Спектральный анализ света


Точно знать химический состав вещества требуется во многих сферах производственной деятельности. От чистоты рабочего материала зависит протекание химических процессов. Однако чистые материалы, лишенные каких-либо примесей, в природе практически не встречаются. Чтобы изучить химический состав рабочей субстанции, исследуются процессы испускания и поглощения света атомами — спектральный анализ.

Этот метод исследования природы вещества был открыт в середине 19 века и произвел сенсацию. С его помощью был сделан ряд важных достижений в области химии и физики, получены новые знания о химических элементах. Анализ является очень чувствительным и позволяет обнаруживать даже микроскопическую примесь инородной субстанции. Однако сфера применения спектрального анализа простирается гораздо дальше изучения состава веществ.

Что такое спектр?

Спектром называют явление, при котором световой луч, проходя через преломляющий объект (например, призму), раскладывается на несколько разноцветных лучей.


Атомы каждого химического элемента имеют свой индивидуальный спектр, отличный от спектров других элементов. Благодаря этой уникальности, можно определить химический состав вещества. Изучение спектров испускания и поглощения света атомами лежит в основе спектрального анализа (спектроскопии).

Излучение атомов вещества осуществляется только в возбужденном состоянии, при воздействии на них каким-либо источником энергии. Получив энергию, вещество отдает ее обратно в виде излучения и возвращается в обычное состояние. Полученные данные об испускании и поглощении атомами света обрабатываются с помощью специальных спектральных аппаратов.

Виды излучения

Оно бывает:

  1. Тепловое. При нагревании тела, атомы ускоряют свое движение, что приводит к выделению энергии. При достижении определенной концентрации выработанной энергии, вещество начинает излучать свет.
  2. Для испускания и поглощения атомами света может использоваться электрическое поле. В этом случае энергия излучения называется электролюминесценцией.
  3. Хемилюминесценция. Это явление происходит при некоторых химических реакциях, когда температура вещества остается обычной, а излучение происходит за счет взаимодействия с другим веществом.
  4. Фотолюминесценция. Возникает, когда атомы начинают сами излучать свет под воздействием иного источника излучения.

Виды спектроскопии

Для изучения процессов поглощения и испускания света атомами используются различные методы спектрального анализа:

  1. Эмиссионный.
  2. Абсорбционный.
  3. Люминесцентный.
  4. Рентгеновский.
  5. Радиоспектроскопический.
  6. Спектрофотометрический и др.

Наиболее распространенными способами спектроскопии являются эмиссионный, абсорбционный и люминесцентный.

При эмиссионном методе анализа вещество необходимо перевести в газообразное состояние. Под воздействием высоких температур вещество распадается на атомы. В этом случае характер излучения вещества становится критерием определения химического состава. Изучение процесса проходит с помощью спектральных аппаратов, анализирующих тип волны.

Абсорбционный метод применяют для исследования не испускания, а поглощения света атомами. В зависимости от природы элемента, характер поглощения энергии веществом будет индивидуальным в каждом случае.

При люминесцентном методе возбуждение вещества происходит при помощи инфракрасных или ультрафиолетовых лучей.

Применение спектрального анализа

Спектроскопия принесла миру немало ценных открытий в разных областях знаний.

Множество химических элементов было обнаружено благодаря спектральному анализу: цезий, гелий, рубидий и другие. Основной цвет их спектров часто служит причиной названия (например, «рубидий» — «темно-красный»).

Широко применяется спектроскопия в области промышленности, в частности, в машиностроительной сфере, металлургии. Спектральный анализ помогает наиболее точно определить состав минерала, что позволяет получить максимально чистое вещество для производства.

Необычное применение анализу нашлось в области криминалистики, в частности, для установления подлинности или поддельности документа.

Значение спектрального анализа для астрофизики


Самые ценные сведения процессы испускания и поглощения света атомами дают в области астрофизики и исследований космоса.

Только благодаря спектральному анализу удалось установить химический состав небесных объектов, например, Солнца и звезд. Спектроскопия показала, что в составе звезд находятся те же элементы, что на Земле. Фотосферы небесных тел — не что иное, как непрерывный спектр.

Не только химический состав звезд открылся благодаря спектральному анализу. Этот метод позволил изучить жизненный цикл звезды. Каждая из них получила свое место в спектральном классе, исходя из ее размера и температуры излучения.

Спектральный анализ позволил получить представление о космических размерах и расстояниях, о скорости движущихся космических объектов, их вращении. Эффект Доплера дополняет и раскрывает суть исследований, проведенных с помощью спектроскопии.

Таким образом, большинство современных астрономических исследований базируется на данных спектрального анализа.

Лазеры, испускание и поглощение света атомами в спектрах

Лазер (квантовый генератор) является источником излучения. В нем излучение энергии возбужденными атомами осуществляется под влиянием внешнего стимула. Спектры лазера формируются испусканием света атомами, а не его поглощением. Пучок лазера является когерентным: лучи идут параллельно и практически не расходятся, независимо от расстояния до источника излучения. Лазеры широко применяются в различных отраслях знаний, в частности, в медицине, оптической физике, фотографии, металлургии и т. д.


