Природа инк сейсмической активности


Николай Шапиро
«Коммерсантъ Наука» №24 (3), сентябрь 2020

Мы часто читаем в прессе или интернете короткие заметки, начинающиеся словами: «в районе… произошло землетрясение магнитудой…» или «на Камчатке проснулся вулкан…». При этом для большинства российских читателей землетрясения или вулканические извержения остаются «экзотическими» событиями, происходящими где-то далеко. Сколько же на самом деле происходит землетрясений и извержений в мире и России? Какие из них могут представлять опасность? Каким образом мы узнаем о том, где и когда они происходят, и, главное, как эта информация используется в фундаментальных научных исследованиях и практических приложениях? Ответы на эти и другие вопросы, основываясь на своем опыте работы за рубежом и в России, дает Николай Шапиро, ведущий научный сотрудник Института физики Земли РАН и Гренобльского института физики Земли во Франции, руководитель мегагранта «Геофизические исследования, мониторинг и прогноз активных геодинамических процессов в зонах субдукции».


Сейсмология как современная научная дисциплина началась на рубеже XIX–XX веков, когда были сконструированы и начали устанавливаться первые сейсмографы. Одним из важнейших прорывов на раннем этапе сейсмологии было изобретение электромагнитного сейсмографа русским ученым, князем Борисом Борисовичем Голицыным в 1906 году. Данные, регистрируемые этими сейсмографами, накапливались в течение десятилетий, и их анализ привел к таким фундаментальным научным открытиям, как понимание внутреннего строения Земли и физического механизма, приводящего к землетрясениям, а также был важнейшим вкладом в формирование концепции тектоники плит — современной геодинамической теории, объясняющей движения и деформации верхней оболочки Земли и происхождение сейсмичности и вулканизма.

Внедрение современных цифровых и коммуникационных технологий, начатое в 1990-х годах XX века, полностью преобразило сейсмологию. За счет быстрой передачи данных и применения эффективных компьютерных алгоритмов сейсмический мониторинг в реальном времени стал по-настоящему возможен. В дополнение к этому значительно улучшилось качество сейсмических записей и увеличилось их количество.
 сегодняшний день во всем мире установлены тысячи высококачественных сейсмографов, которые записывают данные в непрерывном режиме и передают их в реальном времени в центры обработки и хранения данных, основные из которых находятся в США, Европе и Японии. Приборы мировой сейсмологической сети регистрируют более 200 тыс. землетрясений в год. К счастью, подавляющее большинство этих сейсмических событий не ощущаются на поверхности Земли и могут быть записаны только очень чувствительными сейсмографами.

Собираемые в мировых центрах данные передаются в реальном времени в службы, занимающиеся мониторингом землетрясений. Естественно, их важнейшей задачей является быстрое определение параметров наиболее крупных землетрясений, представляющих потенциальную опасность для населения и экономики. Результаты такого мониторинга, получаемые почти в реальном времени, используются в системах быстрого оповещения и предупреждения цунами. В то же время другой очень важной задачей является наиболее полное изучение всех землетрясений, включая самые слабые. Это необходимо для детального изучения тектонической активности нашей планеты и разработки вероятностных моделей сейсмической опасности. На их основе строятся карты сейсмического районирования и разрабатываются нормы сейсмостойкого строительства.

Еще одним важным практическим применением сейсмологии является мониторинг вулканов.
еные насчитывают на Земле более 1,5 тыс. потенциально активных вулканов. Каждый год по крайней мере 50 из них извергаются. К счастью, как и в случае землетрясений, большинство вулканических извержений не представляют непосредственной опасности как слишком слабые или происходящие в ненаселенных районах. Но, как и в случае землетрясений, наиболее полное изучение всех извержений, даже самых слабых, необходимо для детального изучения вулканической активности и разработки вероятностных моделей вулканической опасности и методов прогнозирования возможных катастрофических событий.

Возникновение большого количества слабых землетрясений под вулканами является одним из основных признаков их активизации и предвестников будущих извержений. При этом если учесть, что очень часто из-за плохих метеоусловий визуальное или спутниковое наблюдение вулканов бывает недоступно (а для подводных вулканов никогда), то становится понятно, что сейсмологические наблюдения — это единственный способ следить за состоянием вулканов в непрерывном режиме.

Сейсмологические данные также имеют огромное значение для фундаментальной науки. Сейсмические волны, распространяющиеся через глубинные слои Земли, содержат уникальную информацию о ее строении. Так, основные слои нашей планеты — твердые кора и мантия, жидкое внешнее ядро и твердое внутреннее ядро — были открыты в первой половине XX века на основе анализа записей землетрясений. Начиная с 1970-х годов XX века широкое развитие получила сейсмическая томография — «просвечивание» Земли на основе волн, генерируемых землетрясениями, для получения трехмерных изображений внутреннего строения Земли.


Сейсмология традиционно известна как наука о землетрясениях. Но в последние два десятилетия в ней возникла совершенно новая парадигма. На основе анализа цифровых сейсмических данных с применением современных компьютерных технологий было показано, что сейсмические записи содержат огромное количество информации помимо землетрясений.

Одним из важнейших открытий было наблюдение так называемых тектонических треморов — очень слабых сигналов, возникающих при медленном проскальзывании тектонических плит в периоды между землетрясениями. Ожидается, что систематический анализ такого рода треморов позволит отслеживать процессы, происходящие в сейсмических разломах и вулканических системах в те интервалы времени, которые раньше считались полностью «спокойными» и, таким образом, приведет к разработке принципиально новых методов мониторинга.

