Радиус хаббла


Радиус хаббла

В космологии объём Хаббла, радиус Хаббла или сфера Хаббла — область расширяющейся Вселенной, окружающей наблюдателя, за пределами которой объекты удаляются от наблюдателя со скоростью большей, чем скорость света[1].

Радиус сферы Хаббла <math>c/H_0</math>, где <math>c</math> — скорость света и <math>H_0</math> — постоянная Хаббла. В целом, термин «объём Хаббла» может быть применён к любому пространству <math>(c/H_0)^3</math>.

Не следует путать «объём Хаббла» с наблюдаемой Вселенной, так как последняя представляет собой бо́льшую область пространства[2][3].

Изменения расширения Вселенной


Расстояние <math>c/H_0</math> известно как длина Хаббла. Она равна 13,8 млрд световых лет в стандартной космологической модели. Эта величина предполагается чуть большей, чем возраст Вселенной, помноженный на скорость света. Такая величина взята потому, что <math>1/H_0</math> показывает нам возраст Вселенной в экстраполяции с учётом того, что спад скорости движения каждой галактики с момента Большого взрыва был постоянным. В настоящее время принято считать, что первоначальному спаду скорости разбегания галактик под действием силы притяжения противопоставляется ускоряющее действие со стороны тёмной энергии, поэтому <math>1/H_0</math> — это всего лишь аппроксимация настоящего возраста.

Предел Хаббла

Во Вселенной, расширяющейся с ускорением, сфера Хаббла расширяется медленнее, чем Вселенная. Это означает, что объекты рано или поздно выходят за сферу Хаббла и свет от них больше не сможет добраться до наблюдателя. Но при этом, в силу большого расстояния между объектом и наблюдателем, наблюдатель в течение еще некоторого времени будет видеть объект, не вышедший за пределы сферы[4].

См. также

  • Закон Хаббла

Ссылки

  • [www.membrana.ru/particle/1975 Утечка галактик объяснена работой вселенной-сестры]
  • [www.astronet.ru/db/msg/1194830 С.Б. Попов, Сверхсветовое разбегание галактик и горизонты Вселенной: путаница в тонкостях]

Отрывок, характеризующий Объём Хаббла

Сзади, по три, по четыре, по узкой, раскиснувшей и изъезженной лесной дороге, тянулись гусары, потом казаки, кто в бурке, кто во французской шинели, кто в попоне, накинутой на голову. Лошади, и рыжие и гнедые, все казались вороными от струившегося с них дождя. Шеи лошадей казались странно тонкими от смокшихся грив. От лошадей поднимался пар. И одежды, и седла, и поводья – все было мокро, склизко и раскисло, так же как и земля, и опавшие листья, которыми была уложена дорога. Люди сидели нахохлившись, стараясь не шевелиться, чтобы отогревать ту воду, которая пролилась до тела, и не пропускать новую холодную, подтекавшую под сиденья, колени и за шеи. В середине вытянувшихся казаков две фуры на французских и подпряженных в седлах казачьих лошадях громыхали по пням и сучьям и бурчали по наполненным водою колеям дороги.
Лошадь Денисова, обходя лужу, которая была на дороге, потянулась в сторону и толканула его коленкой о дерево.
– Э, чег’т! – злобно вскрикнул Денисов и, оскаливая зубы, плетью раза три ударил лошадь, забрызгав себя и товарищей грязью. Денисов был не в духе: и от дождя и от голода (с утра никто ничего не ел), и главное оттого, что от Долохова до сих пор не было известий и посланный взять языка не возвращался.
«Едва ли выйдет другой такой случай, как нынче, напасть на транспорт.