Рассмотрев процессы испускания и поглощения света атомами кратко и познакомившись с главным методом исследований — спектральным анализом, можно сделать вывод о его неоспоримой значимости в современном мире. Множество сфер науки, производства и технологий применяют этот метод и его результаты в своей работе.

Источник: www.syl.ru

Эмиссионная спектроскопия

Атомы элементов в возбужденном состоянии испускают излучение со строго определенной длиной волны. Спектры испускания (эмиссионные спектры) для каждого элемента индивидуальны, они состоят из определенного набора характерных линий, по которым можно определять элементный состав вещества и его концентрацию.

При эмиссионном спектральном анализе исследуемую пробу испаряют или сжигают, если это жидкое или твердое вещество, затем подвергают действию высокой температуры или электрического заряда для перевода атомов в возбужденное состояние и регистрируют спектр. Качественный эмиссионный анализ сводится к расшифровке линий в спектре анализируемого образца. Количественный анализ основан на сравнении интенсивности спектральных линий образца с интенсивностью линий в спектре стандартного образца, содержание определяемого элемента в котором известно.


Источниками возбуждения могут служить пламя, электрическая дуга, искра, импульсный или электровакуумный разряд. Дуговой разряд дает температуру 5000-7000 °С, при которой в возбужденное состояние переходят атомы большинства элементов. В высоковольтной искре с температурой 7000-15000 °С возбуждаются атомы элементов с высоким потенциалом возбуждения. Импульсный и электровакуумные разряды используют для возбуждения инертных газов.

По методу регистрации спектра различают несколько видов эмиссионного спектрального анализа. При визуальном анализе качественный состав определяют непосредственным наблюдением видимого спектра. Более точен фотографический анализ, по которому спектр фотографируют на фотопластинку, которую затем рассматривают на спектропроекторе при качественных определениях или фотометрируют с помощью микрофотометра при количественных определениях. На фотографической пластинке получают фиксированный ряд линий, соответствующих спектральным линиям исследуемого образца, степень почернения которых пропорциональна интенсивности этих линий.

Для расшифровки спектрограмм используют спектропроекторы. Отечественной промышленностью выпускается спектропроектор ПС-18, который дает возможность получить на экране увеличенные в 20 раз небольшие участки спектра, облегчая их расшифровку при экспрессном качественном или полуколичественном анализе.


Плотность почернения линий на фотопластинке измеряют с помощью микрофотометров. Световой поток пропускают через незачерненную часть фотопластинки, а затем направляют его на фотоэлемент с гальванометром. Отмечают отклонение стрелки гальванометра по шкале. Затем световой поток пропускают через зачерненную часть пластинки и снова отмечают отклонение стрелки гальванометра. Плотность почернения определяют по уравнению:

Плотность почернения

где I0 — интенсивность света, прошедшего через незачерненную часть фотопластинки; I — интенсивность света, прошедшего через зачерненную часть фотопластинки.

Поскольку плотность почернения пропорциональна концентрации элемента, по показаниям гальванометра строят градуировочный график зависимости почернения от концентрации. По такому графику затем определяют содержание элемента. Для определения плотности почернения линий на спектрограмме применяют микрофотометр МФ-2 (или МФ-4) и двухлучевой микрофотометр ИФО-451.

При фотоэлектрическом эмиссионном анализе аналитические линии регистрируют с помощью фотоэлементов. Результат анализа указывается на шкале измерительного прибора или фиксируется на ленте самозаписывающего прибора.

Кварцевый спектрограф ИСП-28. Спектрограф ИСП-28 используют для получения спектров в интервале длин волн 200-600 нм.


нем проводят качественный и количественный анализы металлов, сплавов, руд, минералов и других материалов. На рис. 126 показана оптическая схема прибора. Свет от источника 1 (дуга или искра) через трехлинзовый конденсор 3-5, защищенный от брызг металлов кварцевой пластинкой 2, направляется в щель 6, находящуюся в фокусе зеркального объектива 8. Отраженный от этого объектива параллельный пучок света направляется на кварцевую призму 9. Подвергшийся дисперсии свет кварцевым объективом 10 фокусируется на эмульсии фотопластинки 11.

Оптическая схема кварцевого спектрографа ИСП-28 с трехлинзовой осветительной системой

Другие спектрографы. Кварцевый лабораторный спектрограф ИСП-30 настольного типа применяется для качественного анализа металлов, сплавов и руд; стеклянный трехпризменный спектрограф ИСП-51 используется для анализа веществ, содержащих элементы с малым числом спектральных линий. Для анализа веществ, содержащих элементы с особо сложными спектрами, используют спектрограф СТЭ-1. Для качественного и количественного анализа металлов, руд, минералов и др. применяют длиннофокусный спектрограф ДФС-8 (три модификации) с дифракционными решетками и дифракционный спектрограф ДФС-452.

Пламенная фотометрия

Пламенная фотометрия является одним из наиболее точных методов эмиссионного спектрального анализа. Этот метод широко применяют для определения щелочных и щелочноземельных металлов. Сущность метода пламенной фотометрии заключается в следующем.


