Спектральный анализ физика


Физика, 11 класс

Урок 19. Излучение и спектры

Перечень вопросов, рассматриваемых на уроке:

1) виды излучения и их источники;

2) спектры химических веществ, спектральный анализ;

3) практическое применение спектрального анализа;

4) спектральный аппарат;

4) шкала электромагнитных излучений.

Глоссарий по теме

Тепловое излучение – это излучение нагретых тел.

Электролюминесценция — это свечение, сопровождающее разряд в газе.

Катодолюминесценция — это свечение твердых тел, вызванное бомбардировкой их электронами.

Хемилюминесценция — это свечение, которое возникает при выделении энергии в некоторых химических реакциях. Фотолюминесценция — это свечение тела непосредственно под воздействием падающего на него излучения.

Спектральная плотность потока излучения I(ν) — интенсивность излучения, приходящаяся на единицу частотного интервала.

Спектры излучения представляют собой набор частот или длин волн, которые содержатся в излучении вещества.


Непрерывный (или сплошной) спектр — это спектр, в котором представлены волны всех длин волн в данном диапазоне.

Линейчатый спектр — это спектр, представляющий собой цветные линии различной яркости, разделённые широкими тёмными полосами.

Полосатый спектр представляет собой спектр, состоящий из отдельных полос, разделенных темными интервалами.

Темными линиями на фоне непрерывного спектра являются линии поглощения, которые вместе образуют спектр поглощения.

Спектральный анализ — это метод определения химического состава вещества по его спектру.

Шкала электромагнитных волн: низкочастотное излучение; радиоизлучение; инфракрасные лучи; видимый свет; ультрафиолетовые лучи; рентгеновские лучи; γ-излучение.

Основная и дополнительная литература по теме урока:

Мякишев Г. Я., Буховцев Б.Б., Чаругин В. М. Физика. Учебник для образовательных организаций М.: Просвещение, 2014. С. 246 – 258.

Рымкевич А.П. Сборник проблем физики. 10-11 класс. – М.: Дрофа, 2014. С.143.

Теоретический материал для самостоятельного изучения

Электромагнитные волны излучаются ускоренно движущимися заряженными частицами. Излучение возникает также, когда атом переходит из возбужденного состояния в основное и во время распада ядра.

Источники излучений делятся на два класса: горячие и холодные.

Тепловое излучение — это излучение нагретых тел. Тепловыми источниками являются Солнце, лампа накаливания, пламя и т. д.


Энергия атомам для излучения может также поступать и из нетепловых источников; например, переменный ток вызывает появление электромагнитного поля; излучение происходит и при переходе атома из возбуждённого состояния в основное, а также при распаде ядра.

Электролюминесценция — это свечение, сопровождающее разряд в газе (полярные сияния, трубки для рекламных надписей). Катодолюминесценция — это свечение твердых тел, вызванное бомбардировкой их электронами (электронно-лучевых трубок). Хемилюминесценция — это свечение, которое происходит при выделении энергии в некоторых химических реакциях (светлячки, некоторые живые организмы и т. д.). Фотолюминесценция — это свечение тела непосредственно под воздействием падающего на него излучения (флуоресцентная лампа, светящиеся краски и т. д.).

Частотное распределение излучения характеризуется спектральной плотностью потока излучения.

Спектральная плотность потока излучения I(ν) — интенсивность излучения на единицу частотного интервала.

Спектральные аппараты — оптические устройства, в которых электромагнитное излучение оптического диапазона разлагается на монохроматические составляющие. Спектры излучения представляют собой набор частот или длин волн, которые содержатся в излучении какого-либо вещества. Они бывают трёх видов.

1) Непрерывный (или сплошной) — это спектр, в котором представлены волны всех длин волн в заданном диапазоне. При нагревании до высокой температуры твердые и жидкие тела дают такой спектр, а также высокотемпературная плазма.


2) Линейчатый спектр — это цветные линии различной яркости, разделенные широкими темными полосами. Такие спектры дают все вещества в газообразном атомарном состоянии. Изолированные атомы излучают свет строго определенных длин волн.

3) Полосатый спектр представляет собой спектр, состоящий из отдельных полос, разделенных темными интервалами. В отличие от линейчатых спектров полосатые спектры образуются не атомами, а молекулами, которые не связаны или слабо связаны друг с другом. Темными линиями на фоне непрерывного спектра являются линии поглощения, которые вместе образуют спектр поглощения.

