Сила тяжести история открытия


Итак, движение планет, например Луны вокруг Земли или Земли вокруг Солнца,- это то же падение, но только падение, которое длится бесконечно долго (во всяком случае, если отвлечься от перехода энергии в «немеханические» формы).

Догадка о единстве причин, управляющих движением планет и падением земных тел, высказывалась учеными еще задолго до Ньютона. По-видимому, первым ясно высказал эту мысль греческий философ Анаксагор, выходец из Малой Азии, живший в Афинах почти две тысячи лет назад. Он говорил, что Луна, если бы не двигалась, упала бы на Землю.

Однако никакого практического влияния на развитие науки гениальная догадка Анаксагора, по-видимому, не имела. Ей суждено было оказаться не понятой современниками и забытой потомками. Античные и средневековые мыслители, чье внимание привлекало движение планет, были очень далеки от правильного (а чаще вообще от какого бы то ни было) истолкования причин этого движения. Ведь даже великий Кеплер, сумевший ценой гигантского труда сформулировать точные математические законы движения планет, считал, что причиной этого движения является вращение Солнца.


Согласно представлениям Кеплера, Солнце, вращаясь, постоянными толчками увлекает планеты во вращение. Правда, оставалось непонятным, почему время обращения планет вокруг Солнца отличается от периода обращения Солнца вокруг собственной оси. Кеплер писал об этом: «если бы планеты не обладали природными сопротивлениями, то нельзя было бы указать причины, почему бы им не следовать в точности вращению Солнца. Но хотя в действительности все планеты движутся в том же самом направлении, в котором совершается и вращение Солнца, скорость их движения не одинакова. Дело в том, что они смешивают в известных пропорциях косность своей собственной массы со скоростью своего движения».

Кеплер не смог понять, что совпадение направлений движения планет вокруг Солнца с направлением вращения Солнца вокруг своей оси связано не с законами движения планет, а с происхождением нашей солнечной системы. Искусственная планета может быть запущена как в направлении вращения Солнца, так и против этого вращения.

Гораздо ближе, чем Кеплер, подошел к открытию закона притяжения тел Роберт Гук. Вот его подлинные слова из работы под названием «Попытка изучения движения Земли», вышедшей в 1674 году: «Я разовью теорию, которая во всех отношениях согласуется с общепризнанными правилами механики. Теория эта основывается на трех допущениях: во-первых, что все без исключения небесные тела обладают направленным к их центру или тяжестью, благодаря которой они притягивают не только свои собственные части, но также и все находящиеся в сфере их действия небесные тела.


гласно второму допущению все тела, движущиеся прямолинейно и равномерным образом, будут двигаться по прямой линии до тех пор, пока они не будут отклонены какой-нибудь силой и не станут описывать траектории по кругу, эллипсу или какой-нибудь другой менее простой кривой. Согласно третьему допущению силы притяжения действуют тем больше, чем ближе к ним находятся тела, на которые они действуют. Я не мог еще установить при помощи опыта, каковы различные степени притяжения. Но если развивать дальше эту идею, то астрономы сумеют определить закон, согласно которому движутся все небесные тела».

Воистину можно лишь изумляться, что сам Гук не захотел заняться развитием этих идей, ссылаясь на занятость другими работами. Но появился ученый, который сделал прорыв в этой области

История открытия Ньютоном законом всемирного тяготения достаточно известна. Впервые мысль о том, что природа сил, заставляющих падать камень и определяющих движение небесных тел,- одна и та же, возникла еще у Ньютона-студента, что первые вычисления не дали правильных результатов, так как имевшиеся в то время данные о расстоянии от Земли до Луны были неточными, что 16 лет спустя появились новые, исправленные сведения об этом расстоянии. Для объяснения законов движения планет Ньютон применил законы созданной им динамики и установленный им же закон всемирного тяготения.


В качестве первого закона динамики он назвал галилеевский принцип инерции, включив его в систему основных законов- постулатов своей теории.

При этом Ньютону пришлось устранить ошибку Галилея, который считал, что равномерное движение по окружности — это движение по инерции. Ньютон указал ( и это второй закон динамики), что единственный способ изменить движение тела — значение или направление скорости — это подействовать на него с некоторой силой. При этом ускорение, с которым движется тело под действием силы, обратно пропорционально массе тела.

Согласно третьему закону динамики Ньютона, «действию всегда есть равное и противоположное противодействие».

Последовательно применяя принципы – законы динамики, он вначале вычислил центростремительное ускорение Луны при ее движении по орбите вокруг Земли, а затем сумел показать, что отношение этого ускорения к ускорению свободного падения тел у поверхности Земли равно отношению квадратов радиусов Земли и лунной орбиты. Отсюда Ньютон сделал вывод, что природа силы тяжести и силы, удерживающей Луну на орбите, — одна и та же. Другими словами, согласно его выводам, Земля и Луна притягиваются друг к другу с силой, обратно пропорциональной квадрату расстояния между их центрами Fg ≈ 1∕r2.

