся алмазы, которые могут многое рассказать даже о нижней мантии. Встречаются мантийные породы и в земной коре. Их изучение помогает понять состав мантии. Однако они не заменят образцов, добытых непосредственно из глубоких слоев, поскольку в результате различных процессов, протекающих в коре, их состав отличен от мантийного.

Мантия Земли: состав

Еще один источник информации о том, что представляет собой мантия, — метеориты. Согласно современным представлениям, хондриты (самая распространенная на планете группа метеоритов) по составу близки к земной мантии. Предполагается, что она содержит элементы, которые находились в твердом состоянии или входили в твердое соединение в процессе формирования планеты. К ним относится кремний, железо, магний, кислород и некоторые другие. В мантии они, объединяясь с диоксидом кремния, образуют силикаты. В верхнем слое располагаются силикаты магния, с глубиной растет количество силиката железа. В нижней мантии происходит разложение этих соединений на оксиды (SiO2, MgO, FeO).

Особый интерес для ученых представляют породы, не встречающиеся в земной коре. Как предполагается, в мантии таких соединений (гроспидиты, карбонатиты и так далее) немало.

Слои


Остановимся подробнее на протяженности слоев мантии. По представлениям ученых, верхних из них занимает диапазон примерно от 30 до 400 км от земной поверхности. Далее располагается переходная зона, которая уходит вглубь еще на 250 км. Следующий слой — нижний. Его граница располагается на глубине около 2900 км и соприкасается с внешним ядром планеты.

С продвижением вглубь планеты, повышается температура. Мантия Земли находится под действием крайне высокого давления. В зоне астеносферы действие температуры перевешивает, поэтому здесь вещество находится в так называемом аморфном или полурасплавленном состоянии. Глубже под действием давления оно становится твердым.

Исследования мантии и границы Мохоровичича

Мантия Земли не дает покоя ученым уже достаточно длительное время. В лабораториях над породами, предположительно входящими в состав верхнего и нижнего слоя проводятся эксперименты, позволяющие понять состав и особенности мантии. Так, японскими учеными было установлено, что нижний слой содержит большое количество кремния. В верхней мантии располагаются запасы воды. Она поступает из земной коры, а также проникает отсюда на поверхность.


Особый интерес представляет поверхность Мохоровичича, природа которой до конца непонятна. Сейсмологические исследования предполагают, что на уровне 410 км под поверхностью происходит метаморфическое изменение пород (они становятся более плотными), что проявляется в резком увеличении скорости проведения волн. Предполагается, что базальтовые породы в районе границы Мохоровичича превращаются в эклогит. При этом происходит увеличение плотности мантии примерно на 30 %. Есть и другая версия, согласно которой, причина изменения скорости проведения сейсмических волн кроется в изменении состава пород.

В 2005 году в Японии было построено специально оборудованное судно Chikyu. Его миссия — сделать рекордно глубокую скважину на дне Тихого океана. Ученые предполагают взять образцы пород верхней мантии и границы Мохоровичича, чтобы получить ответы на многие вопросы, связанные со строением планеты. Реализация проекта намечена на 2020 год.

Нужно отметить, что ученые не просто так обратили свой взор именно к океаническим недрам. Согласно исследованиям, толщина коры на дне морей значительно меньше, чем на континентах. Разница существенная: под толщей воды в океане до магмы нужно преодолеть в отдельных областях всего 5 км, тогда как на суше эта цифра увеличивается до 30 км.

Сейчас судно уже работает: получены образцы глубоких угольных пластов. Реализация главной цели проекта позволит понять, как устроена мантия Земли, какие вещества и элементы составляют ее переходную зону, а также выяснить нижний предел распространения жизни на планете.


Наше представление о строении Земли пока далеко не полное. Причина тому — сложность проникновения в недра. Однако технический прогресс не стоит на месте. Достижения науки позволяют предположить, что в недалеком будущем мы будем знать о характеристиках мантии гораздо больше.

Источник: FB.ru

Структура Земли

Земля имеет тот же состав элементов, что и Солнце и другие планеты (не учитывая водород и гелий, которые улетучились из-за гравитации Земли). Не беря во внимание железо в ядре, мы можем подсчитать, что мантия представляет собой смесь магния, кремния, железа и кислорода, что примерно соответствует по составу минералам.