ному нападать слишком рискованно, а отложить до другого дня – из под носа захватит добычу кто нибудь из больших партизанов», – думал Денисов, беспрестанно взглядывая вперед, думая увидать ожидаемого посланного от Долохова.
Выехав на просеку, по которой видно было далеко направо, Денисов остановился.
– Едет кто то, – сказал он.
Эсаул посмотрел по направлению, указываемому Денисовым.
– Едут двое – офицер и казак. Только не предположительно, чтобы был сам подполковник, – сказал эсаул, любивший употреблять неизвестные казакам слова.
Ехавшие, спустившись под гору, скрылись из вида и через несколько минут опять показались. Впереди усталым галопом, погоняя нагайкой, ехал офицер – растрепанный, насквозь промокший и с взбившимися выше колен панталонами. За ним, стоя на стременах, рысил казак. Офицер этот, очень молоденький мальчик, с широким румяным лицом и быстрыми, веселыми глазами, подскакал к Денисову и подал ему промокший конверт.
– От генерала, – сказал офицер, – извините, что не совсем сухо…
Денисов, нахмурившись, взял конверт и стал распечатывать.
– Вот говорили всё, что опасно, опасно, – сказал офицер, обращаясь к эсаулу, в то время как Денисов читал поданный ему конверт. – Впрочем, мы с Комаровым, – он указал на казака, – приготовились. У нас по два писто… А это что ж? – спросил он, увидав французского барабанщика, – пленный? Вы уже в сраженье были? Можно с ним поговорить?
– Ростов! Петя! – крикнул в это время Денисов, пробежав поданный ему конверт.

Да как же ты не сказал, кто ты? – И Денисов с улыбкой, обернувшись, протянул руку офицеру.
Офицер этот был Петя Ростов.
Во всю дорогу Петя приготавливался к тому, как он, как следует большому и офицеру, не намекая на прежнее знакомство, будет держать себя с Денисовым. Но как только Денисов улыбнулся ему, Петя тотчас же просиял, покраснел от радости и, забыв приготовленную официальность, начал рассказывать о том, как он проехал мимо французов, и как он рад, что ему дано такое поручение, и что он был уже в сражении под Вязьмой, и что там отличился один гусар.

Источник: wiki-org.ru

Два горизонта

Понятие космологического горизонта ввели в науку вначале 1950-х годов в связи с разработкой теории горячей Вселенной. А в 1956 году крупный специалист по ОТО Вольфганг Риндлер из Корнеллского университета уточнил и расширил эту концепцию в статье «Visual horizons in world-models». Риндлер предложил по‑разному рассматривать космические объекты длительного существования, такие как звезды и галактики с их протяженными мировыми линиями (кривыми в пространстве-времени, описывающими движение тела), и кратковременные эффекты, такие, например, как взрывы сверхновых, которым соответствуют небольшие фрагменты таких линий, а в пределе — просто точки. Корректно описать наблюдаемость объектов обоих типов можно лишь при помощи различных горизонтов.


Границу между наблюдаемыми и ненаблюдаемыми мировыми линиями Риндлер назвал горизонтом частиц, а аналогичную границу между точками этих линий — горизонтом событий.

Согласно стандартной космологической модели, мы живем в однородной изотропной Вселенной. Отсюда следует, что горизонт частиц представляет собой сферическую поверхность, в центре которой находится наблюдатель. Внутренность сферы заполнена долгоживущими космическими объектами (скажем, галактиками), чей испущенный в прошлом свет приходит к наблюдателю. С внешней стороны этой сферы находятся галактики, которые наблюдатель не может видеть ни на каких этапах их истории, предшествовавших моменту наблюдения. Таким образом, горизонт частиц отсекает наблюдаемую зону Вселенной от ненаблюдаемой, то есть по своей сути не слишком отличается от географического горизонта.

А вот горизонт событий не столь нагляден: он разделяет события, которые наблюдатель может увидеть в тот или иной момент времени в своем собственном будущем, от событий, увидеть которые ему никогда не дано. В некоторых космологических моделях присутствуют оба горизонта, в некоторых — только один из них, а в некоторых горизонтов нет вовсе.

Статичный мир


Для простоты рассмотрим горизонты безграничной статичной вселенной. В ньютоновском мире с бесконечной скоростью света (и, как следствие, абсолютным временем), который не имеет ни начала, ни конца во времени, то есть существует вечно, наблюдатель, где бы он ни находился, всегда может видеть все светила без единого исключения. Поэтому в таком мире нет ни горизонта частиц, ни горизонта событий (собственно говоря, там нет и самих событий!) — он дважды безгоризонтен.

Теперь допустим, что в галактиках иногда взрываются сверхновые. Если скорость света бесконечна, эти вспышки мгновенно достигают наблюдателя, так что двойная безгоризонтность по‑прежнему имеет место. Однако она сохраняется и при конечной скорости света!

