Синий гигант


Впервые найдены наблюдательные свидетельства того, что голубые сверхгиганты могут быть прямыми предшественниками сверхновых звезд. Наблюдения сверхновой SN 2005 gj позволили заглянуть в ее прошлое и установить, какой звездой она была до взрыва. Этот результат противоречит существующей теории звездной эволюции и может потребовать ее частичного пересмотра.

Вспышка сверхновой — один из самых мощных взрывных процессов в природе. Она наблюдается как внезапное увеличение блеска звезды в миллиард и более раз. При вспышке сверхновая светит практически так же, как целая галактика. Если в спектре сверхновой нет линий излучения водорода, то ей присваивается тип I, а если линии есть — то тип II.

Теория звездной эволюции предсказывает, что вспышка сверхновой типа II — это заключительный этап жизни массивной звезды, масса которой превышает десять солнечных. Согласно современной теории, на этом этапе происходит катастрофически быстрое сжатие ядра звезды, состоящего из атомов железа, и последующий отскок падающей на ядро внешней оболочки, в которой сохранился водород. Ударная волна, которая образуется при отскоке оболочки, нагревает ее и вызывает столь сильное увеличение блеска звезды.


Чтобы взорваться как сверхновая, массивная звезда должна пройти несколько стадий, в течение которых водород в ядре звезды постепенно выгорает и превращается в гелий, затем в углерод, кислород и далее до железа. Теория звездной эволюции говорит, что в конце жизни такая звезда проходит стадию голубого сверхгиганта, затем она становится звездой Вольфа–Райе, и только потом происходит взрыв. Теория и наблюдения показывают, что различия между двумя первыми стадиями значительны. На стадии голубого сверхгиганта в ядре звезды еще горит водород, а сильный звездный ветер уносит оболочку. Продолжительность этого периода — порядка ста тысяч лет — очень мала по сравнению со временем жизни звезд. После этого горение водорода в ядре прекращается, и звезда представляет собой почти полностью обнаженное гелиевое, углеродное или азотное ядро — звезду Вольфа–Райе.

Наблюдения оптического излучения от сверхновой SN 2005 gj были выполнены командой европейских астрономов во главе с Кэрри Трандл (Carrie Trundle) на Очень большом телескопе (Very Large Telescope, VLT; см. рис. 1). Они показали, что эта последовательность может быть нарушена: голубой сверхгигант, минуя стадию звезды Вольфа–Райе, может взорваться как сверхновая, что не согласуется с существующей теорией звездной эволюции.


Сверхновая SN 2005 gj была открыта в созвездии Кита 26 сентября 2005 года на 2,5-метровом телескопе Обсерватории Апачи (Apache Point Observatory) в Нью-Мексико, США. Открытие было сделано большой командой ученых, работающих по программе Слоановского цифрового обзора неба (SDSS). Буквы «gj» в названии звезды означают ее порядковый номер: первая сверхновая, открытая в 2005 году носила буквы «аа», вторая — «ab» и так далее. Согласно этому правилу, SN 2005 gj должна быть 176-й сверхновой, открытой в 2005 году.

Звезда-предшественник (так называемая предсверхновая) сверхновой SN 2005 gj взорвалась 22 сентября 2005 года. Наблюдения на VLT были проведены на 86-й и 374-й день после взрыва. Отличительной особенностью этих наблюдений стало высокое спектральное разрешение — до 4,5–6 км/сек, что в сто раз лучше, чем предыдущие наблюдения этой сверхновой, выполненные другой командой под руководством Грега Олдеринга (Greg Aldering).

Спектральное разрешение — это способность различать близкие по частоте сигналы. Если разные части оболочки сверхновой (или любой другой звезды) движутся с разной скоростью, то мы будем наблюдать изменение частоты излучения, пропорциональное скорости (эффект Доплера).


м лучше спектральное разрешение, тем более мелкие изменения скорости вещества мы можем изучать, тем более точно мы знаем, с какой скоростью движется вещество и на какой частоте оно излучает. Группа Трандл способна увидеть изменения скорости вещества даже в 5 км/сек, а группе Олдеринга, также наблюдавшей эту сверхновую, но имевшей в сто раз худшее спектральное разрешение, доступны были только резкие скачки скорости — более 500 км/сек.