Раствор анализируемого вещества сжатым воздухом разбрызгивается в зону пламени газовой горелки, в которой сгорают ацетилен, водород, светильный или какой-либо другой газ. Пламя горелки служит также источником энергии для возбуждения атомов. Оптическое устройство выделяет спектральную линию определяемого элемента и измеряет ее интенсивность с помощью фотоэлемента. Интенсивность спектральной линии пропорциональна концентрации соли в растворе (в определенных границах). Концентрацию элемента определяют по градуировочному графику. Ниже приведены состав некоторых горючих газовых смесей и средняя температура, получаемая при их сжигании (в °С):

Состав некоторых горючих газовых смесей

Портативный пламенный фотометр ППФ-УНИЗ. Принципиальная схема фотометра ППФ-УНИЗ представлена на рис. 127. Горючий газ из баллона (или городской сети) проходит через маностат 2, буферную бутыль 3, фильтр 4 и поступает через микрокран 5 в смеситель 7, выполняющий одновременно функцию каплеуловителя. Давление газа после маностата поддерживается постоянным с помощью микрокрана 5 и измеряется U-образным жидкостным манометром 6. Избыток газа выходит в лабораторную горелку 1 и сжигается.

Принципиальная схема пламенного фотометра ППФ-УНИЗ

Сжатый воздух из компрессора (без применения масляной смазки) или из баллона поступает в буферную бутыль 3′, затем в фильтр 13. Давление воздуха поддерживается постоянным с помощью микрокрана 12 и измеряется манометром 11. Воздух поступает в распылитель 8, куда засасывается анализируемый раствор из стакана 10. Раствор в виде мелкораспыленного аэрозоля поступает в смеситель 7, где смешивается с горючим газом. Выходящая из смесителя газовоздушная смесь, содержащая в распыленном состоянии исследуемый элемент, через каплеуловитель 14 поступает в горелку 20.


Длина волны желтой линии пламени натрия составляет 589±5 мкм, красной линии кальция — 615±5 мкм, инфракрасной линии калия — 766±5 мкм. Интенсивность этих линий фиксируют фотоэлементом 16, снабженным сменными интерференционными светофильтрами 17 и диафрагмами 18. При определении натрия и кальция используют селеновые фотоэлементы типа АФИ-5 с чувствительностью 460-500 мкА/лм, для определения калия — сернисто-серебряный фотоэлемент типа ФЭСС-УЗ с чувствительностью 6000-9000 мкА/лм. Фотоэлементы и светофильтры защищены от прямого теплового излучения пламени стеклянным экраном 19. Возникающие фототоки регистрируются магнитоэлектрическим микроамперметром 21 типа М-95, к которому два из трех фотоэлементов присоединены по компенсационной схеме через электрический переключатель 15.

Перед началом работы с прибором открывают дверку 10 (рис. 128) и закрепляют ее с помощью фиксатора. К сливной трубке 14 распылителя 12 подсоединяют резиновую трубку и опускают ее в сосуд с запорной жидкостью высотой 20-25 см.
д всасывающую трубку 13 распылителя подставляют стакан вместимостью 25-30 мл с дистиллированной водой. На дверку устанавливают защитное устройство (козырек) 11 и включают прибор в сеть переменного тока в 220 В (50 Гц). Включают компрессор для подачи воздуха и, медленно вращая рукоятку микрокрана «воздух» 4 против часовой стрелки, добиваются хорошего распыления дистиллированной воды, т.е. образования высокодисперсного аэрозоля. Оптимальное давление воздуха (4-8)*10000 Па (0,4-0,8 атм) не должно изменяться в течение всего времени измерения.

Внешний вид пламенного фотометра ППФ-УНИЗ

Медленно вращая рукоятку микрокрана «газ» 5, подают газ в горелку и через 10-20 с зажигают его у входа в горелку и на выходе из маностата. Подачу газа регулируют так, чтобы внутренний конус пламени окрашивался в зеленый цвет, а внешний — в голубовато-синий. С помощью рукоятки 9 устанавливают горелку в таком положении, при котором внутренний конус пламени опущен на 5-6 см ниже кромки входного отверстия диафрагмы.

Измерения начинают после 20-минутного прогревания фотометрической ячейки. В период прогревания диафрагма ячейки должна быть полностью открыта, микроамперметр включают на низкую чувствительность (1,0 мкА) и в пламя горелки вводят дистиллированную воду. После прогревания фотоэлектрической ячейки диафрагму закрывают, рукоятку микроамперметра 6 переключают на высшую чувствительность (0,1 мкА) и указатель микроамперметра устанавливают на нуль, вращая головку корректора, находящуюся на правой боковой стороне прибора.

Для построения градуировочного графика готовят серию стандартных растворов. Для приготовления исходного раствора 2,385 г хлорида калия KCl (хч) растворяют в мерной колбе вместимостью 500 мл и разбавляют водой до метки. Отбирают пипеткой 5,00 мл этого раствора в мерную колбу вместимостью 500 мл и разбавляют дистиллированной водой до метки (разбавление в 100 раз). Полученный раствор содержит 25 мг калия в 1 мл, из него готовят растворы, содержащие 5, 10, 15 и 20 мг калия в 1 мл. Для этого в мерные колбы вместимостью 100 мл отбирают пипеткой 20, 40, 60 и 80 мл раствора с содержанием калия 25 мг/мл и разбавляют объем водой до метки.