Другим важнейшим открытием было переосмысление так называемого сейсмического шума — сигналов, записываемых сейсмографами в отсутствие тектонической и вулканической активности (и составляющих больше 90% имеющихся сейсмологических данных).
от «шум» в основном вызван активностью Мирового океана. Относительно быстрые вариации давления колонки воды на океаническое дно приводят к возникновению сейсмических волн. Таким образом, возникает волновое поле, генерируемое источниками, неоднородно распределенными по поверхности Земли, и соответствующие сигналы на первый взгляд совершенно случайны. Но с использованием записей современных очень чувствительных сейсмографов и соответствующих математических методов эти сигналы удалось «расшифровать» и извлечь из них информацию, с одной стороны, об их источниках, а с другой стороны, о строении Земли на участках между этими источниками и записывающими приборами. В итоге возникли сразу два принципиально новых направления в сейсмологии: (1) использование сейсмических записей для мониторинга активности океана и атмосферы (и других поверхностных процессов) и (2) «шумовая сейсмическая томография».

Новую парадигму можно охарактеризовать как «тотальную сейсмологию». Ее основной принцип — это то, что каждый бит сейсмических записей содержит полезную информацию о внутреннем строении Земли и о динамических процессах, происходящих в ее глубине или на поверхности. Задача сейсмологов — «расшифровать» имеющиеся данные, чтобы по возможности максимально извлечь эту информацию и использовать ее для мониторинга и научных исследований. Таким образом, современная сейсмология — это высокотехнологичная и активно развивающаяся во всем мире область знаний, вовлеченная наравне со многими передовыми научными направлениями в технологическую революцию больших данных.


Успешное развитие сейсмологии требует совместных усилий большого числа ученых и инженерно-технического персонала, необходимых для поддержания и развития систем сейсмологических наблюдений и сбора данных и для разработки новых методов их анализа с привлечением самых современных компьютерных технологий и ресурсов. Помимо чисто количественного развития (увеличения числа станций и объема анализируемых данных), мировое сейсмологическое сообщество находится в постоянном поиске новых технологий и концепций.

На повестке дня стоит создание нового поколения «оптических» сейсмографов с использованием интерференции лазерных лучей в оптических волокнах. Ожидается, что применение такого подхода позволит существенно увеличить плотность покрытия сейсмическими наблюдениями.

Другое важное направление — это развитие разнообразных протоколов и средств передачи больших объемов данных, чтобы связать отдельные центры данных в единую мировую информационную систему и предоставить быстрый и эффективный доступ максимальному числу пользователей — индивидуальных ученых и организаций, занимающихся мониторингом.


ну из передовых ролей в этом направлении играет центр данных IRIS, который регулярно предоставляет обновленные способы доступа к данным, адаптированные под новые методы анализа и оптимизированные в соответствии с последними компьютерными и сетевыми технологиями. В итоге у современных сейсмологов есть возможность эффективно анализировать данные, записанные тысячами сейсмографов в разных частях Земли, не выходя из своего кабинета, а у преподавателей университетов — использовать самые свежие данные в обучающих программах и лабораторных работах по геофизике.

Благодаря такому эффективному доступу к большому количеству данных в последние несколько лет у сейсмологов появилась возможность, в дополнение к «традиционным» методам анализа данных, использовать концепции машинного обучения и искусственного интеллекта. Большинство ведущих ученых ожидают, что сочетание таких подходов с описанными выше идеями «тотальной сейсмологии» приведет к новым прорывам и научным открытиям в ближайшие десятилетия.

Над развитием передовых методов и технологий в сейсмологии традиционно работают научные группы ведущих университетов и научных организаций в США, Европе и Японии. В последние годы на лидирующие позиции выходят также ученые Китая и Сингапура. В XX веке Россия тоже играла в этой области ведущую роль, однако в последние два десятилетия в силу целого ряда причин эти позиции постепенно утрачиваются.


Геофизический (в первую очередь сейсмологический) мониторинг территории России осуществляется Единой геофизической службой Российской академии наук (ЕГС РАН). 12 региональных филиалов этой организации поддерживают систему сейсмологических наблюдений, состоящую более чем из 330 современных цифровых станций и регистрирующую порядка 10 тыс. землетрясений каждый год. В ЕГС РАН были разработаны и действуют оперативные системы мониторинга активных вулканов Камчатки и Курильских островов и цунамигенных землетрясений Тихого океана. Результаты этого мониторинга передаются в системы обеспечения безопасности авиаполетов и предупреждения цунами. Также собираемые ЕГС РАН данные используются для научных исследований, проводимых ее внутренними подразделениями и учеными из профильных институтов РАН и геофизических факультетов и отделений российских университетов.

К сожалению, в последние годы ЕГС РАН финансируется на уровне, едва достаточном (а часто и недостаточном) для поддержания базовых функций, и не имеет средств и возможностей для существенного развития. Эта ситуация, естественно, связана с общим недофинансированием российской науки, но в дополнение к этому ЕГС РАН страдает от недостаточно гибкого использования наукометрических показателей для планирования финансирования.
к, бюджет ЕГС РАН определяется на основе тех же принципов, что и для «обычных» институтов РАН, и этот подход полностью игнорирует специфику геофизических наблюдений, а именно необходимость развивать и поддерживать соответствующую дорогостоящую инфраструктуру (сети станций, центры данных и т. д.) и содержать в штате большое количество инженерно-технических специалистов, занимающихся этой работой. Надо отметить, что с похожими структурными проблемами в финансировании сталкиваются многие профильные институты РАН и отделения университетов.