Ньютону удалось показать, что единственным объяснением независимости ускорения свободного падения тел от их массы является пропорциональность силы тяжести массе.


Обобщая полученные выводы, Ньютон писал: «не может быть сомнения, что природа тяжести на других планетах такова же, как и на Земле. В самом деле, вообразим, что земные тела подняты до орбиты Луны и пущены вместе с Луною, также лишенной всякого движения, падать на Землю. На основании уже доказанного (имеются в виду опыты Галилея) несомненно, что в одинаковые времена они пройдут одинаковые с Луною пространства, ибо их массы так относятся к массе Луны, как их веса к весу ее». Так Ньютон открыл, а затем сформулировал закон всемирного тяготения, который по праву является достоянием науки.

2. Свойства гравитационных сил.

Одно из самых замечательных свойств сил всемирного тяготения, или, как их часто называют, гравитационных сил, отражено уже в самом названии, данном Ньютоном: всемирные. Эти силы, если так можно выразиться, «самые универсальные» среди всех сил природы. Все, что имеет массу — а масса присуща любой форме, любому виду материи,- должно испытывать гравитационные воздействия. Исключения не составляет даже свет. Если представлять себе наглядно гравитационные силы с помощью ниточек, которые тянутся от одних тел к другим, то бесчисленное множество таких ниточек должно было бы пронизывать пространство в любом месте. При этом нелишне заметить, что порвать такую ниточку, загородиться от гравитационных сил невозможно. Для всемирного тяготения нет преград, радиус их действия не ограничен (r = ∞). Гравитационные силы – это дальнодействующие силы. Таково «официальное название» этих сил в физике. Вследствие дальнодействия гравитация связывает все тела Вселенной.


Относительная медленность убывания сил с расстоянием на каждом шагу проявляется в наших земных условиях: ведь все тела не изменяют своего веса, будучи перенесенными, с одной высоты на другую (или, если быть более точными, меняют, но крайне незначительно), именно потому, что при относительно малом изменении расстояния – в данном случае от центра Земли – гравитационные силы практически не изменяются.

Кстати, именно по этой причине закон измерения гравитационных сил с расстоянием был открыт «на небе». Все необходимые данные черпались из астрономии. Не следует, однако, думать, что уменьшение силы тяжести с высотой нельзя обнаружить в земных условиях. Так, например, маятниковые часы с периодом колебания в одну секунду отстанут в сутки почти на три секунды, если их поднять из подвала на верхний этаж Московского университета ( 200 метров) – и это только за счет уменьшения силы тяжести.

Высоты, на которых движутся искусственные спутники, уже сравнимы с радиусом Земли, так что для расчета их траектории учет изменения силы земного притяжения с расстоянием совершенно необходим.

Гравитационные силы имеют еще одно очень интересное и необыкновенное свойство, о котором и пойдет сейчас речь.

В течении многих веков средневековая наука принимала как незыблемую догму утверждение Аристотеля о том, что тело падает тем быстрее, чем больше его вес.


же повседневный опыт подтверждает это: ведь известно, что пушинка падает медленнее, чем камень. Однако, как впервые сумел показать Галилей, все дело здесь в том, что сопротивление воздуха, вступая в игру, радикально искажает ту картину, которая была бы, если бы на все тела действовала одно только земное притяжение. Существует замечательный по своей наглядности опыт с так называемой трубкой Ньютона, позволяющий очень просто оценить роль сопротивления воздуха. Вот краткое описание этого опыта. Представьте себе обыкновенную стеклянную (чтобы было видно, что делается внутри) трубку, в которую помещены различные предметы: дробинки, кусочки пробки, перышки или пушинки и т. д. Если перевернуть трубку так, чтобы все это могла падать, то быстрее всего промелькнет дробинка, за ней кусочки пробки и, наконец, плавно опустится пух. Но попробуем проследить за падением тех же предметов, когда из трубки выкачан воздух. Пушинка, потеряв былую медлительность, несется, не отставая от дробинки и пробки. Значит, ее движение задерживалось сопротивлением воздуха, которое в меньшей степени сказывалось на движении пробки и еще меньше на движении дробинки. Следовательно, если бы не сопротивление воздуха, если бы на тела действовали только силы всемирного тяготения – в частном случае земное притяжение,- то все тела падали бы совершенно одинаково, ускоряясь в одном и том же темпе.

Но «ничего не ново под Луной». Две тысячи лет тому назад Лукреций Кар в своей знаменитой поэме «О природе вещей» писал:


все то, что падает в воздухе редком,

Падать быстрее должно в соответствии с собственным весом

Лишь потому, что воды или воздуха тонкая сущность

Не в состояньи вещам одинаковых ставить препятствий,

Но уступает скорее имеющим большую тяжесть.

Наоборот, никогда никакую нигде не способна

Вещь задержать пустота и явиться какой-то опорой,

В силу природы своей постоянно всему уступая.

Должно поэтому все, проносясь в пустоте без препятствий,

Равную скорость иметь, несмотря на различие в весе.