Спектры сверхновой SN 2005 gj, полученные группой Трандл, показаны на рис. 2, где видно излучение в линиях водорода (Hα и Hγ), а также излучение в других линиях, возможно кальция (Ca II) и кислорода (O I). Яркая и узкая линия Hα состоит из нескольких частей, происхождение которых известно по теоретическим расчетам (см. подробности ниже мелким шрифтом). Основное в этом спектре — внешний вид (профиль) узкой части линии Hα, показанной на рис. 2а красной стрелкой. Он говорит нам о том, какой звездой была сверхновая до взрыва и какой газ ее окружал. Главная особенность профиля этой линии — наличие двух пиков поглощения в спектре (две ямки слева от пика излучения на рис. 2b, где эта линия показана в крупном масштабе). Такая форма линии в спектре сверхновой обнаружена впервые за всю историю наблюдения этого типа звезд! Чтобы получить профиль линии в столь крупном масштабе и увидеть, что пиков поглощения на самом деле было два, как раз и необходимо высокое спектральное разрешение.


Широкая часть в основании линии Hα (показана синей стрелкой) обусловлена излучением атмосферы самой сверхновой, которая расширяется со средней скоростью 22 500 ± 5000 км/сек. Промежуточная часть (зеленая стрелка) образуется в веществе, которое окружает сверхновую и взаимодействует с ударной волной. Ударная волна от сверхновой движется со скоростью 2850 ± 200 км/сек. Самая узкая часть линии (красная стрелка) представляет излучение невозмущенного ударной волной вещества, которое, правда, уже ионизовано излучением сверхновой. Все особенности узкой части линии связаны с природой газа, окружавшего сверхновую до взрыва. Группа Кэрри Трандл классифицирует сверхновую SN 2005 gj как тип IIn из-за наличия в спектре узких линий («n» — от англ. narrow «узкий»).

Профиль узкой части линии Hα представляет собой комбинацию двух пиков — излучения и поглощения на ее коротковолновой стороне (пик поглощения — это ямка слева от пика излучения на рис. 2b и 2c). Такой внешний вид линии (профиль) называется «профиль типа P Cygni» по имени звезды P в созвездии Лебедя. Эта звезда — наиболее типичный представитель звезд с такими линиями в спектре. Причина возникновения подобного профиля линии была найдена астрономами уже давно — вокруг звезды есть расширяющаяся оболочка вещества. Причиной образования оболочки в голубых сверхгигантах является сильный звездный ветер.


Данный тип спектра говорит в пользу того, что до взрыва звезда была голубым сверхгигантом, потому что подобные профили линий наблюдаются только у этого типа звезд. Сравнение спектров сверхновой SN 2005 gj со спектрами голубых сверхгигантов приводится на рис. 3 — сходство поразительное! Пик поглощения в линии Hα обусловлен тем, что с поверхности предсверхновой дул сильный звездный ветер. Наличие в спектре двух пиков означает, что происходило изменение скорости звездного ветра и темпа потери массы голубым сверхгигантом — было как минимум два сильных выброса. Группа Трандл оценивает темп потери массы в 6,4•10–2 и 2,6•10–2 масс Солнца в год для первого и второго выбросов соответственно на спектре 86-го дня после выброса. По форме спектра 374-го дня темп потери массы оценивается как 1,7•10–2 масс Солнца в год. Эти оценки, конечно, неточные, так как при их получении авторы вынуждены были использовать ряд предположений о свойствах звездного ветра у предсверхновой.


В пользу того, что голубой сверхгигант являлся предсверхновой для SN 2005 gj, говорит не только форма спектра, но и скорость звездного ветра, дувшего с его поверхности и образовавшего пики поглощения. Скорости ветра для пиков поглощения из рис. 2 лежат в пределах от 120 до 290 км/сек — как раз то, что наблюдается в голубых сверхгигантах. Скорости ветра у звезд типа Вольфа–Райе превышают эти значения на порядки величины, а скорости ветра на более ранних стадиях, чем голубой сверхгигант, — порядка 10 км/сек.