В итоге отставание российской системы сейсмологических наблюдений от ведущих мировых стран носит структурный и многоуровневый характер. Во-первых, общее количество постоянных станций сильно уступает сегодняшнему уровню в США, Евросоюзе, Японии и Китае — несколько сотен против нескольких тысяч (и это для страны с самой большой территорией в мире). Во-вторых, в последние годы в России проводится очень мало широкомасштабных временных сейсмологических экспериментов. В-третьих, очень сильно отстало информационно-технологическое обеспечение. Так, в России на сегодняшний день отсутствует единый центр сейсмологических данных. Большая часть собираемых наблюдений хранится в региональных филиалах и остается недоступной для потенциальных пользователей.


Структурные проблемы в системе наблюдений оказывают негативное влияние на российскую сейсмологическую науку в целом. Из-за неэффективного доступа к данным количество ученых, интересующихся сейсмологическими исследованиями на территории России, и, соответственно, количество публикаций на эту тему в ведущих международных журналах сокращается. Даже для российских сейсмологов часто оказывается проще работать с данными, (легко) получаемыми из-за рубежа, чем изучать территорию своей страны. В итоге о применении идей «тотальной сейсмологии» и современных методов анализа к российским данным почти никто не задумывается. И еще раз, все это происходит в самой большой стране в мире, на территории которой находятся многие уникальные природные и геологические объекты. Недостаточное развитие науки также приводит к слабому возобновлению кадров за счет формирования и привлечения новых поколений молодых специалистов.

Переломить негативную тенденцию в российской сейсмологии — задача не из легких. Мы рассчитываем, что наш мегагрант «Геофизические исследования, мониторинг и прогноз активных геодинамических процессов в зонах субдукции» поможет внести в нее определенный вклад. В рамках этого проекта, финансируемого Минобрнауки, на базе Института физики Земли (ИФЗ РАН, г. Москва) создана новая лаборатория, которая работает в тесном взаимодействии с камчатским филиалом ЕГС РАН и Институтом вулканологии и сейсмологии (ИВиС, г. Петропавловск-Камчатский) ДВО РАН. Также в работу вовлечены преподаватели, студенты и магистранты Московского государственного университета.

Камчатка с ее многочисленными землетрясениями и очень активными вулканами и с большим количеством уже собранных данных — идеальный район для отработки новых методов и концепций в сейсмологии, и мы надеемся, что объединение опыта и ресурсов различных академических и образовательных организаций создаст благоприятные условия для проведения научных исследований на самом высоком международном уровне и будет способствовать формированию нового поколения российских геофизиков мирового уровня.

Проект начался в 2018 году, и за два с небольшим года было проведено два полевых эксперимента на Камчатке (третий должен состояться осенью 2020 года), многочисленные семинары и школы для студентов и аспирантов. По результатам исследований участниками проекта опубликовано и подготовлено к печати более 30 статей в российских и международных рецензируемых журналах. Один из последних примеров этого — статья в престижном журнале Nature Communications, представляющая новую теорию возникновения глубоких землетрясений под вулканами. Также радует, что в работе участвуют много молодых ученых. В качестве практических приложений проводимых научных работ внедряются новые методы мониторинга вулканов в практику камчатского филиала ЕГС РАН.

В то же время один-единственный проект, даже такой крупный, как мегагрант, совершенно недостаточен, чтобы переломить отставание российской сейсмологии, накапливающееся десятилетиями. Надо понимать, что без системного усилия на самом высоком уровне для улучшения российской системы геофизического мониторинга и образования наш и другие похожие проекты не окажут существенного влияния на ситуацию, поскольку их результаты будет попросту некуда внедрять. Поэтому, проводя наши работы, мы во многом надеемся на то, что в какой-то момент руководством российской науки совместно с научным сообществом будут приняты меры, направленные на структурные изменения в финансировании геофизического мониторинга в России.

Источник: elementy.ru

Первое место в этом мрачном списке занимает Великое китайское землетрясение, случившееся в январе 1556 г. в провинции Шэньси, где жители имели обыкновение селиться в лессовых пещерах. Тогда погибло 830 тыс. человек.

7 июня 1692 г. таким же образом была стерта с лица земли столица британской колонии Ямайка — Порт-Ройал. Разрушительную работу подземных толчков довершили цунами.

«Все причалы утонули сразу и в течение двух минут 9/10 города было покрыто водой, которая поднялась до такой высоты, что вливалась  в верхние комнаты домов, которые все еще продолжали стоять. Верхушки самых высоких домов виднелись над водой, окруженные мачтами судов, которые тонули вместе со строениями», — сообщает историк.

Слабым утешением служит то, что Порт-Ройал не был столь уж крупным городом, его население составляло 6,5 тыс. человек. Некоторым даже удалось спастись.

 

В 1693 г. около 100 тыс. человек погибло во время землетрясения на Сицилии, в 1737 г. — 300 тыс. человек в Калькутте. Первого ноября 1755 г. был превращен в руины Лиссабон, число жертв оценивали от 60 тыс.  до 100 тыс. человек. Именно после Лиссабонской катастрофы было найдено, наконец, научное объяснение для этих страшных разрушительных явлений. Его нашел йоркширский священник Джон Митчелл.

 

В круг интересов скромного слуги Божьего входили геология, астрономия и различные области физики.  В частности, в 1783 г. он впервые теоретически предсказал существование черных дыр, а незадолго до своей смерти в 1793 г. построил прототип прибора для измерения массы Земли, но сейчас нас интересует другая его работа. После Лиссабонского землетрясения Митчелл сопоставил показания очевидцев, собранные по приказу премьер-министра Португалии маркиза Помбала, и попробовал объяснить землетрясения с точки зрения ньютоновской механики.