Конечно, эти замечательные слова были прекрасной догадкой. Чтобы превратить эту догадку в надежно установленный закон, потребовалось множество опытов, начиная с знаменитых экспериментов Галилея, изучившего падение с известной наклонной Пизанской башни шаров одинаковых размеров, но сделанных из различных материалов (мрамора, дерева, свинца и т. д. ), и кончая сложнейшими современными измерениями влияния гравитации на свет. И все это многообразие экспериментальных данных настойчиво укрепляет нас в убеждении, что гравитационные силы сообщают всем телам одинаковое ускорение; в частности, ускорение свободного падения, вызванное земным притяжением, одинаково для всех тел и не зависит ни от состава, ни от строения, ни от массы самих тел.

Этот простой, как будто бы, закон и выражает собой, пожалуй, самую замечательную особенность гравитационных сил. Нет буквально никаких других сил, которые бы одинаково ускоряли все тела независимо от их массы.


Итак, это свойство сил всемирного тяготения можно спрессовать в одно короткое утверждение: гравитационная сила пропорциональна массе тел. Подчеркнем, что здесь речь идет о той самой массе, которая в законах Ньютона выступает как мера инерции. Ее даже называют инертной массой.

В четырех словах «гравитационная сила пропорциональна массе» заключен удивительно глубокий смысл. Большие и малые тела, горячие и холодные, самого различного химического состава, любого строения – все они испытывают одинаковое гравитационное взаимодействие, если их массы равны.

А может быть, этот закон действительно прост? Ведь Галилей, например, считал его, чуть ли не самоочевидным. Вот его рассуждения. Пусть падают два тела разного веса. По Аристотелю тяжелое тело должно падать быстрее даже в пустоте. Теперь соединим тела. Тогда, с одной стороны, тела должны падать быстрее, так как общий вес увеличился. Но, с другой стороны, добавление к тяжелому телу части, падающей медленнее, должно тормозить это тело. Налицо противоречие, которое можно устранить, только если допустить, что все тела под действием одного только земного притяжения падают с одинаковым ускорением. Как будто все последовательно! Однако вдумаемся еще раз в приведенное рассуждение. Оно строится на распространенном методе доказательства «от противного»: предположив, что более тяжелое тело падает быстрее легкого, мы пришли к противоречию. И с самого начала появилось предположение, что ускорение свободного падения определяется весом и только весом. (Строго говоря, не весом, а массой. )


Но ведь это заранее (т. е. до эксперимента) вовсе не очевидно. А что, если бы это ускорение определялось объемом тел? Или температурой? Представим себе, что существует гравитационный заряд, аналогичный электрическому и, как этот последний, совершенно не связанный непосредственно с массой. Сравнение с электрическим зарядом очень полезно. Вот две пылинки между заряженными пластинами конденсатора. Пусть у этих пылинок равные заряды, а массы относятся как 1 к 2. Тогда ускорения должны отличаться в два раза: силы, определяемыми зарядами, равны, а при равных силах тело вдвое большей массы ускоряется вдвое меньше. Если же соединить пылинки, то, очевидно, ускорение будет иметь новое, промежуточное значение. Никакой умозрительный подход без экспериментального исследования электрических сил ничего здесь не может дать. Точно такой же была картина, если бы гравитационный заряд не был связан с массой. А ответить на вопрос о том, есть ли такая связь, может лишь опыт. И нам теперь понятно, что именно эксперименты, доказавшие одинаковость обусловленного гравитацией ускорения для всех тел, показали, по существу, что гравитационный заряд (гравитационная или тяжелая масса) равен инертной массе.

Опыт и только опыт может служить как основой для физических законов, так и критерием их справедливости. Вспомним хотя бы о рекордных по точности экспериментах, проведенных под руководством В. Б. Брагинского в МГУ. Эти опыты, в которых была получена точность порядка 10-12, еще раз подтвердили равенство тяжелой и инертной массы.


Именно на опыте, на широком испытании природы – от скромных масштабов небольшой лаборатории ученого до грандиозных космических масштабов – основан закон всемирного тяготения, который (если подытожить все сказанное выше) гласит:

Сила взаимного притяжения любых двух тел, размеры которых гораздо меньше расстояния между ними, пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между этими телами.

Коэффициент пропорциональности называется гравитационной постоянной. Если измерять длину в метрах, время в секундах, а массу в килограммах, гравитационная постоянно будет равна 6,673*10-11, причем ее размерность будет соответственно м3/кг*с2 или Н*м2/кг2.

G=6,673*10-11 Н*м2/кг2

3. Гравитационные волны.