Группа Грега Олдеринга, наблюдавшие эту сверхновую с 11-го по 133-й дни, но с низким спектральным разрешением, вообще классифицировала эту сверхновую как тип Ia. Это тип сверхновых, которые рождаются из-за термоядерного взрыва белого карлика — звезды с массой 1,38 массы Солнца. Ядро белого карлика состоит из вырожденного электронного газа, а не из водорода, гелия или других атомов. Ясно различимые в спектре сверхновой линии водорода они объясняют излучением газа окружающей межзвездной среды и утверждают, что сверхновая SN 2005 gj — второй подтвержденный пример нового «гибридного» типа сверхновых Ia/IIn наряду со сверхновой SN 2002 ic.

Группа же Трандл считает, что типичные особенности спектра сверхновой типа Ia едва различимы в случае SN 2005 gj, и предлагают новую интерпретацию ее спектров. Неоспоримое преимущество группы Трандл — использование высокого спектрального разрешения в наблюдениях, которое позволило открыть неизвестные ранее особенности спектра этой звезды.


Результат, полученный группой Трандл, — весьма неожиданный с теоретической точки зрения, ведь, согласно теории звездной эволюции, в ядре предсверхновой не должно содержаться водорода. Водород должен уже давно выгореть, а вместо него в ядре должны находиться более тяжелые элементы, такие как гелий, кислород, углерод и железо. Голубые же сверхгиганты, согласно теории, давно подтвержденной наблюдениями, содержат водород, как в ядре, так и в оболочке. Не имея информации о двух пиках поглощения и, следовательно, о том, что предсверхновая, по-видимому, являлась голубым сверхгигантом, авторы не смогли бы предполагать, что в ее ядре содержался водород. И хотя эта же самая теория предсказывает, что на пути к взрыву стадии Вольфа–Райе массивной звезде не миновать, результат группы Трандл является наблюдаемым фактом и может привести к серьезным изменениям в теории.

Источники:
1) C. Trundle, R. Kotak, J. S. Vink, W. P. S. Meikle. SN 2005 gj: evidence for LBV supernovae progenitors? (полный текст) // Astronomy & Astrophysics. 2008. V. 483. P. L47–L50 (DOI: 10.1051/0004-6361:200809755).


атья доступна также в Архиве препринтов.
2) Jorick S. Vink, A. de Koter. Predictions of variable mass loss for Luminous Blue Variables (полный текст) // Astronomy & Astrophysics. 2002. V. 393. P. 543–553.
3) G. Aldering, P. Antilogus, S. Bailey, et al. Nearby supernova factory observations of SN 2005gj: another type Ia supernova in a massive circumstellar envelope (полный текст — PDF, 585 Кб) // The Astrophysical Journal. 2006. V. 650. P. 510–527 (doi:10.1086/507020).

Мария Кирсанова

Источник: elementy.ru

Голубой сверхгигант
Внутренняя часть голубого сверхгиганта, который в три раза тяжелее нашего Солнца. На изображении показаны волны, генерируемые турбулентной конвекцией ядра. Авторы и права: Dr. Tamara Rogers.

Голубые сверхгиганты – это массивные звёзды, которые живут мало и умирают молодыми, что делает их весьма трудными объектами для изучения, даже с помощью самых современных инструментов.


До того, как у астрономов появились космические телескопы, было известно об ограниченном количестве голубых сверхгигантов, поэтому наши знания об этих звёздах весьма скудны.

Астрофизик доктор Тамара Роджерс (Tamara Rogers) из Университета Ньюкасла, Великобритания, и её команда в течение последних пяти лет работали над созданием симуляции звезды, подобной этой, чтобы попытаться предсказать, что заставляет поверхность выглядеть так, как мы её видим.

Используя данные, собранные космическими телескопами НАСА, международная группа экспертов во главе с исследователями из университета Лёвена (Бельгия) обнаружила, что почти все эти неуловимые голубые гиганты на самом деле мерцают и изменяют свою яркость из-за наличия волн на их поверхности.

Как и предсказывалось, волны берут свое начало в глубине и открывают новые захватывающие перспективы для изучения этих звезд с помощью астеросейсмологии – метода, аналогичного тому, который используют сейсмологи для изучения недр Земли. Публикуя свои выводы в Nature Astronomy, авторы говорят, что наблюдение этих волн позволит изучить свойства звёзд, которые невозможно получить с помощью других астрономических методов.