«Землетрясения — это волны, вызванные движением пород», — заключил исследователь.

Он также предположил, что местоположение центра землетрясения можно вычислить путем сопоставления данных о времени прибытия волн. Выведенный им закон стал основой современного метода определения эпицентра. Так процесс изучения землетрясений встал на научные рельсы.

 

В XX в. сейсмологи научились отслеживать и записывать землетрясения по всей планете из одной точки и добились значительных успехов в описании их природы. Тем не менее с 1980 г. по 2012 г. включительно от последствий землетрясений погибло около миллиона человек. Многие из них могли выжить, если бы о предстоящем катаклизме стало известно заранее. Так что успешное предсказание подобных бедствий — весьма животрепещущая задача для человечества.

Одним из первых методов прогноза стал мониторинг поведения слабых землетрясений сейсмическими станциями. Он начал использоваться еще в 30-х гг. XX в., но, увы, до сих пор не отличается большой точностью. Земная кора — чрезвычайно сложное образование, и никогда нельзя быть уверенным, как именно выплеснется накопившееся в ней напряжение. Грубо говоря, таким образом можно предсказать, что примерно через пять лет в таком-то районе землетрясение может произойти с вероятностью в 50 %. То есть, как в том анекдоте, или произойдет, или нет. Ну не совсем так, конечно, но риски неправильного предсказания велики, а последствия ошибки в любую сторону весьма неприятны. Причем именно в густонаселенных промышленно  развитых районах, где землетрясения наиболее опасны, убытки от ложного сигнала тревоги будут наибольшими. Эвакуация крупного промышленного центра влетит в копеечку и может повлечь за собой значительный спад экономики в регионе. Не каждый рискнет взять на себя ответственность за подобный прогноз.

 

Несколько лет назад шестеро итальянских сейсмологов и один чиновник предстали перед судом, потому что не решились выдать прогноз о возможном землетрясении в городе Аквиле в 2009 г. Они посчитали, что информация недостаточно надежна, вероятность стихийного бедствия низкая, а эвакуация повлечет за собой негативные экономические последствия наверняка, и не рискнули. Сейсмологи получили по шесть лет лишения свободы. Дебаты о справедливости этого приговора до сих пор ведутся. Тысячи ученых со всего мира вступились за коллег, заявляя, что те действительно не имели возможности дать достоверный прогноз.

 

Таким образом, вопрос поиска дополнительных признаков, указывающих на приближение землетрясения, приобрел дополнительную актуальность. Большим подспорьем стали космические аппараты, регистрирующие изменения температуры земной поверхности и приповерхностного слоя воздуха, вариации силы тяжести и магнитного поля. Кроме того, землетрясения научились предсказывать, наблюдая не только за Землей, но и за небом, а точнее, за ионосферой Земли. Этим занимались на основе данных, полученных с навигационных спутниковых систем GPS и ГЛОНАСС.

 

Как известно, ионосфера — это верхний слой атмосферы, ионизированный воздействием солнечных лучей. Она начинается на высоте около 60 км от поверхности Земли и состоит из смеси нейтральных атомов, положительно заряженных ионов и отрицательно заряженных свободных электронов. Число ионов приблизительно равно числу свободных электронов, смесь тех и других называется квазинейтральной плазмой. По степени концентрации заряженных частиц в ионосфере выделяют несколько слоев. Слой D расположен на высоте 60–90 км, слой E — на высоте 90–120 км. То, что расположено выше, называют областью F, и там, в свою очередь, выделяют несколько слоев. Максимум ионообразования достигается на высотах 150–200 км. Но ионы живут довольно долго, плазма имеет свойство расползаться вверх и вниз от области максимума. Из-за этого максимальная концентрация электронов и ионов в области F находится на высотах 250–400 км. В дневное время также наблюдается образование «ступеньки» в распределении электронной концентрации, вызванной мощным солнечным ультрафиолетовым излучением. Область этой ступеньки называют слоем F1 (150–200 км). Она заметно влияет на распространение коротких радиоволн. Выше лежащую часть области F называют слоем F2. Здесь плотность заряженных частиц достигает своего максимума. Именно наблюдения за слоем F2 дают ученым возможность предсказывать поведение тектонических сил при помощи спутниковых систем GPS и ГЛОНАСС.

Концентрация свободных электронов — величина непостоянная. В определенных пределах она колеблется под воздействием самых разнообразных факторов. Однако в ходе изучения ионосферы было замечено, что крупным землетрясениям предшествовали довольно специфические изменения этой величины. Причем происходили они не где-нибудь, а в слое F2 вблизи от эпицентра землетрясений.

 

В принципе изменения ионосферных параметров фиксируются и наземными методами, но последние не дают необходимой точности прогноза. Множество сложностей связано с тем, что изменения электронной плотности ионосферы, предвещающие сильные землетрясения, имеют тот же порядок величины, а иногда даже меньше по амплитуде, чем те, что связаны с обычной изменчивостью ионосферы. Но отличить их можно, причем лучше всего это делать космическими радиофизическими методами.