Но именно то, что смесь минералов присутствует на заданной глубине является сложным вопросом, который не достаточно обоснован. Мы можем получает образцы из мантии, куски пород, поднятые при определенных вулканических извержениях, с глубины около 300 километров, а иногда и гораздо глубже. Они показывают, что самая верхняя часть мантии состоит из перидотита и эклогита. Самое интересное, что мы получаем от мантии — это бриллианты.

Деятельность в мантии

Верхнюю часть мантии медленно перемешивают движения плит, проходящих над ней. Это вызвано двумя видами деятельности. Во-первых, происходит движение подвижных плит вниз, которые скользят друг под другом. Во-вторых, происходит восходящее движение мантийной породы, когда две тектонические плиты расходятся и раздвигаются. Тем не менее, все эти действие не полностью смешивает верхний слой мантии, и геохимики считают верхнюю мантию каменной версией мраморного пирога.


Мировые модели вулканизма отражают действие тектоники плит, за исключением нескольких областей планеты, называемых горячими точками. Горячие точки могут служить ключом к подъему и опусканию материалов гораздо глубже в мантии, возможно, с самого ее основания. В наши дни идет энергичная научная дискуссия о горячих точках планеты.

Изучение мантии с помощью сейсмических волн

Наш самый мощный метод изучения мантии — это мониторинг сейсмических волн от землетрясений в мире. Два разных вида сейсмичесих волн: волны P (аналогичные звуковым волнам) и волны S (например, волны от встряхиваемой веревки) отвечают физическим свойствам породы, через которую они проходят. Сейсмические волны отражают некоторые типы поверхностей и преломляют (изгибают) другие типы поверхностей, когда наносят по ним удар. Ученые используют эти эффекты для определения внутренних поверхностей Земли.

Наши инструменты достаточно хороши, чтобы рассматривать мантию Земли так, как врачи делают ультразвуковые снимки своих пациентов. После столетия сбора данных о землетрясениях мы можем сделать несколько впечатляющих карт мантии.

Моделирование мантии в лаборатории


Минералы и породы меняются под высоким давлением. Например, общий мантийный минерал — оливин преобразовывается в различные кристаллические формы на глубинах около 410 километров и снова на 660 километрах.

Изучение поведения минералов в условиях мантии происходит двумя способами: компьютерное моделирование, основанное на уравнениях физики минералов и лабораторных экспериментах. Таким образом, современные исследования мантии проводятся сейсмологами, программистами и лабораторными исследователями, которые теперь могут воспроизводить условия в любом месте мантии с помощью лабораторного оборудования под высоким давлением, такого как ячейка с алмазной наковальней.

Слои мантии и внутренние границы

Столетие исследований позволило заполнить некоторые пробелы в знаниях о мантии. Она имеет три основных слоя. Верхняя мантия простирается от основания коры (Мохоровичича) до глубины 660 километров. Переходная зона расположена между 410 и 660 километрами, где происходят значительные физические изменения минералов.

Нижняя мантия простирается от 660 до примерно 2700 километров. Здесь сейсмические волны сильно приглушены, и большинство исследователей считают, что породы под ними различны по химическому составу, а не только по кристаллографии. И последний спорный слой на дне мантии имеет толщину около 200 километров и является границей между ядром и мантией.

Почему мантия Земли особенная


Поскольку мантия является основной частью Земли, ее история имеет фундаментальное значение для геологии. Мантия сформировалась во время рождения Земли, как океан жидкой магмы на железном ядре. Поскольку она затвердевала, элементы, которые не вписывались в основные минералы, собрались в виде накипи на вершине коры. Затем, мантия начала медленную циркуляцию, которую продолжает последние 4 миллиарда лет. Верхняя часть мантии начала охлаждаться, потому что она перемешивалась и гидратировалась тектоническими движениями поверхностных плит.

В то же время мы многое узнали о структуре других планет земной группы (Меркурия, Венеры и Марса). По сравнению с ними, у Земли есть активная смазанная мантия, которая является особенной благодаря тому же элементу, который отличает ее поверхность: воде.

Источник: NatWorld.info

Методы изучения внутреннего строения и состава Земли

Методы изучения внутреннего строения и состава Земли можно разделить на две основные группы: геологические методы и геофизические методы. Геологические методы базируются на результатах непосредственного изучения толщ горных пород в обнажениях, горных выработках (шахтах, штольнях и пр.) и скважинах. При этом в распоряжении исследователей имеется весь арсенал  методов исследования строения и состава, что определяет высокую степенью детальности получаемых результатов.