Звёзды во Вселенной бывают разных форм, размеров и цветов. Некоторые звёзды похожи на наше Солнце и живут спокойной жизнью в течение миллиардов лет. Другие – массивные звёзды, живут значительно меньше и являются более активными. В конце своего жизненного цикла они взрываются как сверхновые и выбрасывают материал в космос. И сейчас благодаря использованию современных космических телескопов астрономы вступают в золотой век астеросейсмологии.


Источник: universetoday.ru

Происхождение цвета звезд

Цвет звезды зависит от температуры на её поверхности. Показатель поверхностной температуры нашего Солнца превосходит 6,000 градусов Кельвина. Несмотря на то, что с Земли оно кажется жёлтым, из космоса солнечные свет выглядит ослепительно белым. Это яркое белое солнечное свечение образуется именно благодаря такой высокой температуре. Если бы Солнце было холоднее, то его свет приобрёл бы более тёмный оттенок, ближе к красному, а если бы эта звезда была горячее, то была бы голубого цвета.

Секрет разноцветности звезд стал важным орудием астрономов – цвет светил помог им узнать температуру поверхности звезд. В основу легло примечательное природное явление – соотношение между энергией вещества и цветом излучаемого им света.

Наблюдения на эту тему вы уже наверняка сделали сами. Нить маломощных 30-ваттных лампочек горит оранжевым светом – а когда напряжение в сети падает, нить накала едва тлеет красным. Более сильные лампочки светятся желтым или даже белым цветом. А сварочный электрод во время работы и кварцевая лампа светятся голубым. Однако смотреть на них ни в коем случае не стоит – их энергия настолько велика, что может с легкостью повредить сетчатку глаза.

Соответственно, чем горячее предмет, тем ближе его цвет его свечения к голубому – а чем холоднее, тем ближе к темно-красному. Звезды не стали исключением: такой же принцип действует и на них. Влияние состава звезды на ее цвет очень незначительное – температура может скрывать отдельные элементы, ионизируя их.

Но именно анализ цветового спектра излучения звезды помогает выяснить ее состав. Атомы каждого вещества имеют свою уникальную пропускную способность. Световые волны одних цветов беспрепятственно проходят сквозь них, когда другие останавливаются – собственно, по блокированным диапазонам света ученые и определяют химические элементы.

Механизм «окрашивания» звезд

Какова физическая подоплека этого явления? Температура характеризуется скоростью движения молекул вещества тела – чем она выше, тем быстрее они движутся. Это влияет на длину световых волн, которые проходят сквозь вещество. Горячая среда укорачивает волны, а холодная – наоборот, удлиняет. А видимый цвет светового луча как раз определяется длиной световой волны: короткие волны отвечают за синие оттенки, а длинные – за красные. Белый цвет получается в итоге наложения разноспектральных лучей.

Цвет звезды играет роль сразу в нескольких системах упорядочивания звезд. Сам по себе он является главным критерием определения спектрального класса светила. Так как цвет связан с температурой, его откладывают по одной из осей диаграммы Герцшпрунга-Рассела. С помощью диаграммы можно также определить светимость, массу и возраст звезды, что делает ее ценным и наглядным источником информации про звезды.

Классы звёзд

В Галактике существуют семь классов звёзд:

  • Звёзды класса «O», голубого цвета, обладали самой высокой температурой. У них была самая короткая продолжительность жизни, меньше, чем 1 миллион лет. В Галактике было приблизительно 100 миллионов звёзд класса «O», планеты вокруг которых были пригодны для жизни. Пример: Гарниб.

Синий гигант

  • Звёзды класса «B» бело-голубого цвета, также были очень горячими. Средняя продолжительность их жизни составляла примерно 10 миллионов лет. В Галактике также было приблизительно 100 миллионов звёзд класса «B», планеты вокруг которых были пригодны для жизни. Пример: Кесса.
  • Звёзды класса «A», белого цвета, были достаточно горячими. Они имели продолжительность жизни от 400 миллионов до 2 миллиардов лет. В Галактике также было приблизительно 100 миллионов звёзд класса «A», планеты вокруг которых были пригодны для жизни. Пример: Колу.