Длины волн (или частоты) линейчатого спектра вещества зависят только от свойств его атомов, но не зависят от метода возбуждения свечения атомов — это основное свойство линейчатых спектров.

Атомы любого химического элемента дают спектр, непохожий на спектры всех других элементов: они способны излучать строго индивидуальный набор длин волн. Метод определения химического состава вещества по его спектру называется спектральным анализом. В астрономии с его помощью определяют химический состав звёзд, планет, температуру и индукцию их полей и многие другие характеристики. Он также успешно используется в геологии, археологии, криминалистике, металлургии, атомной индустрии и многих других сферах деятельности.


В настоящее время определены спектры всех атомов и составлены таблицы спектров.

Механизмы образования всех электромагнитных излучений одинаковы, отличаются друг от друга методами получения и регистрации. Огромным достижением электромагнитной теории Максвелла было создание шкалы электромагнитных волн. Различают следующие области шкалы: низкочастотное излучение; радиоизлучение; инфракрасные лучи; видимый свет; ультрафиолетовые лучи; рентгеновские лучи; гамма-излучение.

1) Низкочастотные волны — электромагнитные волны с частотой до 100 кГц. Источник: генераторы тока, вибратор Герца. Применение: кино, радиовещание (микрофоны, громкоговорители).

2) Радиоволны — электромагнитные волны с длиной волны более 1 мм и менее 3 км. Источник: колебательный контур. Применение: радиосвязь, радиолокация, телевидение.

3) Инфракрасное излучение представляет собой излучение с частотами в диапазоне от 3 ∙ 10ˡˡ до 3,75 ∙ 10ˡ⁴ Гц. Оно было обнаружено в 1800 году английским астрономом У. Гершелем при изучении красного конца спектра. Источником является любое нагретое тело. Применение: получают изображения предметов по излучаемому теплу; в приборах ночного видения (ночной бинокль); используют в криминалистике, медицине, промышленности для сушки цветных изделий, стен зданий, дерева, фруктов и т. д. Свойства: проходит через непрозрачные тела, а также через дождь, туман, снег; производит химическое действие на фотопластинки; нагревает вещество при поглощении.


4) Видимое излучение — часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового) с частотой от 4 ∙ 10ˡ⁴ до 8 ∙ 10ˡ⁴ Гц. Свойства: воздействует на глаза.

5) Ультрафиолетовое излучение — электромагнитное излучение с частотой от 8 ∙ 10ˡ⁴ до 3 ∙ 10ˡ⁶ Гц. Источники: кварцевые лампы, нагретые твердые тела с температурой более 1000 º, светящиеся пары ртути. Свойства: высокая химическая активность, высокая проникающая способность, убивает микроорганизмы, в небольших дозах оказывает благотворное влияние на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие на глаза. Применение: в медицине, промышленности.

6) Рентгеновское излучение — это излучение с частотой от 3 ∙ 10ˡ⁶ до 3 ∙ 10²⁰ Гц. Это излучение было открыто в 1895 году немецким физиком В. Рентгеном. Источник: рентгеновская трубка. Свойства: высокая проникающая способность; облучение в больших дозах вызывает лучевую болезнь. Применение: в медицине (диагностика заболеваний внутренних органов), промышленности (дефектоскопия), научных исследованиях.

7) Гамма-лучи — излучение с очень малой длиной волны — от 10⁻⁸ до 10⁻ˡˡ см. Они были открыты французским физиком П. Вильяром в 1900 году. Источники — ядерные реакции. Свойства: огромная проникающая способность, обладает сильным биологическим эффектом. Применение: в медицине, промышленности (γ-дефектоскопия).


Все излучения имеют как квантовые, так и волновые свойства. Волновые свойства более ярко выражены на низких частотах и менее ярко – при больших, а квантовые свойства более ярко проявляются на высоких частотах и менее ярко — на малых частотах.

Уильям Гершель, английский астроном, прославившийся открытием планеты Уран, обнаружив в спектре Солнца невидимые — инфракрасные — лучи, был так поражен, что двадцать лет хранил об этом опыте молчание. А вот в том, что Марс обитаем и населен людьми, он не сомневался.