Эти растворы последовательно вводят в пламя горелки и записывают показания микроамперметра. При переходе от одного раствора к другому распылитель промывают дистиллированной водой до возвращения стрелки микроамперметра к нулю. По полученным данным строят градуировочный график: показания микроамперметра (по оси абсцисс) — концентрация определяемого элемента (по оси ординат) (в мг/мл).

Для определения концентрации элемента в исследуемом растворе его вводят в пламя горелки и записывают показания микроамперметра, по которым, пользуясь градуировочным графиком, находят концентрацию определяемого элемента. В течение всего процесса анализа необходимо поддерживать постоянство давления воздуха и газа.

Кроме метода определения концентрации по градуировочному графику применяют метод ограничивающих растворов, т.е. снимают показания микроамперметра при анализе исследуемого раствора и параллельно показания прибора при анализе стандартных: растворов с меньшей и большей концентрацией. Содержание калия (в мг/л) вычисляют по формуле

Содержание калия

где c1 — содержание калия в более концентрированном стандартном растворе; c2 — содержание калия в менее концентрированном стандартном растворе; I1 — показания микроамперметра при анализе стандартного раствора с большей концентрацией; I2 — показания микроамперметра при анализе стандартного раствора с меньшей концентрацией; Ix — показания микроамперметра при анализе исследуемого раствора.

Пламенный фотометр Flapho-4. Двухканальный прибор для серийного определения содержания натрия, калия, кальция, лития и свинца с высокой чувствительностью. Выпускается в ГДР.

Исследуемый раствор пробы всасывается протекающим через; распылитель сжатым воздухом и превращается в аэрозоль. Аэрозоль поступает в специальный резервуар, где к нему примешивается горючий газ (ацетилен или пропан), и полученная смесь подводится к горелке, окруженной очищенным воздухом. В газовом пламени исследуемое вещество испаряется, и его атомы возбуждаются. Металлизированный интерференционный фильтр выделяет из общего спектра пламени монохроматический компонент излучения, который попадает на селеновый фотоэлемент. Образующийся прерывистый фототок усиливается и подводится к измерительному или регистрирующему прибору. Схема прибора представлена на рис. 129.

Схема пламенного фотометра Flapho-4

Другие пламенные фотометры: фотометр пламенный ФП-101 трехканальный для определения концентрации Na, K, Ca и Li; фотометр пламенный ПФМ для количественного определения концентраций щелочных и щелочноземельных элементов, а также магния, бора, хрома и марганца; пламенно-фотометрические анализаторы жидкости ПАЖ-1 и БИАН-140 для определения микроколичеств K, Na, Ca и Li в растворах, фотометр пламенный для определения Na и K в биологических жидкостях.

Атомно-абсорбционная спектрофотометрия

Свободные атомы в невозбужденном состоянии, находящиеся в зоне низкотемпературного пламени, обладают способностью избирательно поглощать свет. Длина волны света, поглощаемого атомами элемента, совпадает с длиной волны света, испускаемого атомами этого элемента. Следовательно, по характеристическим линиям спектра поглощения и их интенсивности можно проводить анализ веществ, определяя их состав и концентрацию составляющих его элементов.

Для проведения атомно-абсорбционного анализа исследуемое вещество испаряют, подавая его в зону низкотемпературного пламени. Молекулы испарившегося вещества диссоциируют на атомы. Поток света, в спектре которого имеется линия света, поглощаемая веществом, пройдя через это пламя, ослабляется, и тем больше, чем выше концентрация анализируемого вещества.

На рис. 130 представлена принципиальная схема установки для атомно-абсорбционного анализа. Свет от разрядной трубки 1 (полый катод) проходит через пламя горелки 2 и фокусируется на щели монохроматора 3. Затем излучение попадает на фотоумножитель, или фотоэлемент 4. Монохроматор выделяет из общего светового потока излучение с длиной волны, поглощаемой исследуемым элементом. Ток усиливается в блоке 5 и регистрируется измерительным устройством 6.

Схема установки для атомно-абсорбционного спектрального анализа

Определение заключается в измерении отношения интенсивностей света, прошедшего через пламя с введенным в него анализируемым веществом и без него. Поскольку интенсивность спектральной линии исследуемого элемента в пламени горелки оказывается больше, чем их интенсивность излучения от полого катода, излучение последнего модулируют. Модуляция излучения (изменение амплитуды и частоты колебаний) осуществляется с помощью вращающегося диска с отверстиями (модулятор 7), расположенного между полым катодом и пламенем. Усилитель 5 должен иметь максимальный коэффициент усиления для той же частоты, с которой модулируется излучение полого катода.

Атомно-абсорбционный спектрофотометр AAS-1. Предназначается для абсорбционного и эмиссионного спектрального анализа. Дает возможность определять 65 элементов.