 

В ходе исследований было установлено примерно следующее:

  • ионосферные предвестники представляют собой вариации плотности ионосферной плазмы (отклонения от невозмущенного значения), наблюдаемые за 1–5 суток;
  • длительность вариации одного знака невелика и составляет 4–6 часов. Только в случае очень сильных землетрясений она может быть значительной ~ 12 часов;
  • в среднем сейсмоионосферные вариации имеют ту же амплитуду, что и ежедневная изменчивость ионосферы (15–25 %), но в определенные моменты местного времени они могут превышать 100 %;
  • знак и форма сейсмоионосферных вариаций зависят от местного времени. По всей видимости, эти зависимости различны для разных регионов планеты и требуют дополнительного исследования в каждом конкретном случае;
  • размер модифицированной области ионосферы на высоте максимума слоя F2 зависит от магнитуды землетрясения;  
  • положение максимума модифицированной области в ионосфере не совпадает с вертикальной проекцией эпицентра будущего землетрясения.

 

В эпицентральной области за 3–5 суток наблюдается рост электронной концентрации в максимуме слоя F2 с дальнейшим ее уменьшением за 1–3 суток.

 

Скажем, за несколько дней до 21 сентября 2004 г., когда произошло землетрясение в Калининграде, спутники системы GPS показали, что с 16 по 18 сентября 2004 г. (за 3–5 дней до землетрясения) начинается общий рост максимальной электронной концентрации слоя F2 ионосферы. Начиная с утренних часов 19 сентября 2004 г., за два дня до землетрясения, выявлен резкий спад (~ в 1,7 раза) электронной концентрации по сравнению с аналогичным временем 18 сентября 2004 г. Этот спад сменяется резким подъемом максимума 20 сентября 2004 г. (за день до землетрясения). При этом сейсмическая и геомагнитная обстановка в этом районе накануне события выглядела спокойной, заметных подземных толчков не наблюдалось.

Можно привести и другие примеры высокой ценности наблюдения за ионосферой для прогнозов землетрясений, так что это направление определенно стоит развивать.

 

В настоящее время готовится совместный Российско-Мексиканский проект прогнозирования землетрясений путем космических наблюдений CONDOR-UNAM-MAI. Как следует из названия, проект разработан главным образом силами Московского авиационного института (МАИ) и аэрокосмического факультета Национального автономного университета Мексики (UNAM). Он включает в себя как наблюдение за земной поверхностью, так и изучение изменчивости ионосферы.

Изготовление микроспутника взяло на себя НПО «Машиностроение», радиоаппаратуры — концерн «Вега». Мексиканцы разработали прототип камеры видимого спектра, предназначенной для дистанционного зондирования. Это первая камера, спроектированная и построенная в Мексике, которая будет установлена на спутнике, выведенном на орбиту высотой 500 км, способная различать предметы, находящиеся на расстоянии не менее 20 метров друг от друга на поверхности Земли, и делать фотографии площадью обхвата 18,33 км × 13,75 км. За дизайн и конструкцию камеры ответственны Альберто Кордеро Давила, Эдгар Мартинес Паскуаль и Мануэль А. Мартинес Руис. УНАМ подготовил также особую группу специалистов, задействованных в этом проекте. Ее возглавили Сауль де ла Роса Ниевес и Рикардо Артуро Баскес Робледо.

Для камеры требуются специальные материалы, которые выдерживают перепад температуры (в нашем случае вариации составляют около 100° С). При этом она не должна превышать объем 83,3 мм × 150 мм × 320 мм. Конструкция должна учитывать отсутствие давления воздуха и воздействие излучения. Компьютер, находящийся на борту спутника, должен быть устойчивым к неполадкам и иметь возможность восстанавливаться с Земли. Да и общая конструкция спутника должна обладать характеристиками высокой надежности, во всех своих системах и быть устойчивой к сложным внешним условиям космического пространства.

Для Мексики, которая расположена в сейсмически опасной зоне, задача достоверного прогнозирования землетрясений чрезвычайно актуальна. Землетрясение 1985 г. в Мехико стало одним из самых разрушительных в истории Нового Света. Несмотря на то, что строительный кодекс учитывал возможность подземных толчков, тогда погибло около 10 тыс. человек, ранено 30 тыс. и 100 тыс. остались без крова, 412 зданий были разрушены, а более 3 тыс. — серьезно повреждены. Национальная программа по прогнозированию готовилась еще в середине 90-х гг.  XX в. и содержала немало полезных наработок, однако она не может быть осуществлена исключительно своими силами. По словам профессора инженерного факультета УНАМ доктора Сауля де ла Роса Ниевеса, трудности связаны с тем, что Мексика довольно поздно начала развивать свою аэрокосмическую отрасль. Попытки на этом направлении были плохо скоординированы. Отвечающее требованиям времени космическое агентство было создано лишь в 2010 г.  В настоящее время Мексика пока не может получать спутниковые фотографии исключительно своими силами. Поэтому сотрудничество с Россией, старейшей в мире космической державой, имеет большое значение для мексиканских ученых.

Источник: naukatehnika.com

Карта сейсмической активности земли

Сейсмическая активность на всей планете Земля. Тут вы сможете наблюдать все землетрясения на нашей планете за определенный промежуток времени в реальном времени. Минимальные показания землетрясений 4 балла.

красные — сегодня
оранжевые — вчера
желтые — позавчера
белые — за две недели

EN - 468x60

Аренда автомобилей по выгодным ценам - 728*90

Источник: priroda.inc.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Разрушительная сила землетрясения зависит от его магнитуды (в гипоцентре, т.е. в очаге), глубины очага землетресенья и расстояния от эпицентра (точки проекции  о ч а г а  на поверхность земли).