Синий гигант

  • Звёзды класса «F», жёлто-белого цвета, имели среднюю температуру. Средняя продолжительность их жизни составляла примерно 4 миллиарда лет. В Галактике также было приблизительно 100 миллионов звёзд класса «F», планеты вокруг которых были пригодны для жизни. Пример: Ропаги.
  • Звёзды класса «G», жёлтого цвета, также имели среднюю температуру. Средняя продолжительность их жизни составляла примерно 10 миллиардов лет. В Галактике было приблизительно 2 миллиарда звёзд класса «G», планеты вокруг которых были пригодны для жизни. Пример: Корелл.

Синий гигант

  • Звёзды класса «K», оранжевого цвета, имели достаточно низкую для звёзд температуру. Средняя продолжительность их жизни составляла примерно 60 миллиардов лет. В Галактике было приблизительно 3,75 миллиарда звёзд класса «K», планеты вокруг которых были пригодны для жизни. Пример: Явин.
  • Звёзды класса «M», красного цвета, были холодными по сравнению с остальными звёздами. Звёзды класса «M» также называли красными карликами. Средняя продолжительность их жизни составляла примерно 100 триллионов лет. В Галактике было приблизительно 700 миллионов звёзд класса «M», планеты вокруг которых были пригодны для жизни. Пример: Бараб.

Синий гигант

Размер звезды также зависел от её класса. Самыми крупными были голубые горячие звёзды класса «O». Чем ниже была температура звезды, тем меньше по размеру была она сама. Соответственно, самыми маленькими были красные звёзды класса «M». Кроме того, приблизительно 10 процентов всех звёзд Галактики не подпадали под эту градацию, причём вокруг 500 миллионов из них вращались планеты, пригодные для жизни.

Голубой сверхгигант

Голубые сверхгиганты – одни из самых массивных и ярких звёзд. По размерам они превосходят гигантов, но уступают гипергигантам. Типичная масса голубых сверхгигантов – 15-50 масс Солнца. В астрономии их часто именуют сверхгигантами OB-типа. Они имеют класс светимости I и спектральный класс B9 и выше. Они находятся в верхней левой части диаграммы Герцшпрунга-Рассела справа от главной последовательности. Температуры поверхности – 10 000-50 000 K, светимость, 10000-1000000 светимостей Солнца. Типичная продолжительность жизни звёзд данного типа – 5-10 млн. лет.

Характеристики

Из-за их большой массы, голубой сверхгиганты имеют достаточно короткую продолжительность жизни и наблюдаются только в молодых космических структурах, такие как рассеянные скопления, рукава спиральных галактик и в неправильных галактиках. Они почти не наблюдаются в центрах спиральных галактик, эллиптических галактиках и шаровых скоплений, которые состоят, в основном из старых объектов.

Несмотря на их редкость и короткую жизнь, из-за их яркости, на небе можно увидеть много голубых сверхгигантов. Одним из наиболее известных сверхгигантов является Ригель, самая яркая звезда в созвездии Ориона – её масса почти в 20 раз превышает массу Солнца, а светимость больше от светимости Солнца почти в 120 000 раз.

Для голубых сверхгигантов характерен сильный звёздный ветер, и, как правило, в своём спектре они имеют эмиссионные линии.

Звёздный ветер с голубых сверхгигантов является быстрым, но разреженным, в отличие от ветра красных сверхгигантов, который является медленным, но плотным. Когда красный сверхгигант переходит в голубой, более быстрый ветер «настигает» ранее испущенный медленный и сталкивается с ним, заставляя выброшенный материал уплотняться в тонкую оболочку. Возможен также обратный процесс – превращение голубого сверхгиганта в красный. В некоторых случаях можно увидеть несколько концентрических слабых тонких оболочек, образованных последовательными эпизодами потери массы вследствие нескольких циклов «красный <-> голубой сверхгигант».