В ньютоновском законе всемирного тяготения о времени передачи гравитационного взаимодействия ничего не говорится. Неявно предполагается, что оно осуществляется мгновенно, какими бы большими ни были расстояния между взаимодействующими телами. Такой взгляд вообще типичен для сторонников действия на расстоянии. Но из «специальной теории относительности» Эйнштейна вытекает, что тяготение передается от одного тела к другому с такой же скоростью, что и световой сигнал. Если какое-то тело сдвигается с места, то вызванное им искривление пространства и времени меняется не мгновенно. Сначала это скажется в непосредственной близости от тела, потом изменение будет захватывать все более и более далекие области, и, наконец, во всем пространстве установится новое распределение кривизны, отвечающее измененному положению тела.

И вот тут мы подходим к проблеме, которая вызывала и продолжает вызывать наибольшее число споров и разногласий – проблеме гравитационного излучения.

Может ли существовать тяготение, если нет создающей его массы? Согласно ньютоновскому закону – безусловно нет. Там такой вопрос бессмысленно даже ставить. Однако, как только мы согласились, что гравитационные сигналы передаются хотя и с очень большой, но все же не бесконечной скоростью, все радикально меняется. Действительно, представьте себе, что сначала вызывающая тяготение масса, например шарик, покоилась. На все тела вокруг шарика будут действовать обычные ньютоновские силы. А теперь с огромной скоростью удалим шарик с первоначального места. В первый момент окружающие тела этого не почувствуют. Ведь гравитационные силы не меняются мгновенно. Нужно время, чтобы изменения в кривизне пространства успели распространиться во все стороны. Значит, окружающие тела некоторое время будут испытывать прежнее воздействие шарика, когда самого шарика уже нет (во всяком случае, на прежнем месте).

Получается так, что искривления пространства обретают определенную самостоятельность, что можно вырвать тело из той области пространства, где оно вызвало искривления, причем так, что сами эти искривления, хотя бы на больших расстояниях, останутся и будут развиваться по своим внутренним законам. Вот и тяготение без тяготеющей массы! Можно пойти и дальше. Если заставить шарик колебаться, то, как получается из эйнштейновской теории, на ньютоновскую картину тяготения накладывается своеобразная рябь – волны тяготения. Чтобы лучше представит себе эти волны, необходимо воспользоваться моделью – резиновой пленкой. Если не только нажать пальцем на эту пленку, но одновременно совершать им колебательные движения, то эти колебания начнут передаваться по растянутой пленке во все стороны. Это и есть аналог гравитационных волн. Чем дальше от источника, тем такие волны слабее.

А теперь в какой-то момент перестанем давить на пленку. Волны не исчезнут. Они будут существовать и самостоятельно, разбегаясь по пленке все дальше и дальше, вызывая на своем пути искривление геометрии.

Совершенно так же волны искривления пространства – гравитационные волны – могут существовать самостоятельно. Такой вывод из теории Эйнштейна делают многие исследователи.

Конечно, все эти эффекты очень слабы. Так, например, энергия, выделяющаяся при сгорании одной спички, во много раз больше энергии гравитационных волн, излучаемых всей нашей солнечной системой за то же время. Но здесь важна не количественная, а принципиальная сторона дела.

Одно время научная общественность была взволнована сообщением о том, что американскому исследователю Веберу удалось зарегистрировать гравитационные волны. Его установки, в принципе, были очень просты: массивные, примерно в одну тонну, алюминиевые цилиндры полутора метров длиной, устанавливались под землей. Если, рассуждал Вебер, гравитационная волна налетит на такой цилиндр, он должен начать вибрировать. Чтобы избежать случайных эффектов, брались два цилиндра на значительном расстоянии друг от другого и учитывались только совпадающие их колебания. Однако Веберу, как показали более точные измерения, проведенные, в частности, в Московском университете, по-видимому, не удалось избавиться от «паразитных» влияний. Приемники гравитационных волн пока еще не достигли необходимой чувствительности.

Сторонники гравитационных волн – а они, по-видимому, сейчас в большинстве – предсказывают и еще одно удивительное явление; превращение гравитации в такие частицы, как электроны и позитроны (они должны рождаться парами), протоны антитроны и т. д. (Иваненко, Уиллер и др. ).

Выглядеть это должно примерно так. До некоторого участка пространства дошла волна тяготения. В определенный момент это тяготение резко, скачком, уменьшается и одновременно там же появляется, скажем, электронно-позитронная пара. То же можно описать и как скачкообразное уменьшение кривизны пространства с одновременным рождением пары.

Есть много попыток перевести это на квантово-механический язык. Вводятся в рассмотрение частицы – гравитоны, которые сопоставляются неквантовому образу гравитационной волны. В физической литературе имеет хождение термин «трансмутация гравитонов в другие частицы», причем эти трасмутации – взаимные превращения – возможны между гравитонами и, в принципе, любыми другими частицами. Ведь не существует частиц, нечувствительных к гравитации.

Пусть такие превращения маловероятны, т. е. случаются чрезвычайно редко, — в космических масштабах они могут оказаться принципиальными.

4. Искривление пространства-времени гравитацией,

«притча Эддингтона».