Примеры сообщений в СМИ и пояснения к терминам:
"По данным ***, там-то, во столько-то по московскому времени, произошло землетрясение магнитудой в очаге М=4.3 балла по девятибалльной шкале Рихтера, на глубине 15 км от уровня моря.
Эпицентр землетрясения располагался в 100 километрах юго-восточнее города ***. В посёлке *** ощущались подземные толчки силой до четырёх баллов, а в городе *** — три балла (по 12-балльной шкале). По последним данным, жертв и серьёзных разрушений — нет. За неделю, в указанном районе зафиксированы 4 землетрясения с магнитудой от 2.3 до 4.3 баллов по шкале Рихтера, которые ощущались и в соседних регионах. По статистике, предоставленной сейсмологами, средний интервал между сериями землетрясений магнитудой до четырёх баллов, в этом районе, составляет, приблизительно *** лет".

или
"Землетрясение магнитудой, в очаге, 4.3 произошло там-то. Его эпицентр находился в ста километрах юго-восточнее города ***. Глубина очага — 15 км" от уровня моря.

или
Четырёхбальное земл-е случилось сегодня там-то.

Магнитуда землетрясения (не путать с "силой", и оставить в покое баллы) — количественно характеризует его энергию, в очаге, по девятибалльной шкале Рихтера (0-9). Вычисляется по результатам измерений приборами (сейсмографами) на ближайших, к эпицентру, сейсмостанциях разных стран. Землетрясение магнитудой от 6 баллов и выше, с недалеко расположенным эпицентром и неглубоким залеганием очага — считается сильным и может вызвать значительные разрушения и привести к жертвам среди населения, особенно, если здания и жилые стоения не рассчитаны на должную сейсмоустойчивость или построены низкоквалифицированными гастарбайтерами, с грубыми нарушениями норм и правил строительства.

Сила толчков землетрясения (интенсивность) — качественная (ощущаемая, видимая) характеристика степени разрушений и других проявлений на земной поверхности, в конкретной точке на поверхности земли. Для этого применяется двенадцатибалльная шкала (1-12) или модифицированная шкала Меркалли. Они мало отличаются. Реальную опасность представляют толчки силой от четырёх баллов и больше.

Прогноз. Перед сильным землетрясением, за несколько минут или, даже, часов — домашние животные и птицы начинают кричать и метаться, стремятся убежать из дома на улицу, спрятаться. Собаки стараются вывести своих хозяев, детей в безопасное место. Кошки уносят котят. Аквариумные рыбки — беспокоятся, пытаются выпрыгнуть из воды аквариума. Из подвалов домов бегут наружу крысы и мыши. Дикие звери, заранее — за несколько часов или дней до землетрясения, стаями уходят из опасного района. Змеи и ящерицы выползают из своих нор (даже зимой, и ночью и в непогоду), Птицы постоянно кричат, подолгу и беспорядочно летают кругами. У животных и птиц пропадает аппетит, сильно меняется поведение — они, не нападая друг на друга, вместе уходят от опасности.

Лучшей чувствительностью обладают те, кто родился, вырос и жил (в естественных условиях) в сейсмоопасных районах. Навык сохраняется долго. Реакция у них, чаще — избирательная, только на близкие (местные землетрясенья) и опасные по силе (больше двух-четырёх баллов).

Сейсмологи и вулканологи используют научные, приборные способы прогноза и методы раннего предупреждения: постоянный мониторинг сейсмической активности сетью чувствительных датчиков, регулярные измерения и выявление повышений концентрации гелия и радона в приземном воздухе и на глубине и т.д.

Зависимость интенсивности землетр. от расстояния до эпицентра. От близко расположенных эпицентров землетрясений большой силы (если ударит «семёрка» магнитуд или выше) — ощущаются очень резкие толчки и удары, интенсивная тряска, видны свечения, искрения, слышен подземный гул, треск и грохот рушащихся строений и падающих, сломанных деревьев, происходит резкое усиление ветра. На расстояния в сотни километров, от эпицентра, доходят отголоски землетресения — низкочастотные, относительно медленные колебания, волнообразное качание дневной поверхности земли. Чем дальше — тем меньше их вертикальная амплитуда и больше период (до минуты и более, при расстоянии до эпицентра составляющем несколько тысяч километров), за исключением аномально интенсивных и резонансных проявлений на определённых расстояниях от эпицентра и вдоль крупных, глубинных тектонических разломов.

Влияние приливных (гравитационных) эффектов. Сейсмичность повышается — в новолуние и, особенно, в полнолуние, а так же — когда Луна находится в перигее (ближе к Земле). Есть и сезонная зависимость: осенью и, особенно, зимой — трясёт сильнее и чаще, чем весной и летом.

Геологический фактор. Наибольшие разрушения от землетрясения — на выходах скальных горных пород и если они покрыты рыхлыми отложениями небольшой мощности, которые подбрасываются на своем основании вверх. Более безопасные грунтовые условия — территории с мощными толщами рыхлых горн. пород, в которых сейсмическая волна ослабевает, гасится, пока дойдёт до земной поверхности.

Цунами возникают, если эпицентр земля находится вблизи морского побережья. Вода, при первом ударе, сначала уходит от берега, а затем, разгоняясь, в виде большой волны обрушивается на побережье. Яркость свечения морских организмов — резко повышается и за две-три минуты перед цунами.

Как выжить при землятресении


Карта сейсмической активности обновляется каждые 20 минут.

Чтобы посмотреть поближе область и баллы, нажмите курсором на очаг землетрясения, вы попадете на увеличенную область карты

Обновляемый список GEOFON Global Seismic Moniton землетрясений.