Оказывается, так называемые черные дыры, которые имеют такое сильное притяжение, что даже легкие частицы света не могут их покинуть, также способны излучать. Под влиянием огромной гравитации в окрестностях черной дыры рождаются реальные частицы (и фотоны) из вакуума. Английский физик Стивен Хокинг установил, что спектр этого излучения такой же, как и у абсолютно черного тела.

Примеры и разбор решения заданий:

1. Ответьте на вопрос и выберите правильный ответ: «Сколько длин волн монохроматического излучения с частотой 500 ТГц укладывается на отрезке 30 см?»

Варианты ответов:

  1. 2∙10⁶;
  2. 5∙10⁵;
  3. 7∙10⁵;
  4. 150.

Выражаем частоту излучения в герцах, учитывая, что 1ТГц = l∙10ˡ² Гц, ν = 500ТГц = 5∙10ˡ⁴ Гц. Длину выражаем в метрах: l = 30см = 0,3м. Записываем скорость электромагнитных излучений: c = 3∙10⁸м/с.

Находим длину волны: λ= с/ν = 3∙10⁸м/с /5∙10ˡ⁴ Гц = 6∙10⁻⁷ м.


Чтобы узнать, сколько длин волн укладывается на данном отрезке, надо длину отрезка разделить на длину волны: Ν = l / λ = 0,3м / 6∙10⁻⁷ м = 5∙10⁵ длин волн.

Правильный вариант:

2) 5∙10⁵.

2. Вставьте пропущенные слова в предложения:

«Чем _____ температура тела, тем быстрее движутся в нём атомы. При их столкновении друг с другом часть _____ энергии идёт на возбуждение, затем атомы излучают и переходят в _______ состояние»

Варианты ответов: ниже, потенциальной, выше, основное, кинетической, возбуждённое.

Правильный вариант: Чем выше температура тела, тем быстрее движутся в нём атомы. При их столкновении друг с другом часть кинетической энергии идёт на возбуждение, затем атомы излучают и переходят в основное состояние.

Источник: resh.edu.ru

Что такое спектральный анализ?

Спектральный анализ

Спектральный анализ – метод определения химического состава вещества по его спектру. Этот метод разработан в 1859 г. немецкими учеными Г.Р. Кирхгофом и Р.В. Бунзеном.


Но прежде чем рассматривать этот довольно сложный вопрос, давайте сначала поговорим о том, что такое спектр.
Спектр (лат. spectrum «виде́ние») в физике — распределение значений физической величины (обычно энергии, частоты или массы). Обычно под спектром подразумевается электромагнитный спектр — спектр частот (или то же самое, что энергий квантов) электромагнитного излучения.

Г.Р. КирхгофР.В. Бунзер

В научный обиход термин спектр ввёл Ньютон в 1671—1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму. В своём труде «Оптика» (1704 г.) он опубликовал результаты своих опытов разложения с помощью призмы белого света на отдельные компоненты различной цветности и преломляемости, то есть получил спектры солнечного излучения и объяснил их природу. Он показал, что цвет есть собственное свойство света, а не вносятся призмой, как утверждал Бэкон в XIII веке. Фактически Ньютон заложил основы оптической спектроскопии: в «Оптике» он описал все три используемых поныне метода разложения света —преломление, интерференцию ( перераспределение интенсивности света в результате наложения нескольких световых волн) и дифракцию (огибание препятствия волнами).
А вот теперь возвратимся к разговору о том, что такое спектральный анализ.

Спектральный анализ


Это метод, который дает ценные и разнообразные сведения о небесных светилах. Как это делается? Анализируется свет, а из анализа света можно произвести качественный и количественный химический состав светила, его температуру, наличие и напряженность магнитного поля, скорость движения по лучу зрения и т. д.
В основе спектрального анализа лежит понятие о том, что сложный свет при переходе из одной среды в другую (например, из воздуха в стекло) разлагается на составные части. Если пучок этого света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке. Если вы забыли этот порядок, то посмотрите на рисунок.

Порядок цвета в спектре

Призма как спектральный прибор


В телескопах для получения спектра используют специальные приборы – спектрографы, устанавливаемые за фокусом объектива телескопа. В прошлом все спектрографы были призменными, но теперь вместо призмы в них используют дифракционную решетку, которая также разлагает белый свет в спектр, его называют дифракционным спектром.
Всем известно, что свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 700 до 400 ммк. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку.