есте с тем, возможности этих методов при изучении глубин планеты весьма ограничены – самая глубокая в мире скважина имеет глубину лишь -12262 м (Кольская сверхглубокая в России), ещё меньшие глубины достигнуты при бурении океанического дна (около -1500 м, бурение с борта американского исследовательского судна «Гломар Челленджер»). Таким образом, непосредственному изучению доступны глубины, не превышающие 0,19% радиуса планеты.

Сведения о глубинном строении базируются на анализе косвенных данных, полученных геофизическими методами, главным образом закономерностей изменения с глубиной различных физических параметров (электропроводности, механической добротности и т.д.), измеряемых при геофизических исследованиях. В основу разработки моделей внутреннего строения Земли положены в первую очередь результаты сейсмических исследований, опирающиеся на данные о закономерностях распространения сейсмических волн. В очагах землетрясений и мощных взрывов возникают сейсмические волны – упругие колебания. Эти волны разделяются на объёмные – распространяющиеся в недрах планеты и «просвечивающие» их подобно рентгеновским лучам, и поверхностные – распространяющиеся параллельно поверхности и «зондирующие» верхние слои планеты на глубину десятки – сотни километров.
Объемные волны, в свою очередь, разделяются на два вида – продольные и поперечные. Продольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами (от англ. рrimary — первичные), более «медленные» поперечные волны называют S-волны (от англ. secondary — вторичные). Поперечные волны, как известно, обладают важной особенностью – они распространяются только в твёрдой среде.


На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения (SH-волны) или смещение, лежащее в плоскости падения (SV-волны). При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны. Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты.

  Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты — если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам.

Сейсмическая модель Земли

Изучение путей и скорости распространения в недрах Земли сейсмических волн позволили разработать сейсмическую модель её внутреннего строения.

Сейсмические волны, распространяясь от очага землетрясения в глубь Земли, испытывают наиболее значительные скачкообразные изменения скорости, преломляются и отражаются на сейсмических разделах, расположенных на глубинах 33 км и 2900 км от поверхности (см. рис.). Эти резкие сейсмические границы позволяют разделить недра планеты на 3 главные внутренние геосферы – земную кору, мантию и ядро.

Сейсмическая модель Земли

Земная кора от мантии отделяется резкой сейсмической границей, на которой скачкообразно возрастает скорость и продольных, и поперечных волн. Так скорость поперечных волн резко возрастает с 6,7-7,6 км/с в нижней части коры до 7,9-8,2 км/с в мантии. Эта граница была открыта в 1909 г. югославским сейсмологом Мохоровичичем и впоследствии была названа границей Мохоровичича (часто кратко называемой границей Мохо, или границей М). Средняя глубина границы составляет 33 км (нужно заметить, что это весьма приблизительное значение в силу разной мощности в разных геологических структурах); при этом под континентами глубина раздела Мохоровичича может достигать 75-80 км (что фиксируется под молодыми горными сооружениями – Андами, Памиром), под океанами она понижается, достигая минимальной мощности 3-4 км. 

Ещё более резкая сейсмическая граница, разделяющая мантию и ядро, фиксируется на глубине 2900 км. На этом сейсмическом разделе скорость Р-волн скачкообразно падает с 13,6 км/с в основании мантии до 8,1 км/с в ядре; S-волны – с 7,3 км/с до 0. Исчезновение поперечных волн указывает, что внешняя часть ядра обладает свойствами жидкости. Сейсмическая граница, разделяющая ядро и мантию, была открыта в 1914 г. немецким сейсмологом Гутенбергом, и её часто называют границей Гутенберга, хотя это название и не является официальным.

Резкие изменения скорости и характера прохождения волн фиксируются на глубинах 670 км и 5150 км. Граница 670 км разделяет мантию на верхнюю мантию (33-670 км) и нижнюю мантию (670-2900 км). Граница 5150 км разделяет ядро на внешнее жидкое (2900-5150 км) и внутреннее твёрдое (5150-6371 км).

Существенные изменения отмечаются и на сейсмическом разделе 410 км, делящим верхнюю мантию на два слоя.

Полученные данные о глобальных сейсмических границах дают основание для рассмотрения современной сейсмической модели глубинного строения Земли.