Карта Automatic GEOFON Global Seismic Moniton

красные — последние 24 часа
оранжевые — последние 1-4 дня
желтые — последние 4-14 дней


Источник: priroda.inc.ru

Европейская часть России

Северный Кавказ, будучи составной частью протяженной Крым-Кавказ-Копетдагской зоны Иран-Кавказ-Анатолийского сейсмоактивного региона, характеризуется самой высокой сейсмичностью в Европейской части России. Здесь известны землетрясения с магнитудой около М=7.0 и сейсмическим эффектом в эпицентральной области интенсивностью I 0 =9 баллов и выше. Наиболее активна восточная часть Северного Кавказа — территории Республики Дагестан, Чеченской Республики, Республики Ингушетия и Республики Северная Осетия— Алания. Из крупных сейсмических событий в Республике Дагестан — землетрясения 1830 г (М=6,3, I 0 =8–9 баллов) и 1971 г (М=6,6, I 0 =8–9 баллов); на территории Чеченской Республики — землетрясение 1976 г (М=6,2, I 0 =8–9 баллов). В западной части, вблизи границы России, произошли Тебердинское ( 1902 г М=6,4, I 0 =7–8 баллов) и Чхалтинское ( 1963 г М=6,2, I 0 =9 баллов) землетрясения. Самые крупные из известных землетрясений Кавказа, ощущавшихся на территории России интенсивностью до 5-6 баллов, произошли в Азербайджане в 1902 г (Шемаха, М=6.9, I 0 =8—9 баллов), в Армении в 1988 г (Спитак, М=7,0, I 0 =9—10 баллов), в Грузии в 1991 г (Рача-Джава, М=6,9, I 0 =8–9 баллов) и в 1992 г (Барисахо, М=6,3, I 0 =8–9 баллов). На Скифской плите местная сейсмичность связана со Ставропольским поднятием, частично захватывающим Республику Адыгею, Ставропольский и Краснодарский края. Магнитуды известных здесь землетрясений не достигали М=6,5. В 1879 г произошло сильное Нижнекубанское землетрясение (М=6 0, I 0 =7–8 баллов). Имеются исторические сведения о катастрофическом Понтикапейском землетрясении ( 63 г до н. э.), разрушившим ряд городов по обе стороны Керченского пролива. Многочисленные сильные и ощутимые землетрясения отмечены в районе Анапы, Новороссийска, Сочи и на других участках Черноморского побережья, а также в акваториях Черного и Каспийского морей.

Восточно-Европейская равнина и Урал характеризуются относительно слабой сейсмичностью и редко возникающими здесь местными землетрясениями с магнитудой М=5,5 и интенсивностью до I 0 =6–7 баллов. Такие явления известны в районе городов Альметьевск ( 1914 г 1986 г ), Елабуга ( 1851 г 1989 г ), Вятка ( 1897 г ), Сыктывкар ( 1939 г ).

Не менее сильные землетрясения возникают на Среднем Урале, в Предуралье, Поволжье, в районе Азовского моря и в Воронежской области. На Кольском полуострове и сопредельной с ним территории отмечены и более крупные сейсмические события Белое море, Кандалакша, 1626 г М=6,3, I 0 =8 баллов). Слабые землетрясения (с М менее 4,0, I 0 =5–6 баллов и менее) возможны практически повсеместно. На северо-западе России ощущаются землетрясения Скандинавии Норвегия, 1817 г ), на юге — сильные землетрясения на восточном побережье Каспийского моря (Туркмения, Красноводск (ныне Туркменбашы), 1895, Небитдаг, 2000 г ), Кавказа (Спитак, Армения, 1988 г ), Крыма (<Ялта, 1927 г ). На обширной площади, в том числе в Москве и Санкт-Петербурге, неоднократно наблюдались сейсмические колебания интенсивностью до 3–4 баллов от заглубленных очагов крупных землетрясений, происходящих в Восточных Карпатах (Румыния, зона Вранча, 1802, 1940, 1977, 1986, 1990 гг.). Нередко сейсмическая активность усугубляется техногенным воздействием на литосферную оболочку Земли (добыча нефти, газа и других полезных ископаемых, закачка флюидов в разломы и т.п.). Такие, «индуцированные», землетрясения регистрируются в Республике Татарстан, Пермском крае и в других регионах страны.

Сибирь

Алтай, включая его монгольскую часть, и Саяны—один из наиболее сейсмоактивных внутриконтинентальных регионов мира. На территории России достаточно сильными местными землетрясениями характеризуется Восточный Саян, где известны землетрясения с М=7,0 и I 0 =9 баллов ( 1800 г 1829 г 1839 г 1950 г ) и обнаружены древние геологические следы (палеосейсмодислокации) таких и более крупных сейсмических событий. На Алтае самое крупное из последних землетрясений произошло 27 сентября 2003 г в высокогорном Кош-Агачском районе (М=7,5, I 0 =9–10 баллов). Менее значительные по магнитуде (М=6,0–6,6, I 0 =8–9 баллов) землетрясения происходили на Алтае и Западном Саяне и ранее. Крупнейшие сейсмические катастрофы в начале прошлого века имели место в Монгольском Алтае. К их числу относятся Хангайские землетрясения 9 и 23 июля 1905 г Первое из них, по определению американских сейсмологов Б. Гутенберга и Ч. Рихтера, имело магнитуду М=8,4, а сейсмический эффект в эпицентральной области составил I 0 =11–12 баллов. Магнитуда и сейсмический эффект второго землетрясения, по их же оценкам, близки к предельным величинам магнитуд и сейсмического эффекта — М=8,7, I 0 =12 баллов. Оба землетрясения ощущались на огромной территории Российской империи, на расстояниях до 2000 км от эпицентра. В Иркутской, Томской, Енисейской губерниях и по всему Забайкалью интенсивность сотрясений достигала 6–7 баллов. Другими сильными землетрясениями на сопредельной с Россией территории Монголии были Монголо-Алтайское ( 1931 г М=8,0, I 0 =10 баллов), Гоби-Алтайское ( 1957 г М=8,2, I 0 =11 баллов) и Моготское ( 1967 г М =7,8, I 0 =10–11 баллов).