Притча английского физика Эддингтона из книги «Пространство, время и тяготение» (пересказ):

«В океане, имеющем только два измерения, жила однажды порода плоских рыб. Было замечено, что рыбы вообще плавали по прямым линиям, пока они не встречали на своем пути явных препятствий. Это поведение казалось вполне естественным. Но в океане была таинственная область; когда рыбы в нее попадали, они казались заколдованными; некоторые проплывали через эту область, но изменяли направление своего движения, другие без конца кружились по этой области. Одна рыба (почти Декарт) предложила теорию вихрей; она говорила, что в этой области находятся водовороты, которые заставляют кружиться все, что в них попадает. С течением времени была предложена гораздо более совершенная теория (теория Ньютона); говорили, что все рыбы притягиваются к очень большой рыбе – рыбе-солнцу, дремлющей в середине области,- и этим объясняли отклонение их путей. Вначале эта теория казалась, быть может, немного странной; но она с удивительной точностью подтвердилась на самых разнообразных наблюдениях. Было найдено, что все рыбы обладают этим притягивающим свойством, пропорциональном их величине; закон притяжения (аналог закона всемирного тяготения) был чрезвычайно прост, но, не смотря на это, он объяснял все движения с такой точностью, до которой никогда раньше не доходила точность научных исследований. Правда, некоторые рыбы, ворча, заявляли, что они не понимают, как возможно такое действие на расстоянии; но все были согласны, что это действие распространяется при помощи океана и что его легче будет понять, когда лучше будет изучена природа воды. Поэтому почти каждая рыба, которая хотела объяснить притяжение, начинала с того, что предполагала какой-нибудь механизм, при помощи которого оно распространяется через воду.

Но была рыба, которая посмотрела на дело иначе. Она обратила внимание на тот факт, что большие рыбы и малые двигались всегда по одним и тем же путям, хотя могло казаться, что для отклонения большой рыбы с ее пути потребуется большая сила. (Рыба-солнце сообщала всем телам одинаковые ускорения. ) Поэтому она вместо сил стала подробно изучать пути движения рыб и таким образом пришла к поразительному решению вопроса. В мире было возвышенное место, где лежала рыба-солнце. Рыбы не могли непосредственно заметить этого потому, что они были двумерны; но кода рыба в своем движении попадала на склон этого возвышения, то хотя она и старалась плыть по прямой линии, она невольно немного сворачивала в сторону. В этом состоял секрет таинственного притяжения или искривления путей, которое происходило в таинственной области. »

Эта притча показывает, как кривизна мира, в котором мы живем, может дать иллюзию силы притяжения, и мы видим, что эффект, подобный притяжению, есть единственное, в чем такая кривизна может проявиться.

Коротко это можно сформулировать следующим образом. Так как гравитация одинаковым образом искривляет пути всех тел, мы можем считать тяготение искривлением пространства-времени.

5. Тяготение на Земле.

Если вдуматься, какую роль играют силы тяготения в жизни нашей планеты, то открываются целые океаны. И не только океаны явлений, но и океаны в буквальном смысле этого слова. Океаны воды. Воздушный океан. Без тяготения они бы не существовали.

Волна в море, движение каждой капли воды в питающих это море реках, все течения, все ветры, облака, весь климат планеты определяются игрой двух основных факторов: солнечной деятельности и земного притяжения.

Гравитация не только удерживает на Земле людей, животных, воду и воздух, но и сжимает их. Это сжатие у поверхности Земли не так уж велико, но роль его немаловажна.

Корабль плывет по морю. Что мешает ему утонуть – известно всем. Это знаменитая выталкивающая сила Архимеда. А ведь она появляется, только потому, что вода сжата тяготением с силой, увеличивающейся с ростом глубины. Внутри космического корабля в полете выталкивающей силы нет, как нет и веса. Сам земной шар сжат силами тяготения до колоссальных давлений. В центре Земли давление, по-видимому, превышает 3 миллиона атмосфер.

Под влиянием длительно действующих сил давления в этих условиях все вещества, которые мы привыкли считать твердыми, ведут себя подобно вару или смоле. Тяжелые материалы опускаются на дно (если можно так называть центр Земли), а легкие всплывают. Процесс этот доится миллиарды лет. Не окончился он, как следует из теории Шмидта, и сейчас. Концентрация тяжелых элементов в области центра Земли медленно нарастает.

Ну а как же проявляется у нас на Земле притяжение Солнца и ближайшего к нам небесного тела Луны? Наблюдать это притяжение без специальных приборов могут только жители океанских побережий.

Солнце действует почти одинаковым образом на все, находящееся на Земле и внутри нее. Сила, с которой Солнце притягивает человека в полдень, когда он ближе всего к Солнцу, почти не отличается от силы, действующей на него в полночь. Ведь расстояние от Земли до Солнца в десять тысяч раз больше земного диаметра и увеличение расстояния на одну десятитысячную при повороте Земли вокруг своей оси на пол-оборота практически не меняет силы притяжения. Поэтому Солнце сообщает почти одинаковые ускорения всем частям земного шара и всем телам на его поверхности. Почти, но все же не совсем одинаковые. Из-за этой разницы возникают приливы и отливы в океане.