Внешней оболочкой твёрдой Земли является земная кора, ограниченная границей Мохоровичича. Эта относительно маломощная оболочка, толщина которой составляет от 4-5 км под океанами до 75-80 км под континентальными горными сооружениями. В составе знмной коры отчетливо выделяется верхний осадочный слой, состоящий из неметаморфизованных осадочных пород, среди которых могут присутствовать вулканиты, и постилающая его консолидированная, или кристаллическая, кора, образованная метаморфизованными и магматическими интрузивными породами.Существуют два главных типа земной коры – континентальная и океанская, принципиально различающиеся по строению, составу, происхождению и возрасту.

Континентальная кора залегает под континентами и их подводными окраинами, имеет  мощность от 35-45 км до 55-80 км, в её разрезе выделяются 3 слоя. Верхний слой, как правило, сложен осадочными породами, включающими небольшое количество слабометаморфизованных и магматических пород. Этот слой называется осадочным. Геофизически он характеризуются низкой скоростью Р-волн в диапазоне 2-5 км/с. Средняя мощность осадочного слоя около 2,5 км.
Ниже располагается верхняя кора (гранито-гнейсовый или «гранитный» слой), сложенный магматическими и метаморфическими породами богатыми кремнезёмом (в среднем соответствующими по химическому составу гранодиориту). Скорость прохождения Р-волн в данном слое составляет 5,9-6,5 км/с. В основании верхней коры выделяется сейсмический раздел Конрада, отражающий возрастание скорости сейсмических волн при переходе к нижней коре. Но этот раздел фиксируется не повсеместно: в континентальной коре часто фиксируется постепенное возрастание скоростей волн с глубиной.
Нижняя кора (гранулито-базитовый слой) отличается более высокой скоростью волн (6,7-7,5 км/с для Р-волн), что обусловлено изменением состава пород при переходе от верхней мантии. Согласно наиболее приятой модели её состав соответствует гранулиту.

В формировании континентальной коры принимают участие породы различного геологического возраста, вплоть до самых древних возрастом около 4 млрд. лет.

Океанская кора имеет относительно небольшую мощность, в среднем 6-7 км. В её разрезе в самом общем виде можно выделить 2 слоя. Верхний слой – осадочный, характеризующийся малой мощностью (в среднем около 0,4 км) и низкой скоростью Р-волн (1,6-2,5 км/с). Нижний слой – «базальтовый» — сложенный основными магматическими породами (вверху – базальтами, ниже – основными и ультраосновными интрузивными породами). Скорость продольных волн в «базальтовом» слое нарастает от 3,4-6,2 км/с в базальтах до 7-7,7 км/с в наиболее низких горизонтах коры.

Возраст древнейших пород современной океанской коры около 160 млн. лет.

Способы изучения мантии

Мантия представляет собой наибольшую по объёму и массе внутреннюю оболочку Земли, ограниченную сверху границей Мохо, снизу – границей Гутенберга. В её составе выделяется верхняя мантия и нижняя мантия, разделённые границей 670 км.

Верхняя мания по геофизическим особенностям разделяется на два слоя. Верхний слой — подкоровая мантия — простирается от границы Мохо до глубин 50-80 км под океанами и 200-300 км под континентами и характеризуется плавным нарастанием скорости как продольных, так и поперечных сейсмических волн, что объясняется уплотнением пород за счёт литостатического давления вышележащих толщ. Ниже подкоровой мантии до глобальной поверхности раздела 410 км расположен слой пониженных скоростей. Как следует из названия слоя, скорости сейсмических волн в нем ниже, чем в подкоровой мантии. Более того, на некоторых участках выявляются линзы, вообще не пропускающие S-волны, это даёт основание констатировать, что вещество мантии на этих участках находится в частично расплавленном состоянии. Этот слой называют астеносферой (от греч. «asthenes» — слабый и «sphair» — сфера); термин введён в 1914 американским геологом Дж. Барреллом, в англоязычной литературе часто обозначаемый LVZ – Low Velocity Zone. Таким образом, астеносфера – это слой в верхней мантии (расположенный на глубине около 100 км под океанами и около 200 км и более под континентами), выявляемый на основании снижения скорости прохождения сейсмических волн и обладающий пониженной прочностью и вязкостью. Поверхность астеносферы хорошо устанавливается и по резкому снижению удельного сопротивления (до значений около 100 Ом.м).