Еще более короткую длину волны имеют рентгеновские лучи, применяемые в медицине. Рентгеновское излучение небесных светил атмосфера Земли задерживает. Только недавно оно стало доступно для изучения посредством запусков высотных ракет, поднимающихся выше основного слоя атмосферы. Наблюдения в рентгеновских лучах производят также автоматические приборы, установленные на космических межпланетных станциях.

За красными лучами спектра лежат инфракрасные лучи. Они невидимы, но и они действуют на специальные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей.

Призма - спектральный прибор

Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектр рассматривают, в спектрографе его фотографируют. Фотография спектра называется спектрограммой.

Источник: ency.info

САВЧЕНКОВ ИВАН СЕРГЕЕВИЧ

Содержание

1. Виды спектров

1.1. Непрерывные спектры

1.2. Линейчатые спектры

1.3. Полосатые спектры

1.4. Спектры поглощения

2. Спектральный анализ

3. Спектральные аппараты

4. Инфракрасная и ультрафиолетовая части спектра

5. Спектр видимого света

Виды спектров.

Спектральный состав излучения различных веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три сильно отличающихся друг от друга типа.

Непрерывные спектры.

Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены все длины волн. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Распределение энергии по частотам, т.е. спектральная плотность интенсивности излучения, для различных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности от частоты имеет максимум при определенной частоте vmax. Энергия излучения, приходящаяся на очень малые (v → 0) и очень большие (v → ∞) частоты, ничтожно мала. При повышении температуры максимум спектральной плотности излучения смещается в сторону коротких волн.

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также плотные газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры.

Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Линейчатые спектры.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет ярко желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На спектроскопе также можно увидеть частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая из линий имеет конечную ширину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы данного химического элемента излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются и, наконец при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры.

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.
Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения.

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету (l»8·10-5 см), и поглощает все остальные.
Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения.

Спектральный анализ.

Линейчатые спектры играют особо важную роль, потому что их структура прямо связана со строением атома. Ведь эти спектры создаются атомами, не испытывающими внешних воздействий. Поэтому, знакомясь с линейчатыми спектрами, мы тем самым делаем первый шаг к изучению строения атомов. Наблюдая эти спектры, ученые получили возможность «заглянуть» внутрь атома. Здесь оптика вплотную соприкасается с атомной физикой.

Главное свойство линейчатых спектров состоит в том, что длины волн (или частоты) линейчатого спектра какого-либо вещества зависят только от свойств атомов этого вещества, но совершенно не зависят от способа возбуждения свечения атомов. Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго-определенный набор длин волн.

На этом основан спектральныйанализ — метод определения химического состава вещества по его спектру. Подобно отпечаткам пальцев у людей линейчатые спектры имеют неповторимую индивидуальность. Неповторимость узоров на коже пальца помогает часто найти преступника. Точно так же благодаря индивидуальности спектров имеется возможность определить химический состав тела. С помощью спектральногоанализа можно обнаружить данный элемент в составе сложного вещества если даже его масса не превышает 10-10. Это очень чувствительный метод.

Количественный анализ состава вещества по его спектру затруднен, так как яркость спектральных линий зависит не только от массы вещества, но и от способа возбуждения свечения. Так, при низких температурах многие спектральные линии вообще не появляются. Однако при соблюдении стандартных условий возбуждения свечения можно проводить и количественный спектральныйанализ.
В настоящее время определены спектры всех атомов и составлены таблицы спектров. С помощью спектральногоанализа были открыты многие новые элементы: рубидий, цезий и др. Элементам часто давали названия в соответствии с цветом наиболее интенсивных линий спектра. Рубидий дает темно-красные, рубиновые линии. Слово цезий означает «небесно-голубой». Это цвет основных линий спектра цезия.