На обращенном к Солнцу участке земной поверхности сила притяжения несколько больше, чем это необходимо для движения этого участка по эллиптической орбите, а на противоположной стороне Земли – несколько меньше. В результате согласно законам механики Ньютона вода в океане немного выпучивается в направлении, обращенном к Солнцу, а на противоположной стороне отступает от поверхности Земли. Возникают, как говорят, приливообразующие силы, растягивающие земной шар и придающие, грубо говоря, поверхности океанов форму эллипсоида.

Чем меньше расстояния между взаимодействующими телами, тем больше приливообразующие силы. Вот почему на форму мирового океана большее влияние оказывает Луна, чем Солнце. Более точно, приливное воздействие определяется отношением массы тела к кубу его расстояния от Земли; это отношение для Луны примерно вдвое больше, чем для Солнца.

Если бы не было сцепления между частями земного шара, то приливообразующие силы разорвали бы его.

Возможно, это произошло с одним из спутников Сатурна, когда он близко подошел к этой большой планете. То состоящее из осколков кольцо, которое делает Сатурн столь примечательной планетой, возможно и есть обломки спутника.

Итак, поверхность мирового океана подобна эллипсоиду, большая ось которого обращена в сторону Луны. Земля вращается вокруг своей оси. Поэтому по поверхности океана навстречу направлению вращения Земли перемещается приливная волна. Когда она приближается к берегу – начинается прилив. В некоторых местах уровень воды поднимается до 18 метров. Затем приливная волна уходит и начинается отлив. Уровень воды в океане колеблется, в среднем, с периодом 12ч. 25мин. (половина лунных суток).

Эта простая картина сильно искажается одновременным приливообразующим действием Солнца, трением воды, сопротивлением материков, сложностью конфигурации океанических берегов и дна в прибрежных зонах и некоторыми другими частными эффектами.

Важно, что приливная волна тормозит вращение Земли.

Правда, эффект очень мал. За 100 лет сутки увеличиваются на тысячную долю секунды. Но, действуя миллиарды лет, силы торможения приведут к тому, что Земля будет повернута к Луне все время одной стороной, и земные сутки станут равными лунному месяцу. С Луной это уже произошло. Луна заторможена настолько, что повернута к Земле все время одной стороной. Чтобы «заглянуть» на обратную сторону Луны, пришлось посылать вокруг нее космический корабль.

Источник: www.hintfox.com

Ньютон понял, что для того, чтобы изменить скорость тела, необходимо приложить к нему силу. Сегодня каждый школьник знает это утверждение как Первый закон Ньютона: изменение скорости тела за единицу времени (иначе говоря ускорение a) прямо пропорционально силе (F), и обратно пропорционально массе тела (m). Чем больше масса тела, тем больше усилий мы должны затратить на изменение его скорости. Обратите внимание, Ньютон использует только одну характеристику тела — его массу, не рассматривая его форму, из чего оно сделано, какого оно цвета и прочее. Это и есть пример применение бритвы Оккамы. Ньютон считал, что масса тела необходимый и достаточный “фактор” для описания взаимодействие тел:

Сила тяжести история открытия

Ньютон представлял планеты как большие тела, которые двигаются по окружности (или почти окружности). В повседневной жизни он часто наблюдал подобное движение: дети играли с мячом, к которому была привязана нить, они вертели его у себя над головой. В данном случае, Ньютон видел мяч (планету) и то, что она движется по кругу, но не видел нити. Проводя подобную аналогию и используя свои правила философствования, Ньютон понял, что надо искать некую силу — ”нить”, которая связывает планеты и Солнце. Дальнейшие рассуждения упростились после того, как Ньютон применил свои же законы динамики.

Ньютон, используя свой первый закон и третий закон Кеплера, получил: 

Сила тяжести история открытия

или

Сила тяжести история открытия

Тем самым Ньютон определил, что Солнце действует на планеты с силой:

Сила тяжести история открытия

Также он понял, что все планеты кружатся вокруг Солнца, и считал естественным, что масса Солнца должна быть учтена в константе:

Сила тяжести история открытия

Именно в такой форме закон всемирного тяготения соответствовал наблюдениям Кеплера и его законам движения планет. Величина G = 6,67 х 10(-11)H (м/кг)2, была выведена из наблюдений за планетами. Благодаря этому закону были описаны движения небесных тел, и, более того, мы смогли предугадать существование невидимых для нас объектов. В 1846 году ученые рассчитали орбиту ранее неизвестной планеты, которая своим существованием оказывала влияние на движение других планет Солнечной системы. Это был Плутон.

Ньютон верил, что в основе самых сложных вещей лежат простые принципы и “механизмы взаимодействия”. Именно поэтому он смог разглядеть в наблюдениях своих предшественников закономерность и сформулировать ее в Закон всемирного тяготения.

Источник: oyla.xyz

Сэр Исаак Ньютон на склоне своих лет рассказал о том, как он открыл закон всемирного тяготения.