Наличие пластичного астеносферного слоя, отличающегося по механическим свойствам от твёрдых вышележащих слоёв, даёт основание для выделения литосферы — твердой оболочки Земли, включающей земную кору и подкоровую мантию, расположенную выше астеносферы. Мощность литосферы составляет от 50 до 300 км. Нужно отметить, что литосфера не является монолитной каменной оболочкой планеты, а разделена на отдельные плиты, постоянно движущиеся по пластичной астеносфере. К границам литосферных плит приурочены очаги землетрясений и современного вулканизма.

Глубже раздела 410 км в верхней мантии повсеместно распространяются и P-, и S-волны, а их скорость относительно монотонно нарастает с глубиной.

В нижней мантии, отделённой резкой глобальной границей 670 км, скорость Р- и S-волн монотонно, без скачкообразных изменений, нарастает соответственно до 13,6 и 7,3 км/с вплоть до раздела Гутенберга.

Во внешнем ядре скорость Р-волн резко снижается до 8 км/с, а S-волны полностью исчезают. Исчезновение поперечных волн даёт основание предполагать, что внешнее ядро Земли находится в жидком состоянии. Ниже раздела 5150 км находится внутреннее ядро, в котором возрастает скорость Р-волн, и вновь начинают распространяться S-волны, что указывает на его твёрдое состояние.

Фундаментальный вывод из описанной выше скоростной модели Земли состоит в том, что наша планета состоит из серии концентрических оболочек, представляющих железистое ядро, силикатную мантию и алюмосиликатную кору.

Геофизическая характеристика Земли

Распределение массы между внутренними геосферами

Масса оболочек ЗемлиОсновная часть массы Земли (около 68%) приходится на ее относительно лёгкую, но большую по объёму мантию, при этом примерно 50% приходится на нижнюю мантию и около 18% – на верхнюю. Оставшиеся 32% общей массы Земли приходятся в основном на ядро, причем его жидкая внешняя часть (29% общей массы Земли) гораздо тяжелее, чем внутренняя твердая (около 2%). На кору остается лишь менее 1% общей массы планеты.

Плотность

Плотность оболочек закономерно возрастает к центру Земли (см. рис). Средняя плотность коры составляет 2,67 г/см3; на границе Мохо она скачкообразно возрастает с 2,9-3,0 до 3,1-3,5 г/см3.  В мантии плотность постепенно возрастает за счет сжатия силикатного вещества и фазовых переходов (перестройкой кристаллической структуры вещества в ходе «приспособления» к возрастающему давлению) от 3,3 г/см3 в подкоровой части до 5,5 г/см3 в низах нижней мантии. На границе Гутенберга (2900 км) плотность скачкообразно увеличивается почти вдвое – до 10 г/см3 во внешнем ядре. Еще один скачок плотности – от 11,4 до 13,8 г/см3 — происходит на границе внутреннего и внешнего ядра (5150 км). Эти два резких плотностных скачка имеют различную природу: на границе мантия/ядро происходит изменение химического состава вещества (переход от силикатной мантии к железному ядру), а скачок на границе 5150 км связан с изменением агрегатного состояния (переход от жидкого внешнего ядра к твердому внутреннему). В центре Земли плотность вещества достигает 14,3 г/см3.

Способы изучения мантии

Давление

Давление в недрах Земли рассчитывается на основании ее плотностной модели. Увеличение давления по мере удаления от поверхности обуславливается несколькими причинами:

  1. сжатием за счет веса вышележащих оболочек (литостатическое давление);

  2. фазовыми переходами в однородных по химическому составу оболочках (в частности, в мантии);

  3. различием в химическом составе оболочек (коры и мантии, мантии и ядра).

У подошвы континентальной коры давление составляет около 1 ГПа (точнее 0,9*109 Па). В мантии Земли давление постепенно растет, на границе Гутенберга оно достигает 135 ГПа. Во внешнем ядре градиент роста давления увеличивается, а во внутреннем ядре, наоборот, уменьшается. Расчетные величины давления на границе между внутренним и внешним ядрами и вблизи центра Земли составляют соответственно 340 и 360 ГПа.