Эволюция

Синий гигант

По мере исчерпания водородного топлива звезда всё больше охлаждается и расширяется, проходя спектральные классы O, В, A, F, G, K и M, становясь белым, жёлтым, оранжевым и наконец, красным сверхгигантом. После того как водород в ядре закончится, в термоядерную реакцию вступит гелий, затем углерод, кислород, кремний. Нуклеосинтез может осуществляться вплоть до образования самого стабильного изотопа железа-56 (все следующие изотопы могут уменьшить энергию связи на нуклон путём распада, а все предыдущие элементы, в принципе, могли бы уменьшить энергию связи на нуклон за счёт синтеза). Образующееся железное ядро коллапсирует в нейтронную звезду, объект, размером с крупный город, но с массой 1,4-3 массы Солнца, а внешние слои звезды взрываются как сверхновая. В случае особо массивных голубых сверхгигантов (с начальной массой 25-40 солнечной) ядро может не останавливаться на образовании нейтронной звезды, а коллапсирует дальше, превращаясь в чёрную дыру. Ещё более массивные сверхгиганты не могут расшириться до красной фазы, а заканчивают жизнь вспышкой гиперновой (или без неё) с образованием чёрной дыры.

Взаимопревращение сверхгигантов

Голубые сверхгиганты – это массивные звёзды, находящиеся в определённой фазе процесса «умирания». В этой фазе интенсивность протекающих в ядре звезды термоядерных реакций снижается, что приводит к сжатию звезды. В результате значительного уменьшения площади поверхности увеличивается плотность излучаемой энергии, а это, в свою очередь, влечёт за собой нагрев поверхности. Такого рода сжатие массивной звёзды приводит к превращению красного сверхгиганта в голубой. Возможен также обратный процесс – превращения голубого сверхгиганта в красный.

В то время как звездный ветер от красного сверхгиганта плотен и медленен, ветер от голубого сверхгиганта быстр, но разрежён. Если в результате сжатия красный сверхгигант становится голубым, то более быстрый ветер сталкивается с испущенным ранее медленным ветром и заставляет выброшенный материал уплотняться в тонкую оболочку. Почти все наблюдаемые голубые сверхгиганты имеют подобную оболочку, подтверждающую, что все они ранее были красными сверхгигантами.

По мере развития, звезда может несколько раз превращаться из красного сверхгиганта (медленный, плотный ветер) в голубой сверхгигант (быстрый, разрежённый ветер) и наоборот, что создаёт концентрические слабые оболочки вокруг звезды. В промежуточной фазе звезда может быть жёлтой или белой, как, например, Полярная звезда. Как правило, массивная звезда заканчивает своё существование взрывом сверхновой, но очень небольшое количество звёзд, масса которых колеблется в пределах от восьми до двенадцати солнечных масс, не взрываются, а продолжают эволюционировать и в итоге превращаются в кислородно-неоновые белые карлики. Пока точно не выяснено, как и почему образуются эти белые карлики из звёзд, которые теоретически должны закончить эволюцию взрывом малой сверхновой. Как голубые, так и красные сверхгиганты могут эволюционировать в сверхновую.

Так как значительную часть времени массивные звёзды пребывают в состоянии красных сверхгигантов, мы наблюдаем больше красных сверхгигантов, чем голубых, и большинство сверхновых происходит из красных сверхгигантов. Астрофизики ранее даже предполагали, что все сверхновые происходят из красных сверхгигантов, однако сверхновая SN 1987A образовалась из голубого сверхгиганта и, таким образом, это предположение оказалось неверным. Это событие также привело к пересмотру некоторых положений теории эволюции звёзд.

Примеры голубых сверхгигантов

Ригель

Синий гигант

Самый известный пример – Ригель (бета Ориона), самая яркая звезда в созвездии Орион, масса которой приблизительно в 20 раз больше массы Солнца и его светимость примерно в 130 000 раз выше солнечной, а значит, это одна из самых мощных звёзд в Галактике (во всяком случае, самая мощная из ярчайших звёзд на небе, так как Ригель – ближайшая из звёзд с такой огромной светимостью). Древние египтяне связывали Ригель с Сахом – царём звёзд и покровителем умерших, а позже – с Осирисом.