Когда молодой Исаак гулял в саду среди яблонь в поместье своих родителей, он увидел луну в дневном небе. И рядом с ним упало яблоко на землю, сорвавшись с ветки.

Сила тяжести история открытия

Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. И знал, что Луна не просто находится на небе, а вращается вокруг Земли по орбите, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Вот тут и пришла ему идея о том, что, возможно, одна и та же сила заставляет яблоко падать на землю, и Луну оставаться на околоземной орбите.

До Ньютона ученые считали, что имеются два типа гравитации: земная гравитация (действующая на Земле) и небесная гравитация (действующая на небесах). Такое представление прочно закрепилось в сознании людей того времени.

Прозрение Ньютона заключалось в том, что он объединил эти два типа гравитации в своем сознании. С этого исторического момента искусственное и ложное разделение Земли и остальной Вселенной прекратило свое существование.

Так и был открыт закон всемирного тяготения, который является одним из универсальных законов природы. Согласно закону, все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от химических и физических свойств тел, от состояния их движения, от свойств среды, где находятся тела. Тяготение на Земле проявляется, прежде всего, в существовании силы тяжести, являющейся результатом притяжения всякого материального тела Землёй. С этим связан термин «гравитация» (от лат. gravitas — тяжесть), эквивалентный термину «тяготение».

Закон тяготения гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

Сила тяжести история открытия

Сила тяжести история открытия

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Гюйгенс, Роберваль, Декарт, Борелли, Кеплер, Гассенди, Эпикур и другие.

По предположению Кеплера, тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире.

Были, впрочем, догадки с правильной зависимостью от расстояния, но до Ньютона никто так и не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

Сила тяжести история открытия

В своём основном труде «Математические начала натуральной философии» (1687 г.) Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени.
Он показал, что:

    • наблюдаемые движения планет свидетельствуют о наличии центральной силы;
    • обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.

В отличие от гипотез предшественников, теория Ньютона имела ряд существенных отличий. Сэр Исаак опубликовал не только предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:

    • закон тяготения;
    • закон движения (второй закон Ньютона);
    • система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики.

Сила тяжести история открытия

Но Исаак Ньютон оставил открытым вопрос о природе тяготения. Не было объяснено также и предположение о мгновенном распространении тяготения в пространстве (т. е. предположение о том, что с изменением положений тел мгновенно изменяется и сила тяготения между ними), тесно связанное с природой тяготения. На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Только в 1915 году эти усилия увенчались успехом созданием общей теории относительности Эйнштейна, в которой все указанные трудности были преодолены.

Источник: www.sites.google.com

На склоне своих дней Исаак Ньютон рассказал, как это произошло: он гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения (см. Законы механики Ньютона), он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите.

Чтобы в полной мере оценить весь блеск этого прозрения, давайте ненадолго вернемся к его предыстории. Когда великие предшественники Ньютона, в частности Галилей, изучали равноускоренное движение тел, падающих на поверхность Земли, они были уверены, что наблюдают явление чисто земной природы — существующее только недалеко от поверхности нашей планеты. Когда другие ученые, например Иоганн Кеплер (см. Законы Кеплера), изучали движение небесных тел, они полагали что в небесных сферах действуют совсем иные законы движения, нежели законы, управляющие движением здесь, на Земле. История науки свидетельствует, что практически все аргументы, касающиеся движения небесных тел, до Ньютона сводились в основном к тому, что небесные тела, будучи совершенными, движутся по круговым орбитам в силу своего совершенства, поскольку окружность — суть идеальная геометрическая фигура. Таким образом, выражаясь современным языком, считалось, что имеются два типа гравитации, и это представление устойчиво закрепилось в сознании людей того времени. Все считали, что есть земная гравитация, действующая на несовершенной Земле, и есть гравитация небесная, действующая на совершенных небесах.

Прозрение же Ньютона как раз и заключалось в том, что он объединил эти два типа гравитации в своем сознании. С этого исторического момента искусственное и ложное разделение Земли и остальной Вселенной прекратило свое существование.

Результаты ньютоновских расчетов теперь называют законом всемирного тяготения Ньютона. Согласно этому закону между любой парой тел во Вселенной действует сила взаимного притяжения. Как и все физические законы, он облечен в форму математического уравнения. Если M и m — массы двух тел, а D — расстояние между ними, тогда сила F взаимного гравитационного притяжения между ними равна:

= GMm/D2

где G — гравитационная константа, определяемая экспериментально. В единицах СИ ее значение составляет приблизительно 6,67 × 10–11.

Относительно этого закона нужно сделать несколько важных замечаний. Во-первых, его действие в явной форме распространяется на все без исключения физические материальные тела во Вселенной. В частности, сейчас вы и эта книга испытываете равные по величине и противоположные по направлению силы взаимного гравитационного притяжения. Конечно же, эти силы настолько малы, что их не зафиксируют даже самые точные из современных приборов, — но они реально существуют, и их можно рассчитать. Точно так же вы испытываете взаимное притяжение и с далеким квазаром, удаленным от вас на десятки миллиардов световых лет. Опять же, силы этого притяжения слишком малы, чтобы их инструментально зарегистрировать и измерить.