Температура. Источники тепловой энергии

Протекающие на поверхности и в недрах планеты геологические процессы в первую очередь обусловлены тепловой энергией. Источники энергии подразделяются на две группы: эндогенные (или внутренние источники), связанные с генерацией тепла в недрах планеты, и экзогенные (или внешние по отношению к планете). Интенсивность поступления тепловой энергии из недр к поверхности отражается в величине геотермического градиента. Геотермический градиент – приращение температуры с глубиной, выраженной в 0С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0С. Средняя величина геотермического градиента в верхней части коры составляет 30 0С/км и колеблется от 200 0С/км в областях современного активного магматизма до 5 0С/км в областях со спокойным тектоническим режимом. С глубиной величина геотермического градиента существенно уменьшается, составляя в литосфере, в среднем около 10 0С/км, а в мантии – менее 1 0С/км. Причина этого кроется в распределении источников тепловой энергии и характере теплопереноса.

Температура

Источниками эндогенной энергии являются следующие.
1. Энергия глубинной гравитационной дифференциации, т.е. выделение тепла при перераспределении вещества по плотности при его химических и фазовых превращениях. Основным фактором таких превращений служит давление. В качестве главного уровня выделения этой энергии рассматривается граница ядро – мантия.
2. Радиогенное тепло, возникающее при распаде радиоактивных изотопов. Согласно некоторым расчётам, этот источник определяет около 25% теплового потока, излучаемого Землёй. Однако необходимо принимать во внимание, что повышенные содержания главных долгоживущих радиоактивных изотопов – урана, тория и калия отмечаются только в верхней части континентальной коры (зона изотопного обогащения). Например, концентрация урана в гранитах достигает 3,5 • 10–4 %, в осадочных породах – 3,2 • 10–4 %, в то время как в океанической коре она ничтожно мала: около 1,66 • 10–7 %. Таким образом, радиогенное тепло является дополнительным источником тепла в верхней части континентальной коры, что и определяет высокую величину геотермического градиента в этой области планеты.
3. Остаточное тепло, сохранившееся в недрах со времени формирования планеты.
4. Твёрдые приливы, обусловленные притяжение Луны. Переход кинетической приливной энергии в тепло происходит вследствие внутреннего трения в толщах горных пород. Доля этого источника в общем тепловом балансе невелика – около 1-2 %.

В литосфере преобладает кондуктивный (молекулярный) механизм теплопереноса, в подлитосферной мантии Земли происходит переход к преимущественно конвективному механизму теплопереноса.

Расчёты температур в недрах планеты дают следующие значения: в литосфере на глубине около 100 км температура составляет около 1300 0С, на глубине 410 км – 1500 0С, на глубине 670 км – 1800 0С, на границе ядра и мантии – 2500 0С, на глубине 5150 км – 3300 0С, в центе Земли – 3400 0С. При этом в расчёт принимался только главный (и наиболее вероятный для глубинных зон) источник тепла – энергия глубинной гравитационной дифференциации.

Эндогенное тепло определяет протекание глобальных геоднинамических процессов. в том числе перемещение литосферных плит

На поверхности планеты важнейшую роль имеет экзогенный источник тепла – солнечное излучение. Ниже поверхности влияние солнечного тепла резко снижается. Уже на небольшой глубине (до 20-30 м) располагается пояс постоянных температур – область глубин, где температура остаётся постоянной и равна среднегодовой температуре района. Ниже пояса постоянных температур тепло связано с эндогенными источниками.

Магнетизм Земли

Земля представляет собой гигантский магнит с магнитным силовым полем и магнитными полюсами, которые располагаются поблизости от географических, но не совпадают с ними. Поэтому в показаниях магнитной стрелки компаса различают магнитное склонение и магнитное наклонение.

Магнитное склонение – это угол между направлением магнитной стрелки компаса и географическим меридианом в данной точке. Этот угол будет наибольшим на полюсах (до 900) и наименьшим на экваторе (7-80).

Магнитное наклонение – угол, образуемый наклоном магнитной стрелки к горизонту. В приближении к магнитному полюсу стрелка компаса займёт вертикальное положение.