Принцип действия. Жидкая проба распыляется с помощью газа-окислителя, смешивается с горючим газом (ацетилен или пропан) и сжигается в пламени горелки. Через пламя горелки проходит излучение от лампы с полым катодом. После выделения дифракционным монохроматором подходящей линии излучение направляется на фотоумножитель. Постоянная составляющая тока, вызванная собственным излучением, подавляется. Сигнал от фото-умножителя усиливается, выпрямляется чувствительным выпрямителем и регистрируется. Прибор настраивается и контролируется по стандартным растворам.

На рис. 131 приведена схема атомно-абсорбционного спектрофотометра AAS-1.

Оптико-электронная схема спектрофотометра AAS-1

Устройство прибора. Прибор имеет арматурный комплекс для снабжения газами, систему распыления и сжигания, сменное устройство для ламп с полыми катодами, оптическую систему я приемное устройство с усилителем и индикатором.

Пламя горелки питается смесью ацетилена или пропана и сжатого воздуха. Газы поступают в систему сжигания из обычных баллонов с отрегулированными (первичными) редукторами давления. Подача воздуха, свободного от масла, обеспечивается мембранным компрессором (16 л/мин под давлением 3*100000 Па (3 атм)). Арматурный комплекс прибора имеет регулируемые (вторичные) редукторы и расходомеры для контроля расхода каждого газа, а также керамические спеченные пылевые фильтры и склянку для дополнительного промывания ацетилена. Предохранительный клапан автоматически прекращает доступ горючего газа при снижении рабочего давления сжатого воздуха (например, вследствие перегиба или отрыва подводящего шланга); клапан исключает неправильный порядок подачи газов при зажигании пламени.

Система распыления и сжигания находится за съемным окном из многослойного стекла, позволяющего наблюдать за работой системы. Распылитель с кольцевым соплом обладает большим коэффициентом распыления и характеризуется низким расходом жидкости (3,4 мл/мин, или 0,5 мл за время всего анализа). Горелка оснащена сменными головками-насадками — одной щелевой для абсорбционного анализа (рис. 132, а) и двумя многодырчатыми (горелками Мекера с сеткой) для эмиссионного анализа (рис. 132,6).

Головки к горелке спектрофотометра AAS-1

Юстируемые держатели для четырех ламп с полыми катодами находятся в устройстве, позволяющем осуществлять быструю смену ламп. После замены одной из ламп держатели в юстировке не нуждаются.

Оптическая система направляет излучение лампы в виде узкого пучка на пламя. За счет бокового смещения тубуса с изображающей системой добиваются однократного или трехкратного прохождения излучения через пламя для повышения чувствительности анализа. Светосильный дифракционный монохроматор выделяет из линейчатого спектра данной лампы с полым катодом желаемую резонансную линию. Ширину щели монохроматора регулируют в пределах от 0 до 2 мм.

Прецизионная дифракционная решетка с 1300 штрихами на 1 мм и угловой дисперсией 1,5 нм/мм обладает большой разрешающей способностью. Спектральный интервал решетки от 190 до 820 нм.

Приемником излучения служит 12-каскадный фотоумножитель. Измерительный усилитель, блок питания ламп с полым катодом и фотоумножители работают на транзисторах и способны компенсировать колебания напряжения сети от +10 до -15%.

Показания прибора отсчитывают по стрелочному индикатору, имеющему три шкалы: логарифмическая шкала коэффициента погашения от 0 до 1,5; линейная шкала от 0 до 100 и шкала рабочих напряжений от 0 до 16 мВ. К прибору может быть подключено регистрирующее или вычислительное устройство для определения концентрации или для обработки данных. Чувствительность определений (в мг/л) составляет:

Чувствительность определений

Прибор работает от сети переменного тока 220 В, 50 Гц. Выпускается в ГДР.

Другие отечественные атомно-абсорбционные спектрофотометры: атомно-абсорбционный спектрофотометр С-302 для определения микроколичеств железа, меди, цинка, кобальта, никеля, висмута, кальция и других элементов; автоматизированный атомно-абсорбционный спектрофотометр АА-А для определения кальция и меди с повышенной чувствительностью; «Сатурн» — пламенный атомно-абсорбционный полуавтоматический регистрирующий спектрофотометр для определения 32 элементов; «Спектр-1» — атомно-абсорбционный спектрофотометр для экспрессного определения более 40 элементов чувствительностью примерно 0,2 мкг/мл.

В Англии выпускается атомно-абсорбционный спектрофотометр Перкин-Эльмер, модель 603. Прибор построен по двухлучевой схеме, скомбинирован с микрокомпьютером. Обеспечивает высокую точность и экспрессность определения. Для зажигания пламени используется горючая смесь кислород-ацетилен.

Источник: www.spec-kniga.ru

Природа спектрального анализа

Спектральный анализ (спектроскопия) изучает химический состав веществ на основе их способностей по испусканию и поглощению света. Известно, что каждый химический элемент испускает и поглощает характерный только для него световой спектр, при условии, что его можно привести к газообразному состоянию.