В самом деле, допустим, что какая-то галактика на короткое время увеличила блеск из-за взрыва сверхновой. В вечной и статичной вселенной свет этой вспышки рано или поздно придет к любому наблюдателю. Отсюда следует, что в этом мире нет сигналов, которые наблюдатель никогда не сможет увидеть, и, следовательно, нет горизонта событий (разумеется, там по‑прежнему нет и горизонта частиц).


Далее рассмотрим гипотетическую статичную вселенную с началом во времени. В таком мире горизонт частиц представляет собой сферу, расширяющуюся со скоростью света. Если через 5 млрд лет после сотворения этого мира в какой-нибудь из галактик появится наблюдатель, его горизонт частиц окажется сферой радиусом в 5 млрд световых лет. Еще через миллиард лет радиус составит 6млрд световых лет, через 2 млрд — 7 млрд. Этот мир остается неизменным, но его наблюдаемая часть постоянно расширяется.

И наконец, предположим, что наша воображаемая статичная вселенная не имеет начала, но имеет конец, где обрываются все мировые линии, в том числе и линия наблюдателя. Он по-прежнему видит все галактики, так что горизонт частиц в этом мире отсутствует. Однако наблюдатель теперь уже может заметить только часть изменений в свечении этих галактик. Он увидит вспышку сверхновой, взорвавшейся в галактике, отдаленной от него на 10 млн световых лет, если взрыв случился за 11 млн лет до конца света. Но если сверхновая вспыхнула за 9 млн лет до этого печального финала, наблюдатель даже в последний момент своего существования о ней не узнает — просто не успеет. Следовательно, в таком мире имеется горизонт событий.

Как ни примитивна модель статичной вселенной, она позволяет уяснить ключевые черты обоих горизонтов. За пределами горизонта частиц лежат мировые линии, которые в данный момент не могут наблюдаться ни в одном из своих предшествующих фрагментов. А вне горизонта событий пребывают события, которые наблюдатель не способен узреть за все время своего существования.

Ближе к реальности


Наша Вселенная, как известно, отнюдь не статична — она расширяется, причем в течение последних пяти-шести миллиардов лет даже с ускорением (считается, что оно порождено ненулевой энергией физического вакуума, получившей не особенно удачное, но эффектное название — темная энергия). При этом она обладает плоской геометрией, поскольку полная плотность ее энергии равна критическому значению, при котором кривизна космического пространства зануляется. Если бы это равенство имело место в отсутствие темной энергии, прошлая, нынешняя и последующая динамика Вселенной (за исключением ее самого раннего этапа) соответствовали бы модели Эйнштейна — де Ситтера («ПМ» № 6’2012).

Согласно закону Хаббла, радиальные скорости далеких галактик пропорциональны расстоянию до них с коэффициентом, который называется параметром Хаббла H (он зависит от возраста Вселенной и в настоящую эпоху обозначается H0). Поэтому на некоторой дистанции, равной c/H, скорость галактического разбегания становится равной скорости света. Такое расстояние называют дистанцией Хаббла (или радиусом хаббловской сферы), и в нашу эпоху оно приблизительно равно 14 млрд световых лет. Относительно центра сферы скорость расширения пространства внутри нее меньше световой, а вне ее — больше.


Очень важно, что радиус сферы Хаббла в общем случае вовсе не равен радиусу наблюдаемой части мироздания, который, по определению, есть радиус горизонта частиц. Это наглядно представлено в приведенном выше примере статичной вселенной с одновременно вспыхнувшими галактиками. Поскольку там параметр Хаббла равен нулю, хаббловский радиус бесконечен. А вот радиус горизонта частиц пропорционален возрасту Вселенной и при любых конечных сроках ее жизни тоже конечен.

Рассмотрим вспышки сверхновых, одновременно взорвавшихся в двух разных галактиках. Пусть одна из галактик расположена внутри сферы Хаббла наблюдателя, а вторая — вне ее. Наблюдатель увидит первую вспышку и не увидит второй, поскольку расширяющееся пространство «уносит» с собой ее фотоны со скоростью больше световой. На самой сфере Хаббла световые кванты как бы вморожены в пространство, которое расширяется там со световой скоростью, и поэтому она становится еще одним горизонтом — горизонтом фотонов.