Гамма Парусов

Гамма Парусов – кратная звезда, ярчайшая в созвездии Паруса. Имеет видимую звёздную величину в +1,7m. Расстояние до звёзд системы оценивается в 800 световых лет. Гамма Парусов (Регор) – массивный голубой сверхгигант. Имеет массу в 30 раз больше массы Солнца. Его диаметр в 8 раз больше солнечного. Светимость Регора – 10 600 солнечных светимостей. Необычный спектр звезды, где вместо тёмных линий поглощения имеются яркие эмисионные линии излучения, дал название звезде как «Спектральная жемчужина южного неба»

Альфа Жирафа

Синий гигант

Расстояние до звезды примерно 7 тысяч световых лет, и тем не менее, звезда видна невооружённым глазом. Это третья по яркости звезда в созвездии Жирафа, первое и второе место занимают Бета Жирафа и CS Жирафа соответственно.

Дзета Ориона

Дзета Ориона (имеет название Альнитак) – звезда в созвездии Ориона, которая является самой яркой звездой класса O с визуальной звездной величиной +1,72 (в максимуме +1,72 и в минимуме до +1,79), левая и самая близкая звезда астеризма «Пояса Ориона». Расстояние до звезды – около 800 световых лет, светимость примерно 35 000 солнечных.

Тау Большого Пса

Синий гигант

Спектрально-двойная звезда в созвездии Большого Пса. Она является наиболее яркой звездой рассеянного звёздного скопления NGC 2362, находясь на расстоянии 3200 св. лет от Земли. Тау Большого Пса – голубой сверхгигант спектрального класса O с видимой звёздной величиной +4,37m. Звёздная система Тау Большого Пса состоит, по крайней мере, из пяти компонентов. В первом приближении Тау Большого Пса – тройная звезда в которой две звезды имеют видимую звёздную величину +4,4m и +5,3m и отстоят друг от друга на 0,15 угловых секунд, а третья звезда имеет видимую звёздную величину +10m и и отстоит от них на 8 угловых секунд, обращаясь с периодом 155 дней вокруг внутренней пары.

Дзета Кормы

Дзета Кормы – ярчайшая звезда созвездия Кормы. Звезда имеет собственное имя Наос. Это массивная голубая звезда, имеющая светимость 870 000 светимостей Солнца. Дзета Кормы массивнее Солнца в 59 раз. Имеет спектральный класс O9.

Видео



Источник: asteropa.ru

Он обучал космонавтов и основал новую науку – астрогеологию. Юджин родился 28 апреля 1928 года и был одним из величайших умов 20-го века. Его работа над ударными кратерами повлияла на все: от миссии НАСА «Аполлон» до дебатов о вымирании динозавров. За вклад в человеческие знания он был награжден национальной медалью науки тогдашним президентом США Джорджем Бушем-старшим в 1992 году.

Он издалека изучал луну, но часто мечтал залезть в скафандр и ходить по ее поверхности. К сожалению, он не мог этого сделать; Болезнь Аддисона разрушила его надежды стать космонавтом.

Но в 1997 году часть его пепла была положена около южного полюса Луны. Это сделало его первым и на сегодняшний день единственным человеком, когда-либо похороненным на Луне.

Это был острый эпилог в его карьере. Шумейкер по образованию был геологом, а кратеры были одной из его великих страстей. Он помог подтвердить, что знаменитый кратер Бэррингера глубиной 229 метра возле Флагстаффа, штат Аризона, подвергся воздействию астероида.

Он также отстаивал гипотезу о том, что еще один такой удар убил последних не-птичьих динозавров 66 миллионов лет назад. И, нанеся на карту некоторые из кратеров на нашей Луне, он произвел революцию в геологии.

Его работа способствовала открытию кометы Шумейкер-Леви 9, поразившей Юпитер в 1994 году. Одним из со-первооткрывателей кометы была жена Юджина и ее коллега-ученый – Кэролайн. 18 июля 1997 года пара попала в автомобильную аварию. Кэролайн выжила, а Юджин погиб.

Уже на следующий день его бывшая студентка Шумейкер Каролин Порко придумала достойную дань уважения. Порко узнала, что ее наставник будет кремирован. Поэтому она приложила усилия, чтобы положить 1 унцию (28 грамм) его пепла на борт космического корабля Lunar Prospector.