Предполагается, что возникновение магнитного поля обусловлено системами электрических токов, возникающих при вращении Земли, в связи с конвективными движениями в жидком внешнем ядре. Суммарное магнитное поле складывается из значений главного поля Земли и поля, обусловленного ферромагнитными минералами в горных породах земной коры. Магнитные свойства характерны для минералов – ферромагнетиков, таких как магнетит (FeFe2O4), гематит (Fe2O3), ильменит (FeTiO2), пирротин (Fe1-2S) и др., которые являются полезными ископаемыми и устанавливаются по магнитным аномалиям. Для этих минералов характерно явление остаточной намагниченности, которая наследует ориентировку магнитного поля Земли, существовавшего во время образования этих минералов. Реконструкция места положения магнитных полюсов Земли в разные геологические эпохи свидетельствует о том, что магнитное поле периодически испытывало инверсию — изменение, при котором магнитные полюсы менялись местами. Процесс изменения магнтиного знака геомагнитного поля длится от нескольких сотен до несмкольких тысяч лет и начинается с интенсивного понижения напряженности главного магнитного поля Земли практически до нуля, затем устанавливается обратная полярность и через некоторое время следует быстрое восстановление напряженности, но уже противоположного знака.  Северный полюс занимал место южного и, наоборот, с примерной частотой 5 раз в 1 млн. лет. Современная ориентация магнитного поля установилась около 800 тыс. лет назад.

 

Источник: popovgeo.sfedu.ru

Известно, что Земля в сейсмическом (тектоническом) смысле состоит из ядра, мантии и коры. Рассмотрим, что такое мантия. Мантия – это часть Земли, расположенная непосредственно под корой и выше ядра (рис. 1). Земная мантия находится в диапазоне от 30 до 2900 км от земной поверхности. Мантия Земли сложена преимущественно перидотитами – породами, состоящими из силикатов магния, железа, кальция и др. Частичное плавление мантийных пород порождает базальтовые и им подобные расплавы, формирующие при подъёме к поверхности земную кору [1].

Рисунок 1. Структура Земли

Границей между корой и мантией служит граница Мохоровичича или, сокращённо, Мохо. На ней происходит резкое увеличение сейсмических скоростей – от 7 до 8-8,2 км/с. Находится эта граница на глубине от 7 (под океанами) до 70 километров (под складчатыми поясами). Мантия Земли подразделяется на верхнюю мантию и нижнюю мантию. Границей между этими геосферами служит слой Голицына, располагающийся на глубине около 670 км [2].

Выше границы 670 километров находится верхняя мантия, а ниже, соответственно, нижняя. Эти две части мантии имеют различный состав и физические свойства. Хотя сведения о составе нижней мантии ограничены, и число прямых данных весьма невелико, можно уверенно утверждать, что её состав со времён формирования Земли изменился значительно меньше, чем верхней мантии, породившей земную кору [1].

Мантия Земли недоступна непосредственному исследованию: она не выходит на земную поверхность и не достигнута глубинным бурением. Поэтому большая часть информации о мантии получена геохимическими и геофизическими методами. Данные же о её геологическом строении очень ограничены.

Мантию изучают по следующим данным:

— Геофизические данные – данные о скоростях сейсмических волн, электропроводности и силе тяжести.

— Мантийные расплавы — перидотиты, базальты, коматииты, кимберлиты, лампроиты, карбонатиты и некоторые другие магматические горные породы образуются в результате частичного плавления мантии.

— Фрагменты мантийных пород, выносимые на поверхность мантийными же расплавами — кимберлитами, щелочными базальтами и др. Это ксенолиты, ксенокристы и алмазы. Алмазы представляют собой самые глубокие фрагменты земли, доступные непосредственному изучению.

— Мантийные породы в составе земной коры — такие комплексы в наибольшей степени соответствуют мантии [2].

Мантия сложена главным образом ультраосновными породами: перовскитами, перидотитами (лерцолитами, гарцбургитами, верлитами, пироксенитами, дунитами) и в меньшей степени основными породами — эклогитами.

Также среди мантийных пород установлены редкие разновидности пород, не встречающиеся в земной коре. Это различные флогопитовые перидотиты, гроспидиты, карбонатиты. Содержание основных элементов в мантии Земли в массовых процентах приведено в таблице 1.

Таблица 1.

Содержание основных элементов в мантии Земли в массовых процентах

Элемент

Концентрация

 

Оксид

Концентрация

O

44,8

   

Si

21,5

SiO2

46

Mg

22,8

MgO

37,8

Fe

5,8

FeO

7,5

Al

2,2

Al2O3

4,2

Ca

2,3

CaO

3,2

Na

0,3

Na2O

0,4

K

0,03

K2O

0,04

Сумма

99,7

Сумма

99,1

Согласно современным взглядам, в составе мантии преобладает сравнительно небольшая группа химических элементов: Si, Mg, Fe, Al, Ca и О. Предлагаемые модели состава геосфер в первую очередь основываются на различии соотношений указанных элементов, а также на различиях в содержании Al и некоторых других более редких для глубинных пород элементов. В соответствии с химическим и минералогическим составом эти модели получили свои названия:

— пиролитовая – главные минералы – оливин, пироксены и гранат в отношении 4 : 2 : 1;

— пиклогитовая – главные минералы – пироксен и гранат, а доля оливина снижается до 40%;

— эклогитовая, в которой наряду с характерной для эклогитов пироксен-гранатовой ассоциацией присутствуют и некоторые более редкие минералы, в частности Al-содержащий кианит .