В соответствии с этим, возможно определение наличия этих веществ в том или ином материале по присущему только им спектру. Современные методы спектрального анализа позволяют установить наличие вещества массой до миллиардных долей грамма в пробе – за это ответственен показатель интенсивности излучения. Уникальность испускаемого спектра атомом характеризует его глубокую взаимосвязь с физической структурой.

Видимый свет представляет собой электромагнитное излучение с длиной волны от 3,8*10-7 до 7,6*10-7 м, ответственной за различные цвета. Вещества могут излучать свет только лишь в возбужденном состоянии (это состояние характеризуется повышенным уровнем внутренней энергии) при наличии постоянного источника энергии.

Получая избыточную энергию, атомы вещества излучают ее в виде света и возвращаются в свое обычное энергетическое состояние. Именно этот испускаемый атомами свет и используется для спектрального анализа. К самым распространенным видам излучения относят: тепловое излучение, электролюминесценция, катодолюминесценция, хемилюминесценция.

Спектральный анализ. Окрашивание пламени ионами металлов

Виды спектрального анализа

Различают эмиссионную и абсорбционную спектроскопию. Метод эмиссионной спектроскопии основан на свойствах элементов к излучению света. Для возбуждения атомов вещества используются высокотемпературный нагрев, равный нескольким сотням или даже тысячам градусов, – для этого пробу вещества помещают в пламя или в поле действия мощных электрических разрядов. Под воздействием высочайшей температуры молекулы вещества разделяются на атомы.

Атомы, получая избыточную энергию, излучают ее в виде квантов света различной длины волны, которые регистрируются спектральными аппаратами – приборами, визуально изображающими получившийся световой спектр. Спектральные аппараты служат также и разделительным элементом системы спектроскопии, потому как световой поток суммируется от всех присутствующих в пробе веществ, и в его задачи входит разделение общего массива света на спектры отдельных элементов и определение их интенсивности, которая позволит в будущем сделать выводы о величине присутствующего элемента в общей массе веществ. 

  • В зависимости от методов наблюдения и регистрации спектров различают спектральные приборы: спектрографы и спектроскопы. Первые регистрируют спектр на фотопленке, а вторые делают доступным просмотр спектра для прямого наблюдения человеком через специальные зрительные трубы. Для определения размеров используются специализированные микроскопы, позволяющие с высокой точностью определить длину волны.
  • После регистрации светового спектра он подвергается тщательному анализу. Выявляются волны определенной длины и их положение в спектре. Далее выполняется соотношение их положения с принадлежностью к искомым веществам. Делается это с помощью сравнения данных положения волн с информацией, расположенной в методических таблицах, указывающих на типичные длины волн и спектры химических элементов.
  • Абсорбционная спектроскопия проводится подобно эмиссионной. В этом случае вещество помещают между источником света и спектральным аппаратом. Проходя через анализируемый материал, испущенный свет достигает спектрального аппарата с «провалами» (линии поглощения) по некоторым длинам волн – они и составляют поглощенный спектр исследуемого материала. Дальнейшая последовательность исследования аналогична для приведенного выше процесса эмиссионной спектроскопии.

Открытие спектрального анализа

Значение спектроскопии для науки

Спектральный анализ позволил человечеству открыть несколько элементов, которые невозможно было определить традиционными методами регистрации химических веществ. Это такие элементы, как рубидий, цезий, гелий (он был открыт с помощью спектроскопии Солнца – задолго до его обнаружения на Земле), индий, галлий и другие. Линии этих элементов были обнаружены в спектрах излучения газов, и на момент их исследования были неидентифицируемы.

Стало понятно, что это и есть новые, доселе неизвестные элементы. Серьезное влияние спектроскопия оказала на становление нынешнего вида металлургической и машиностроительной промышленности, атомной индустрии, сельское хозяйство, где стала одним из главных инструментов систематического анализа.

Огромное значение спектроскопия приобрела в астрофизике

Спровоцировав колоссальный скачок в понимании структуры Вселенной и утверждении того факта, что все сущее состоит из одних и тех же элементов, которыми, в том числе, изобилует и Земля. Сегодня метод спектрального анализа позволяет ученым определять химический состав находящихся за миллиарды километров от Земли звезд, туманностей, планет и галактик – эти объекты, естественно, не доступны методикам прямого анализа ввиду своего большого  удаления.

С помощью метода абсорбционной спектроскопии возможно изучение далеких космических объектов, не обладающих собственным излучением. Это знание позволяет устанавливать важнейшие характеристики космических объектов: давление, температуру, особенности структуры строения и многое другое.

Источник: www.13min.ru

Как показали опыты Ньютона, белый свет является сложным: пройдя через призму он разлагается на пучки различных цветов, которые образуют на экране разноцветную полоску, называемую спектром.