С драгоценным грузом космический корабль стартовал с мыса Канаверал, штат Флорида, 6 января 1998 года. Более года спустя судно (целью которого был поиск воды) было преднамеренно разбито вблизи южного полюса Луны, пепел Шумейкера сгорел вместе с ним.

— https://4everscience.com/

Источник: pikabu.ru

Поскольку не имеется точного определения гигантских голубых звезд, под ними чаще всего понимаются массивные горячие звезды, относящиеся к спектральным классам О или В. Желтые карлики, наподобие нашего Солнца, имеют температуру примерно в 6000 Кельвинов, тогда как голубым гигантам свойственна температура самое меньшее в десять тысяч Кельвинов. Тип звезд, называемый голубыми супергигантами, имеет температуру поверхности от десяти до пятидесяти тысяч Кельвинов и яркость от десяти тысяч до миллиона раз большую, чем у Солнца. Превосходным примером такой звезды является Ригель в созвездии Ориона, который является супергигантом класса В. Он в 25 раз больше Солнца и имеет температуру в одиннадцать тысяч Кельвинов.

Голубой гигант — это не класс звезд

В астрономии термин гигантская голубая звезда не имеет точного определения. На практике, голубыми гигантами могут быть названы звезды на различной стадии эволюции, имеющие сходство по определенным параметрам. Чаще всего под голубыми гигантами понимают горячие и массивные звезды, наподобие звезд Вольфа-Райе, просто потому, что они большие и горячие.

Голубые гиганты в действительности не такие уж и большие

Несмотря на их статус гигантов, голубые гиганты ненамного больше, чем некоторые звезды основных классов. Минимальная температура в десять тысяч Кельвинов, позволяющая им испускать голубой свет, помещает их между классами О и В, а иногда относит к классу А. Чаще всего голубой гигант примерно в два раза массивнее Солнца и больше нашей звезды в пять-десять раз. Но при этом самый тяжелый известный голубой супергигант тяжелее Солнца в 315 раз. Звезда R136a1, обнаруженная в Большом Магеллановом Облаке, настолько массивная, что это привело к сомнению в стандартной модели процесса формирования звезд. Эта звезда в 29 раз больше Солнца. Она не является самой большой известной звездой, но самой яркой. Она светится в 8,7 млн раз ярче Солнца. Температура ее поверхности достигает 53 тысяч Кельвинов, а масса находится в промежутке от 265 до 315 солнечных. Это делает данную звезду самой массивной среди известных. Звезда выбрасывает собственное вещество примерно в 20 миллиардов раз более активно, что Солнце, и теряет массу с каждым годом. Ученые заявляют, что она потеряла примерно 50 солнечных масс со времени своего рождения, которое имело место 800 тысяч лет назад.

Голубые гиганты могут менять цвет

Массивные звезды расширяются, когда водород сгорает в оболочке вокруг их ядер, в основном содержащих гелий, и не получают значительного увеличения в свечении, смещаясь по спектру от одного класса звезд к другому. Это приводит к тому, что звезды могут быстро перейти от того, чтобы быть обычным голубым гигантом к тому, чтобы стать ярким голубым гигантом, а затем желтым супергигантом. Заканчиваются эти эволюции превращением звезды в красного супергиганта. Соответственно, будет меняться и яркость звезды из-за перемен в ее температуре и поверхностной гравитации.

Срок жизни голубых гигантов очень короткий

По вине относительно большой массы голубые гиганты спектрального класса О сжигают свой водород примерно за миллион лет перед тем, как стать сверхновой еще через несколько миллионов лет. В результате большая часть звезд спектральных классов О и В имеет возраст в несколько миллионов лет, и большая их часть покинет эти классы примерно за 10 миллионов лет.

Голубые гиганты — наиболее вероятные предшественники черных дыр

Красные гиганты имеют свои размеры из-за раздутости. Голубые гиганты велики потому, что содержат большое количество вещества. Когда они умирают, их ядра остаются такими большими, что происходит коллапс, который превращает остатки звезды в черную дыру. Конечно же, не все черные дыры возникают из голубых гигантов, но наиболее массивные голубые гиганты, несомненно, станут черными дырами, когда придет их время.

Фото: photo.oringo.com.ua

Источник: www.ecosever.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.