Однако все эти петрологические модели относятся прежде всего к породам верхней мантии, простирающейся до глубин ~ 670 км. В отношении валового состава более глубоких геосфер лишь допускается, что отношение оксидов двухвалентных элементов (МО) к кремнезему (МО/) ~ 2, оказываясь ближе к оливину , чем к пироксену , а среди минералов преобладают перовскитовые фазы с различными структурными искажениями, магнезиовюстит со структурой типа NaCl и некоторые другие фазы в значительно меньших количествах.

В целом минералогический состав этой части верхней мантии представляется более или менее ясным. Если говорить о пиролитовой минеральной ассоциации, то ее преобразование вплоть до глубин ~ 800 км исследовано достаточно детально.

Важнейший компонент химического состава зоны 400-670 км — вода, содержание которой, по некоторым оценкам, составляет ~ 0,1 вес. % и присутствие которой в первую очередь связывают с Mg-силикатами. Количество запасенной в этой оболочке воды столь значительно, что на поверхности Земли оно составило бы слой мощностью 800 м [3].

Проведенные в последние два-три десятилетия исследования структурных переходов минералов с использованием рентгеновских камер высокого давления позволили смоделировать некоторые особенности состава и структуры геосфер глубже границы 670 км.

В настоящее время большинство исследователей согласны с идеей о том, что вся эта глубинная (нижняя) мантия в основном состоит из перовскитоподобной фазы , на долю которой приходится около 70% ее объема (40% объема всей Земли), и магнезиовюстита (~20 %). Оставшиеся 10% составляют стишовит и оксидные фазы, содержащие Ca, Na, K, Al и Fe, кристаллизация которых допускается в структурных типах ильменита-корунда (твердый раствор -,), кубического перовскита (,) и Са-феррита () [3].

Выделение отдельных промежуточных сейсмических границ, расположенных ниже рубежа 670, коррелирует с данными о структурных трансформациях мантийных минералов, формы которых могут быть весьма разнообразными. Иллюстрацией изменения многих свойств различных кристаллов при высоких значениях физико-химических параметров, соответствующих глубинной мантии, может служить, согласно Р. Жанлозу и Р. Хейзену, зафиксированная в ходе экспериментов при давлениях 70 гигапаскалей (ГПа) (~ 1700 км) перестройка ионноковалентных связей вюстита в связи с металлическим типом межатомных взаимодействий. Рубеж 1200 может соответствовать предсказанной на основе теоретических квантово-механических расчетов и впоследствии смоделированной при давлении ~45 ГПа и температуре ~2000 0С перестройке со структурой стишовита в структурный тип (ромбический аналог рутила ), а 2000 км – его последующему преобразованию в фазу со структурой, промежуточной между a- и , характеризующуюся более плотной упаковкой кремнийкислородных октаэдров [2]. Также начиная с этих глубин (~ 2000 км) при давлениях 80-90 ГПа допускается распад перовскитоподобного Mg, сопровождающийся возрастанием содержания периклаза MgO и свободного кремнезема.

Общее заключение таково, что на таких глобальных сейсмических рубежах, как 410 и 670 км, происходят значительные изменения в минеральном составе мантийных пород. Минеральные преобразования отмечаются также и на глубинах ~ 850, 1200, 1700, 2000 и 2200-2300 км, то есть в пределах нижней мантии. Это весьма важное обстоятельство, позволяющее отказаться от представления об ее однородной структуре.

Литература:

  1. http://lomonosov-fund.ru/enc/ru/encyclopedia:0129270 – Мантия Земли – Энциклопедия – Фонд знаний «Ломоносов».

  2. https://ru.wikipedia.org/wiki/Мантия_Земли – Мантия Земли – Википедия.

  3. Пущаровский, Д.Ю. Пущаровский, М.Ю. Состав и строение мантии Земли. Соросовский образовательный журнал. 1998, N11, стр. 111-119.

Источник: scienceforum.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.