Второй момент заключается в том, что сила притяжения Земли у ее поверхности в равной мере воздействует на все материальные тела, находящиеся в любой точке земного шара. Прямо сейчас на вас действует сила земного притяжения, рассчитываемая по вышеприведенной формуле, и вы ее реально ощущаете как свой вес. Если вы что-нибудь уроните, оно под действием всё той же силы равноускоренно устремится к земле. Галилею первому удалось экспериментально измерить приблизительную величину ускорения свободного падения (см. Уравнения равноускоренного движения) вблизи поверхности Земли. Это ускорение обозначают буквой g.

Для Галилея g было просто экспериментально измеряемой константой. По Ньютону же ускорение свободного падения можно вычислить, подставив в формулу закона всемирного тяготения массу Земли M и радиус Земли D, помня при этом, что, согласно второму закону механики Ньютона, сила, действующая на тело, равняется его массе, умноженной на ускорение. Тем самым то, что для Галилея было просто предметом измерения, для Ньютона становится предметом математических расчетов или прогнозов.

Наконец, закон всемирного тяготения объясняет механическое устройство Солнечной системы, и законы Кеплера, описывающие траектории движения планет, могут быть выведены из него. Для Кеплера его законы носили чисто описательный характер — ученый просто обобщил свои наблюдения в математической форме, не подведя под формулы никаких теоретических оснований. В великой же системе мироустройства по Ньютону законы Кеплера становятся прямым следствием универсальных законов механики и закона всемирного тяготения. То есть мы опять наблюдаем, как эмпирические заключения, полученные на одном уровне, превращаются в строго обоснованные логические выводы при переходе на следующую ступень углубления наших знаний о мире.

Картину устройства солнечной системы, вытекающую из этих уравнений и объединяющую земную и небесную гравитацию, можно понять на простом примере. Предположим, вы стоите у края отвесной скалы, рядом с вами пушка и горка пушечных ядер. Если просто сбросить ядро с края обрыва по вертикали, оно начнет падать вниз отвесно и равноускоренно. Его движение будет описываться законами Ньютона для равноускоренного движения тела с ускорением g. Если теперь выпустить ядро из пушки в направлении горизонта, оно полетит — и будет падать по дуге. И в этом случае его движение будет описываться законами Ньютона, только теперь они применяются к телу, движущемуся под воздействием силы тяжести и обладающему некой начальной скоростью в горизонтальной плоскости. Теперь, раз за разом заряжая в пушку всё более тяжелое ядро и стреляя, вы обнаружите, что, поскольку каждое следующее ядро вылетает из ствола с большей начальной скоростью, ядра падают всё дальше и дальше от подножия скалы.

Теперь представьте, что вы забили в пушку столько пороха, что скорости ядра хватает, чтобы облететь вокруг земного шара. Если пренебречь сопротивлением воздуха, ядро, облетев вокруг Земли, вернется в исходную точку точно с той же скоростью, с какой оно изначально вылетело из пушки. Что будет дальше, понятно: ядро на этом не остановится и будет и продолжать наматывать круг за кругом вокруг планеты. Иными словами, мы получим искусственный спутник, обращающийся вокруг Земли по орбите, подобно естественному спутнику — Луне. Так мы поэтапно перешли от описания движения тела, падающего исключительно под воздействием «земной» гравитации (ньютоновского яблока), к описанию движения спутника (Луны) по орбите, не изменяя при этом природы гравитационного воздействия с «земной» на «небесную». Вот это-то прозрение и позволило Ньютону связать воедино считавшиеся до него различными по своей природе две силы гравитационного притяжения.

Остается последний вопрос: правду ли рассказывал на склоне своих дней Ньютон? Действительно ли всё произошло именно так? Никаких документальных свидетельств того, что Ньютон действительно занимался проблемой гравитации в тот период, к которому он сам относит свое открытие, сегодня нет, но документам свойственно теряться. С другой стороны, общеизвестно, что Ньютон был человеком малоприятным и крайне дотошным во всем, что касалось закрепления за ним приоритетов в науке, и это было бы очень в его характере — затемнить истину, если он вдруг почувствовал, что его научному приоритету хоть что-то угрожает. Датируя это открытие 1666-м годом, в то время как реально ученый сформулировал, записал и опубликовал этот закон лишь в 1687 году, Ньютон, с точки зрения приоритета, выгадал для себя преимущество больше чем в два десятка лет.

Я допускаю, что кого-то из историков от моей версии хватит удар, но на самом деле меня этот вопрос мало беспокоит. Как бы то ни было, яблоко Ньютона остается красивой притчей и блестящей метафорой, описывающей непредсказуемость и таинство творческого познания природы человеком. А является ли этот рассказ исторически достоверным — это уже вопрос вторичный.

Источник: elementy.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.