Именно с помощью спектральногоанализа узнали химический состав Солнца и звезд. Другие методы анализа здесь вообще невозможны. Оказалось, что звезды состоят из тех же самых химических элементов, которые имеются и на Земле. Любопытно, что гелий первоначально открыли на Солнце и лишь затем нашли в атмосфере Земли. Название этого элемента напоминает об истории его открытия: слово гелий означает в переводе «солнечный».
Благодаря сравнительной простоте и универсальности спектральныйанализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии. С помощью спектральногоанализа определяют химический состав руд и минералов.
Состав сложных, главным образом органических, смесей анализируется по их молекулярным спектрам.
Спектральныйанализ можно производить не только по спектрам испускания, но и по спектрам поглощения. Именно линии поглощения в спектре Солнца и звезд позволяют исследовать химический состав этих небесных тел. Ярко светящаяся поверхность Солнца — фотосфера — дает непрерывный спектр. Солнечная атмосфера поглощает избирательно свет от фотосферы, что приводит к появлению линий поглощения на фоне непрерывного спектра фотосферы.
Но и сама атмосфера Солнца излучает свет. Во время солнечных затмений, когда солнечный диск закрыт Луной, происходит обращение линий спектра. На месте линий поглощения в солнечном спектре вспыхивают линии излучения.
В астрофизике под спектральныманализом понимают не только определение химического состава звезд, газовых облаков и т. д., но и нахождение по спектрам многих других физических характеристик этих объектов: температуры, давления, скорости движения, магнитной индукции.

Спектральные аппараты

Для точного исследования спектров такие простые приспособления, как узкая щель, ограничивающая световой пучок, и призма, уже недостаточны. Необходимы приборы, дающие четкий спектр, т. е. приборы, хорошо разделяющие волны различной длины и не допускающие перекрытия отдельных участков спектра. Такие приборы называют спектральными аппаратами. Чаще всего основной частью спектрального аппарата является призма или дифракционная решетка.
Рассмотрим схему устройства призменного спектрального аппарата. Исследуемое излучение поступает вначале в часть прибора, называемую коллиматором. Коллиматор представляет собой трубу, на одном конце которой имеется ширма с узкой щелью, а на другом — собирающая линза. Щель находится на фокусном расстоянии от линзы. Поэтому расходящийся световой пучок, попадающий на линзу из щели, выходит из нее параллельным пучком и падает на призму.
Так как разным частотам соответствуют различные показатели преломления, то из призмы выходят параллельные пучки, не совпадающие по направлению. Они падают на линзу. На фокусном расстоянии этой линзы располагается экран — матовое стекло или фотопластинка. Линза фокусирует параллельные пучки лучей на экране, и вместо одного изображения щели получается целый ряд изображений. Каждой частоте (узкому спектральному интервалу) соответствует свое изображение. Все эти изображения вместе и образуют спектр.
Описанный прибор называется спектрографом. Если вместо второй линзы и экрана используется зрительная труба для визуального наблюдения спектров, то прибор называется спектроскопом. Призмы и другие детали спектральных аппаратов необязательно изготовляются из стекла. Вместо стекла применяются и такие прозрачные материалы, как кварц, каменная соль и др.

Источник: smekni.com

Понятие о спектральном анализе

Спектральный анализ — совокупность методов анализа химического состава веществ, в основе которого лежит исследование спектров испускания, поглощения, отражения и люминесценции. При этом используется основное свойство спектров: длина волны или частота — индивидуальный параметр, который соответствует только определенному атому исследуемого вещества, и не зависит от источника возбуждения.

Метод отличается высокой чувствительностью, точностью и простотой, что делает его универсальным, и обуславливает его широкое распространение в промышленности.

Виды спектрального анализа

В основе спектральных методов лежат такие процессы:

  • Абсорбция. При взаимодействии вещества с электромагнитным излучением происходит его частичное поглощение.
  • Люминесценция. При возбуждении частиц вещества под воздействием внешнего излучения происходит испускание излучения, имеющего другую частоту.
  • Эмиссия. При воздействии источника возбуждения вещество переходит в состояние плазмы и испускает излучение.
  • Рассеяние. Процесс происходит при падении электромагнитного излучение на исследуемый образец.

В зависимости от процесса, который находится в основе принципа действия, спектральные методы анализа подразделяются на следующие виды:

  • Абсорбционный.
  • Люминесцентный.
  • Эмиссионный.
  • Комбинационный.

Эмиссионный спектральный анализ

Наибольшее распространение получил оптический эмиссионный спектральный атомный анализ (ОЭСА). Этот мощный инструмент позволяет решать различные по сложности аналитические задачи.