Если расширение вселенной замедляется, то радиус сферы Хаббла возрастает, поскольку он обратно пропорционален уменьшающемуся хаббловскому параметру.


nbsp;таком случае по мере старения вселенной эта сфера охватывает все новые и новые области пространства и впускает все новые и новые световые кванты. С течением времени наблюдатель увидит галактики и внутригалактические события, которые ранее находились вне его фотонного горизонта. Если же расширение вселенной ускоряется, то радиус хаббловской сферы, напротив, сокращается.

Конкретная скорость расширения сферы Хаббла зависит от деталей эволюции вселенной. Например, в мире Эйнштейна — де Ситтера она равна полутора световым скоростям. Поскольку пространство на хаббловской сфере раздувается со световой скоростью, разница между темпами расширения фотонного горизонта и расширения пространства равна половине скорости света. В то же время горизонт частиц во вселенной Эйнштейна — де Ситтера расширяется вдвое быстрее фотонного горизонта (следовательно, со скоростью, равной трем световым).

С глаз долой

Из-за конечности скорости света наблюдатель видит небесные объекты такими, какими они были в более или менее отдаленном прошлом. За пределами горизонта частиц лежат галактики, которые в данный момент не наблюдаются ни на едином этапе их предшествующей эволюции. Это означает, что их мировые линии в пространстве-времени нигде не пересекают поверхность, по которой распространяется свет, приходящий к наблюдателю с момента рождения Вселенной (она называется ретроградным световым конусом). Внутри горизонта частиц расположены галактики, чьи мировые линии в прошлом пересеклись с этой поверхностью. Именно эти галактики и составляют часть Вселенной, в принципе доступную наблюдению в данный момент времени.

Ретроградный световой конус любого наблюдателя во Вселенной, расширяющейся после Большого взрыва, сходится на этой начальной сингулярности и охватывает конечный объем. Отсюда еще раз следует, что наблюдатель может видеть лишь конечную часть своего мира.

Таким образом, нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Некоторые теории ранней Вселенной утверждают, что очень далеко за этим горизонтом она совсем не похожа на то, что мы видим. Этот тезис вполне научен, поскольку он вытекает из вполне разумных вычислений, однако его нельзя ни опровергнуть, ни подтвердить с помощью астрономических наблюдений, доступных в наше время. Более того, если пространство и дальше будет расширяться с ускорением, его нельзя будет проверить и в сколь угодно отдаленном будущем.

В статичной вселенной с фиксированным началом радиус горизонта частиц равен произведению ее возраста на скорость света. В нашей Вселенной он гораздо больше, поскольку расширяющееся пространство увлекает за собой световые кванты. Для определения этого радиуса требуется знание всей динамики Вселенной, в том числе и в фазе инфляции, которым наука пока не располагает. По современным данным, масштабный фактор Вселенной в ходе инфляции увеличился как минимум в 1027 раз, но эта оценка может быть сильно занижена (стандартная космологическая модель вообще не описывает фазу инфляции и отсчитывает возраст Вселенной от ее завершения).

В мире Эйнштейна — де Ситтера радиус горизонта частиц равен удвоенному радиусу хаббловской сферы, который, в свою очередь, в полтора раза превышает произведение возраста этого мира и скорости света. Легко посчитать, что в соответствии с этой моделью нынешний радиус горизонта частиц (и, следовательно, радиус наблюдаемой с Земли области космоса) составляет около 41 млрд световых лет, или 13 гигапарсек. Поскольку Вселенная в эпоху доминирования темной энергии вышла на ускоренное расширение, радиус ее горизонта частиц должен оказаться несколько больше. Впрочем, учет темной энергии дает довольно близкое значение — 14 гигаперсек.

Стоит напомнить, что наши телескопы не могут заглянуть в эпоху, когда космическое пространство было заполнено плазмой и не содержало свободных фотонов. Она завершилась через 380 000 лет после Большого взрыва. Вселенная тогда эволюционировала практически точно по модели Эйнштейна — де Ситтера и продолжала это делать еще не менее 8 млрд лет. Позднее темная энергия внесла свои поправки, но пока что они увеличили горизонт событий не слишком сильно.

Если нынешняя плотность темной энергии в будущем не изменится, эволюция Вселенной постепенно начнет все больше и больше соответствовать модели де Ситтера. В таком случае радиус горизонта событий с течением времени будет стремиться к предельному постоянному значению. В очень далеком будущем все источники света, расположенные вне гравитационно связанной Местной группы галактик (к которой принадлежит и наш Млечный Путь), окажутся за пределами этого горизонта и навсегда станут невидимыми.