Отдельные цветные лучи, которые после прохождения призмы не разлагались на составляющие, были названы простыми или монохроматическими. Однако, как показали опыты не только по дисперсии, но и по дифракции света, даже современные лазеры не дают чистого монохроматического света, то есть света строго определённой, одной длины волны. Та энергия, которую несёт с собой свет от источника теплового излучения, неравномерно распределена по всем частотам волн, входящих в состав светового пучка. Ранее мы с вами показали, что энергия, приходящаяся на все частоты электромагнитной волны (а свет, не забываем, имеет электромагнитную природу) определяется плотностью потока или интенсивностью:

Спектральный анализ света

А для характеристики распределения излучения по частотам вводят новую величину, называемую спектральной плотностью потока излучения. Она определяется интенсивностью излучения, приходящегося на единичный интервал частот.

Спектральный анализ света

Спектральную плотность потока излучения на разных частотах можно найти экспериментально. Для этого с помощью призмы получают спектр излучения, например флуоресцентной лампы, и измеряют плотность потока излучения, приходящегося на небольшие спектральные интервалы шириной ∆ν.

Спектральный анализ света

По результатам таких опытов строят кривую зависимости спектральной плотности интенсивности излучения от частоты, которая даёт наглядное представление о распределении энергии в видимой части спектра исследуемого источника.

Для получения хороших и ярких спектров без перекрывания их отдельных участков, используются специальные оптические приборы, называемые спектральными аппаратами. Их основной частью является призма или дифракционная решётка.

Первый спектральный аппарат — спектроскоп, был изобретён в тысяча восемьсот пятнадцатом (1815) году немецким физиком Йо́зефом Фраунго́фером.

Спектральный анализ света

В оригинальном дизайне спектроскопа свет, прошедший через щель, расположенную в фокальной плоскости коллиматорной линзы, преобразовывался в тонкий световой пучок и попадал на призму. Из призмы же выходили параллельные пучки разного направления, которые, преломившись в линзе зрительной трубы, образовывали в её фокальной плоскости изображение щели. Наблюдение велось через трубку со шкалой, накладываемой на спектральное изображение, позволяя таким образом проводить измерения.

С изобретением фотографической плёнки был создан более точный прибор: спектрограф. Работая по такому же принципу, он имел фотокамеру вместо наблюдательной трубки. В середине ХХ века камера сменилась трубкой электронного фотоумножителя, что позволило значительно увеличить точность и проводить анализ в реальном времени.

Как вы смогли убедится, при исследовании света, излучаемого нагретыми телами (Солнца, пламени свечи или лампы накаливания), изображения щели сливаются в одну цветную полосу́ всех основных цветов. Поскольку в таких спектрах нет пустых промежутков, то их принято называть непрерывными или сплошными спектрами.

Помимо раскалённых твёрдых тел и жидкостей, сплошной спектр дают также пары́ и газы, находящиеся под очень большим давлением.

Распределение энергии в сплошном спектре по частотам для разных тел различно. Например, абсолютно чёрное тело излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум при определённой частоте. При повышении температуры тела максимум спектральной плотности излучения смещается в сторону коротких волн.

В 1853—1854 годах немецкий химик-экспериментатор Роберт Вильгельм Бунзен совместно с Питером Десагой изобрели специальную газовую горелку, которую сейчас принято называть бунзеновской. Это изобретение стало трамплином в изучении спектров различных веществ.

Спектральный анализ света

Оказалось, что вещества, внесённые в пламя этой горелки, превращались в пар и окрашивали пламя в различные цвета. Например, медь окрашивала пламя в зелёный цвет, поваренная соль — в жёлтый, а литий — в малиново-красный.

В 1854 году большой друг Бунзена немецкий физик Густав Роберт Кирхгоф предложил пропускать свет такого пламени через призму. Оказалось, что если в пламя горелки внести кусочек асбеста, смоченный, например, раствором обычной поваренной соли, то на бледном фоне сплошного спектра горелки возникнет яркая жёлтая линия, которую дают пары натрия.

Спектральный анализ света

Если же в пламя горелки внести литий или стронций, то пламя окрасится в малиново-красный цвет. Однако если изучить спектр такого пламени, то окажется, что он существенно различается для паров лития и стронция. Так, после прохождения через призму свет литиевого пламени даёт яркие зелёную, малиновую и слабую оранжевую линии. А вот стронций — слабую фиолетовую, три голубых линии, две красных и слабую оранжевую.

Спектральный анализ света

Характерный спектр, также состоящий из набора отдельных цветных линий, даёт свечение газового разряда в трубке, содержащей исследуемый газ. Например, спектр испускания атомарного водорода представляет собой четыре яркие цветные линии. А при исследовании атомарного гелия мы можем рассмотреть до 12 цветных линий в его видимой части спектра.

Спектры, представляющие собой цветные линии различной яркости, разделённые широкими тёмными полосами, называют линейчатыми спектрами.

Наличие линейчатого спектра означает, что вещество излучает свет только в определённых очень узких спектральных интервалах. На экране вы видите примерное распределение спектральной плотности интенсивности излучения в линейчатом спектре.

Спектральный анализ света

Линейчатый спектр часто называют фундаментальным, так как излучения атомов каждого химического элемента имеет уникальный набор спектральных линий: не существует двух химических элементов, атомы которых излучали бы одинаковый спектр. Поэтому для каждого химического элемента составлена специальная таблица, в которой указаны характерные для него линии и их яркость.