Оптико-эмиссионные спектральные приборы обладают высокой избирательностью, позволяют исследовать различные вещества с высокой скоростью, чувствительностью и точностью. При этом расход анализируемого вещества крайне мал.

Преимущества ОЭСА:

  • возможность исследования химического состава образца в любом агрегатном состоянии;
  • подготовка пробы отличается простотой, а в некоторых случаях не требуется вовсе;
  • высокая скорость проведения анализа позволяет автоматизировать процесс;
  • анализ одного образца можно проводить многократно;
  • высокая точность результатов анализа и избирательность;
  • простота эксперимента и относительно невысокая стоимость;
  • возможность проведение исследований, как в полевых, так и лабораторных условиях.

Область применения

Атомный спектральный анализ находит широкое практическое применение по сравнению с другими методами спектрального анализа. Он используется для исследования самых разнообразных объектов, а при анализе металлов и сплавов значение ОЭСА трудно переоценить.

С помощью эмиссионной спектрометрии решаются целый ряд аналитических задач:

  • Исследование химического состава сплава при ведении плавки металла.
  • Анализ готовых изделий с целью определения марки, состава, примесей.
  • Контроль качества на всех стадиях производства.
  • Контроль качества исходного материала.
  • Экологический мониторинг состояния окружающей среды.
  • Изучение химического состава геологических объектов.

Экология

Перед экологами стоят разнообразные задачи, среди которых особое место занимают определение соединений, загрязняющих почву, атмосферу и водный бассейн. Экологический мониторинг необходим для предотвращения угрозы жизни и здоровью людей, и окружающей среде, поэтому точность и скорость получения результатов анализа — наиболее важные требования, предъявляемые к анализаторам.

Эмиссионные спектрометры — универсальные приборы, которые способны исследовать не только металлические, но и токонепроводящие пробы. С их помощью можно исследовать вещества, находящиеся в различных агрегатных состояниях и формах. Диапазон спектральных линий охватывает все интересующие элементы, в том числе C, S, P, O, H и щелочно-земельные элементы.

Геология

Спектральный анализ дает возможность анализировать химический состав руд и минералов. С его помощью изучаются условия их образования, что позволяет целенаправленно проводить геологическую разведку для поиска новых месторождений.

Технология обогащения рудных и нерудных материалов требует тщательного контроля качества на всех стадиях процесса. Использование спектральных приборов делают это возможным, так как обеспечивается необходимая производительность и точность результатов анализа.

Кроме этого, спектральный анализ используется для изучения метеоритного материала. Это дает возможность сделать практические выводы о составе космических объектов.

Металлургия

Значение атомно-эмиссионного анализа в металлургической промышленности очень велико, так как этот метод дает ряд преимуществ. С помощью спектральных приборов решается большинство аналитических задач:

  • Определение марки стали.
  • Анализ углерода, серы и фосфора в сплаве.
  • Анализ неметаллических включений и примесей.
  • Анализ чистых металлов и сложных сплавов.
  • Сертификационный анализ.

Эмиссионные приборы широко используются для сортировки и анализа состава металлического лома, который служит сырьем для получения стали. Спектральный анализ незаменим при ведении плавки, так как позволяет оперативно получить информацию о химическом составе сплава. С его помощью решаются, как рутинные задачи, так и сложные проблемы, связанные с получением новых материалов с заданными свойствами.

Машиностроение

Исходными материалами металлообрабатывающих предприятий служат заготовки, полученные путем литья и в результате обработки металлов давлением (поковки и металлопрокат). Организовать входящий контроль без определения химического состава заготовок невозможно, а пренебрежение этим технологическим этапом может стать причиной неисправимого брака и экономическими потерями.

Атомно-эмиссионные спектрометры — оптимальный вариант приборов для машиностроения, которые дают возможность получать точную информацию о химическом составе материала или марке стали в кратчайшие сроки. Портативные модели позволяют проводить исследования в полевых условиях, и не требуют наличия у оператора специальных знаний и особых умений, а стационарные приборы решают аналитические задачи любой сложности.

Возможности оптико-эмиссионных приборов не ограничиваются указанными выше областями промышленности, и позволяют использовать их во многих сферах жизнедеятельности человека. Конструкция и методы исследования постоянно совершенствуются, что позволяет им соответствовать уровню развития науки и технологии, и иметь оптимальные технико-экономические показатели.

Источник: www.iskroline.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.