Источник: www.PopMech.ru

Расширяющаяся Вселенная

Как и все остальное в физике, наша Вселенная стремится существовать в низшем энергетическом состоянии из возможных. Но спустя 10^-36 секунд после Большого Взрыва, как считают инфляционные космологи, космос пребывал в энергии ложного вакуума — низшей точке, которая на самом деле не была низшей. В поисках истинного надира энергии вакуума, спустя долю секунды, Вселенная раздулась с коэффициентом 1050.

С тех пор Вселенная продолжает расширяться, но с меньшей скоростью. Мы видим свидетельства этого расширения в свете далеких объектов. По мере того как фотоны, выпущенные звездой или галактикой, распространяются по Вселенной, растяжение пространства заставляет их терять энергию. Когда фотоны достигают нас, их длины волн демонстрируют красное смещение в соответствии с дистанцией, которую они прошли.

Вот почему космологи говорят о красном смещении как о функции расстоянии в пространстве и времени. Свет от удаленных объектов путешествует так долго, что когда мы, наконец, видим его, мы наблюдаем объекты такими, какими они были миллиарды лет назад.

Объем Хаббла

Красное смещение света позволяет нам видеть объекты вроде галактик такими, какими они существовали в далеком прошлом, но мы не можем наблюдать все события, которые происходили в нашей Вселенной на протяжении ее истории. Поскольку наш космос расширяется, свет некоторых объектов оказывается попросту слишком далек от нас, чтобы его заметить.

Физика этой границы опирается, в частности, на кусок окружающего нас пространства-времени под названием объем Хаббла. Здесь, на Земле, мы определяем объем Хаббла путем измерения так называемого параметра Хаббла (H0), величины, которая связывает скорость разбегания далеких объектов с их красным смещением. Впервые ее вычислил Эдвин Хаббл в 1929 году, обнаружив, что далекие галактики удаляются от нас со скоростью, пропорциональной красному смещению их света.

Два источника красного смещения: Доплер и космологическое расширение. Снизу: детекторы улавливают свет, испущенный центральной звездой. Этот свет растянут, или смещен, вместе с расширением пространства

Разделив скорость света на H0, мы получим объем Хаббла. Этот сферический пузырек охватывает область, в которой все объекты удаляются от центрального наблюдателя со скоростью, меньшей скорости света. Соответственно, все объекты за пределами объема Хаббла удаляются от центра быстрее скорости света.

Да, «быстрее скорости света». Как это возможно?

Магия относительности

Ответ на этот вопрос связан с различием между специальной теорией относительности и общей теорией относительности. Специальная теория относительности требует так называемой «инерциальной системы отсчета», или, если проще, фона. Согласно этой теории, скорость света одинакова во всех инерциальных системах. Если наблюдатель сидит на скамье в парке планеты Земля или взлетает с Нептуна с головокружительной скоростью, для него скорость света всегда будет одинаковой. Фотон всегда удаляется от наблюдателя со скоростью 300 000 000 метров в секунду.

Общая теория относительности, однако, описывает ткань самого пространства-времени. В этой теории инерциальных систем отсчета нет. Пространство не расширяется относительно чему-либо за его пределами, поэтому предел скорости света относительно наблюдателя не работает. Да, галактики за пределами сферы Хаббла удаляются от нас быстрее скорости света. Но галактики сами по себе не преодолевают космические ограничения. Для наблюдателя в одной из таких галактик ничто не нарушает специальную теорию относительности. Это пространство между нами и эти галактики ускоряются и растягиваются экспоненциально.

Наблюдаемая Вселенная

Возможно, следующее вас немного удивит: объем Хаббла — это не то же самое, что и наблюдаемая Вселенная.

Чтобы понять это, рассмотрим, что когда Вселенная становится старше, удаленному свету требуется больше времени, чтобы достичь наших детекторов здесь, на Земле. Мы можем видеть объекты, которые ускорились за пределы нашего нынешнего объема Хаббла, потому что свет, который мы видим сегодня, был выпущен ими, когда они были внутри сферы.