Обратим ваше внимание на то, что линейчатые спектры дают все вещества, находящиеся в атомарном (но не молекулярном) состоянии.

Если же газ находится в молекулярном состоянии, то спектр его излучения будет представлять собой отдельные полосы, разделённые тёмными промежутками. Такой спектр называют полосатым.

С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса такого спектра представляет собой совокупность большого числа очень тесно расположенных линий.

Спектральный анализ света

Описанные нами выше спектры получались при разложении излучаемого света самосветящимися телами. Такие спектры называют спектрами испускания или эмиссионными спектрами. Но кроме них существуют ещё и спектры поглощения.

Для их наблюдения перед не нагретыми парами изучаемого вещества (у нас это стронций) располагают источник света, дающий непрерывный спектр. На экране, установленном за призмой, можно увидеть сплошной спектр, перерезанный 7 тёмными линиями. Эти линии получили название линий поглощения, а сам спектр — линейчатого спектра поглощения.

Спектральный анализ света

В тысяча восемьсот пятьдесят девятом году Роберт Бунзен и Густав Кирхгоф установили, что линии поглощения находятся в тех же участках спектра, где должны быть расположены яркие линии в линейчатом спектре испускания, присущие данному веществу. На основе этих наблюдений Кирхгоф сформулировал закон обратимости спектральных линий: атомы менее нагретых тел поглощают из сплошного спектра только те частоты, которые в других условиях они испускают.

И действительно, мы знаем, что поглощение света веществом зависит от длины волны. Например, зелёный светофильтр пропускает лишь волны, соответствующие зелёному свету, а все остальные поглощает. Тоже самое происходит и с газом. Если пропускать белый свет сквозь холодный, не излучающий газ, то на фоне непрерывного спектра источника появляются тёмные линии, соответствующие длинам волн, которые газ испускает в сильно нагретом состоянии.

Спектральный анализ света

Таким образом, анализ линейчатых спектров излучения и поглощения позволяет расшифровать состав излучающего вещества. Метод определения химического состава вещества по его спектру называют спектральным анализом. Основоположниками данного метода, как вы уже, наверное, догадались, являются Роберт Бунзен и Густав Кирхгоф. Открытие спектрального анализа ознаменовало появление нового раздела физики — спектроскопии, изучающей спектры электромагнитного излучения.

Спектральный анализ базируется на двух основных положениях:

·                   каждый химический элемент или химическое соединение характеризуется определённым спектром;

·                   интенсивность линий и полос в спектре зависит от концентрации того или иного элемента в веществе.

Спектральный анализ при всей своей простоте, обладает рекордной чувствительностью: с его помощью можно обнаружить примесь нужного элемента в составе сложного вещества даже в том случае, когда его масса не превышает и тысячной доли микрограмма. Так, например, основатели спектрального анализа, исследуя спектры паров щелочных металлов лития, натрия и калия, обнаружили новые элементы — рубидий и цезий, названные так по цвету наиболее ярких линий в их спектрах: рубидий даёт темно-красные, рубиновые линии, а слово «цезий» означает «небесно-голубой».

При выполнении спектрального анализа вещества с неизвестным химическим составом его сначала приводят в атомарное состояние, сообщая атомам большую энергию. Чаще всего для этих целей используются высокотемпературные источники света), в которые помещается исследуемое вещество в виде порошка или аэрозоля. Затем при помощи спектрографа получают фотографию спектров. Сравнивая полученный линейчатый спектр с известными спектрами химических элементов, можно определить, какие элементы присутствуют в составе исследуемого вещества.

Благодаря относительной простоте и достаточной универсальности спектральный анализ является основным методом для контроля состава вещества в машиностроении и металлургии, атомной индустрии. С его помощью определяется химический состав руд и минералов, определяется возраст археологических находок.

Спектральный анализ можно проводить не только со спектрами испускания, но и со спектрами поглощения. Именно линии поглощения в спектрах не только Солнца, но и других звёзд позволяют исследовать химический состав этих небесных тел. Так, например, при изучении спектра солнечной атмосферы 18 августа 1868 года был открыт ранее неизвестный химический элемент, названный гелием (от греческого слова «гелиос» — Солнце). А на Земле этот газ был обнаружен лишь в 1881 году итальянцем Луи́джи Пальмье́ри в вулканических газах фумарол. Однако учёные круги встретили это сообщение с недоверием, так как свой опыт Пальмьери описал неясно. Поэтому считается, что гелий на Земле был открыт лишь спустя 27 лет после своего первоначального открытия шотландским химиком Уильямом Рамзаем.

Спектральный анализ в астрофизике даёт возможность определять не только химический состав звёзд и газопылевых облаков, но и некоторые другие физические характеристики, например, температуру, давление, скорость движения небесного тела и индукцию его магнитного поля. Именно благодаря спектральному анализу было открыто смещение спектральных линий в спектрах галактик в красную (длинноволновую) область спектра, что свидетельствовало о расширении нашей Вселенной. Таким образом, во многих случаях, когда другие методы исследования невозможны, спектральный анализ позволяет получать очень ценные и важные результаты.

Источник: videouroki.net


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.