Строго говоря, наша наблюдаемая Вселенная совпадает с чем-то под названием горизонт частиц. Горизонт частиц отмечает расстояние до самого дальнего света, который мы можем наблюдать в этот момент времени — у фотонов было достаточно времени, чтобы либо остаться в пределах, либо догнать мягко расширяющуюся сферу Хаббла.

Наблюдаемая Вселенная. Технически известна как горизонт частиц

Что с расстоянием? Чуть больше 46 миллиардов световых лет в любом направлении — и наша наблюдаемая Вселенная в диаметре составляет приблизительно 93 миллиарда световых лет, или более 500 миллиардов триллионов километров.

(Небольшая заметка: горизонт частиц — это не то же самое, что космологический горизонт событий. Горизонт частиц охватывает все события в прошлом, которые мы можем видеть в настоящее время. Космологический горизонт событий, с другой стороны, определяет расстояние, на котором будущий наблюдатель сможет увидеть на тот момент древний свет, который излучается нашим небольшим уголком пространства-времени сегодня.

Другими словами, горизонт частиц имеет дело с расстоянием до объектов в прошлом, древний свет которых мы можем наблюдать сегодня; а космологический горизонт событий имеет дело с расстоянием, которое сможет пройти наш современный свет, по мере того как дальние уголки Вселенной будут ускоряться от нас).

Темная энергия

Благодаря расширению Вселенной, есть регионы космоса, которые мы никогда не увидим, даже если будем ждать бесконечное время, пока их свет не достигнет нас. Но как насчет тех зон, которые лежат сразу за пределами нашего современного объема Хаббла? Если эта сфера тоже расширяется, сможем ли мы увидеть эти приграничные объекты?

Это зависит от того, какой регион расширяется быстрее — объем Хаббла или части Вселенной в непосредственной близости от него снаружи. И ответ на этот вопрос зависит от двух вещей: 1) увеличивается или уменьшается H0; 2) ускоряется или замедляется Вселенная. Эти два темпа тесно связаны между собой, но не являются одним и тем же.

По сути, космологи считают, что мы живем во время, когда H0 уменьшается; но из-за темной энергии скорость расширения Вселенной растет.

Может показаться нелогичным, но пока H0 уменьшается более медленными темпами, чем растет скорость расширения Вселенной, общее движение галактик от нас по-прежнему происходит с ускорением. И в этот момент времени, как считают космологи, расширение Вселенной будет опережать более скромный рост объема Хаббла.

Поэтому даже при том, что объем Хаббла расширяется, влияние темной энергии устанавливает жесткий лимит на разрастание наблюдаемой Вселенной.

Космологи ломают голову над глубокими вопросами вроде того, как будет выглядеть наблюдаемая Вселенная в один прекрасный день и как изменится расширение космоса. Но в конечном счете ученые могут только предполагать ответы на вопросы о будущем, основываясь на сегодняшнем понимании Вселенной. Космологические временные рамки настолько невообразимо велики, что невозможно сказать что-то конкретное о поведении Вселенной в будущем. Современные модели на удивление хорошо отвечают современным данным, но правда в том, что никто из нас не проживет достаточно долго, чтобы увидеть, сбудутся ли прогнозы.

Источник: Hi-News.ru

Наша Вселенная расширяется с ускорением. Это тоже знают многие. В последние пять с лишним миллиардов лет количество пространства, появляющегося в любой момент времени в каком-то месте за единицу времени, постепенно возрастает.

В результате расширения Вселенной все дальние объекты от нас постоянно удаляются — в результате им присуще красное смещение, пропорциональное расстоянию до них (с учетом, конечно, неравномерности расширения).

 

Скорость расширения Вселенной принято определять постоянной Хаббла — отношением скорости удаления объекта к расстоянию до него. В принципе, постоянная Хаббла показывает, сколько нового пространства появилось между нами и объектом, удаленным от нас на заданное расстояние, в единицу времени. Скажем, если на отрезке длиной миллион световых лет за секунду появилось 21,6 километра нового пространства, то постоянная Хаббла равняется 21,6 км/с на один Mly. Обычно, правда, используют не световые годы, а парсеки — 3,2616 светового года — и измеряют постоянную Хаббла в км/с на мегапарсек (на сколько километров вырастает отрезок пространства длиной в мегапарсек за одну секунду).

 

Измерить постоянную Хаббла в наших окрестностях нетрудно. Есть разные методы, которые даже не буду перечислять, главное, они дают достаточно близкие результаты. И в конечном счете получен весьма надежный и многократно перепроверенный результат: в радиусе полтора-два миллиарда световых лет от нас постоянная Хаббла (темп расширения Вселенной) равна 74,03±1,42 (км/с)/Мпк. Запомним.

 

А если речь идет о дальних местах, где эти методы не работают, потому что там не видно «стандартных свечей» — объектов с заранее известной светимостью, измерив яркость которых можно получить расстояние, то и здесь есть варианты. Их тоже много. И некоторые, кстати, позволяют узнать текущую постоянную Хаббла непосредственно.
И в итоге получен весьма надежный и многократно перепроверенный результат: в целом во Вселенной в настоящий момент постоянная Хаббла (темп расширения Вселенной) равна 66,93±0,62 (км/с)/Мпк.

 

 

 

А теперь любуемся ошеломляющим результатом: получается, что в наших окрестностях радиусом полтора-два миллиарда световых лет Вселенная расширяется куда быстрее, чем в целом. Практически, на десять процентов.

При этом выяснить, может быть, она и в других местах расширяется неравномерно, где-то быстрее, где-то медленнее не получается — их, этих других мест, с необходимой для этого отчетливостью из-за большого расстояния почти не видно, а методы измерения темпа расширения на больших расстояниях дают с необходимостью только усредненный результат.

 

Это очень неприятный вывод — потому что такого, исходя из всех представлений о Вселенной, быть не должно. И найти ошибку в наблюдениях никак не получается. Хуже того, ее, похоже, нет — все наблюдения подтверждают, что расхождение локальной (в наших окрестностях размером около полутора-двух миллиардов световых лет) с глобальной постоянной Планка (для наблюдаемой Вселенной в целом) является достоверным  — по последней оценке, его достоверность составляет 4,4σ (в общем, 99,999%).

 

Впрочем, варианты ответа на вопрос о том, почему такое происходит, существуют. Например, расширение Вселенной может носить волнообразный (медленно осциллирующий) характер. То есть, темная энергия, которой Вселенная, скорее всего, обязана расширением, может представлять собой некое материальное поле, медленно, с периодом в несколько миллиардов лет, осциллирующее (в этом нет ничего сногсшибательного — однажды, в эру инфляционного расширения, во Вселенной уже существовало осциллирующее поле, вызывавшее ее расширение — правда, масштаб расширения и напряженность поля были неизмеримо большими, а период осцилляций — неизмеримо меньшим). Тогда не стоит удивляться тому, что в большинстве мест, в том числе, и у нас, текущий темп расширения отличается (в ту или иную сторону) от среднего темпа расширения во Вселенной.

 

Существует еще одна модная идея. Предположим, что вдруг в наших окрестностях (в этом самом радиусе полтора-два миллиарда световых лет) средняя плотность материи окажется ниже, чем в целом в остальной Вселенной, процентов на двадцать-двадцать пять. Назвать это войдом  нельзя — в войде вообще почти ничего нет, а у нас в эту окрестность попадают и галактики, и скопления, и сверхскопления, и гиперскопления — поэтому это гипотетическое образование получило название «пузырь Хаббла». И вот если постулировать его существование, то легко понять, что сила притяжения, действующая на каждую точку «пузыря» извне, где плотность материи выше, окажется большей, чем сила, притягивающая ее «изнутри», где плотность меньше — поэтому к скорости расширения, точнее сказать, «разбегания» материи в пузыре, обусловленной расширением Вселенной, добавится скорость, обусловленная притяжением «внешней» по отношению к пузырю и более плотной материи.

 

 

 

Увы, но такая идея сталкивается с огромной проблемой. Увидеть аналогичные пузыри в других местах Вселенной невозможно из-за большого расстояния, но такие «пузыри» не только противоречат расчетам первых мгновений и лет существования Вселенной, прекрасно подтвержденных наблюдениями, но и не наблюдаются в реликтовом излучении, в котором такая неравномерность распределения материи неминуема должна бы была оставить свои следы в виде различной его интенсивности на разных участках небе, что на самом деле не соответствует реальной картине. Поэтому как согласовать эту идею с наблюдениями — совершенно непонятно.

В общем, все не так просто, как хотелось бы.

Источник: naukatehnika.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.