Байкальская рифтовая зона — уникальный сейсмогеодинамический регион мира. Впадина озера Байкал представлена тремя сейсмоактивными котловинами — южной, средней и северной. Аналогичная зональность свойственна и проявлению сейсмичности восточнее озера, вплоть до реки Олёкма. Восточнее Олёкмо-Становая сейсмоактивная зона трассирует границу между Евразиатской и Китайской литосферными плитами (некоторые исследователи выделяют еще промежуточную, меньшую по площади, Амурскую плиту). На стыке Байкальской зоны и Восточного Саяна сохранились следы древних землетрясений с М=7,7 и выше ( I 0 =10–11 баллов). В 1862 г при землетрясении I 0 =10 баллов в северной части дельты реки Селенга ушел под воду участок суши площадью 200 км 2 с шестью улусами, в которых проживало 1300 чел., и образовался залив Провал. Среди относительно недавних крупных землетрясений — Мондинское ( 1950 г М=7,1, I 0 =9 баллов), Муйское ( 1957 г М=7,7, I 0 =10 баллов) и Среднебайкальское ( 1959 г М=6,9, I 0 =9 баллов). В результате последнего землетрясения дно в средней котловине озера опустилось на 15–20 м.

Верхояно-Колымский регион принадлежит поясу Черского, протягивающемуся в юго-восточном направлении от устья реки Лена к побережью Охотского моря, Северной Камчатке и Командорским островам. Самые сильные из известных в Республике Саха (Якутия) землетрясений — два Булунские ( 1927 г М=6,8 и I 0 =9 баллов каждое) в низовьях реки Лена и Артыкское ( 1971 г М=7,1, I 0 =9 баллов) — у границы Республики Саха (Якутия) с Магаданской областью. Менее значительные сейсмические события с магнитудой до М=5,5 и интенсивностью I 0 =7 баллов наблюдались на территории Западно-Сибирской платформы.

Арктическая рифтовая зона является северо-западным продолжением сейсмоактивной структуры Верхояно-Колымского региона, уходящей узкой полосой в Северный Ледовитый океан и соединяющейся на западе с аналогичной рифтовой зоной Срединно-Атлантического хребта. На шельфе моря Лаптевых в 1909 г и 1964 г произошли два землетрясения с магнитудой М=6,8.

Дальний Восток

Курило-Камчатская зона является классическим примером субдукции Тихоокеанской литосферной плиты под материк. Она протягивается вдоль восточного побережья Камчатки, Курильских островов и острова Хоккайдо. Здесь возникают самые крупные в Северной Евразии землетрясения с М=8,0 и сейсмическим эффектом I 0 =10 баллов. Структура зоны четко прослеживается по расположению очагов в плане и на глубине. Протяженность ее вдоль дуги примерно 2500 км по глубине — свыше 650 км толщина — около 70 км угол наклона к горизонту — до 50°. Сейсмический эффект на земной поверхности от глубоких очагов относительно невысок. Определенную сейсмическую опасность представляют землетрясения, связанные с деятельностью Камчатских вулканов ( 1827 г при извержении вулкана Авачинская Сопка интенсивность сотрясений достигала в Петропавловске-Камчатском 6–7 баллов). Самые сильные (М=8,0–8,5, I 0 =10–11 баллов) землетрясения возникают на глубине до 80 км в сравнительно узкой полосе между океаническим желобом, полуостровом Камчатка и Курильскими островами (1737, 1780, 1792, 1841, 1918, 1923, 1952, 1958, 1963, 1969, 1994, 1997 гг. и др.). Большинство из них сопровождалось мощными цунами высотой 10–15 м и более. Наиболее изучены Шикотанское ( 1994 г М=8,0, I 0 =9–10 баллов) и Кроноцкое ( 1997 г М=7,9, I 0 =9–10 баллов) землетрясения, возникшие у Южных Курильских островов и восточного побережья Камчатки. Шикотанское землетрясение сопровождалось волной цунами высотой до 10 м сильными афтершоками и большими разрушениями на островах Шикотан, Итуруп и Кунашир. Погибли 12 человек, причинен огромный материальный ущерб.

Сахалин представляет собой северное продолжение Сахалино-Японской островной дуги и трассирует границу Охотоморской и Евразиатской плит. До катастрофического Нефтегорского землетрясения ( 1995 г М=7,5, I 0 =9–10 баллов) сейсмичность острова представлялась умеренной и здесь ожидались лишь землетрясения интенсивностью до I 0 =6–7 баллов. Нефтегорское землетрясение было самым разрушительным из известных за все время на территории Российской Федерации. Погибло около 2000 чел. В результате полностью ликвидирован поселок Нефтегорск. Можно полагать, что техногенные факторы (бесконтрольная откачка нефтепродуктов) сыграли роль спускового механизма для накопившихся к этому моменту упругих геодинамических напряжений в регионе. Монеронское землетрясение ( 1971 г М=7,5), произошедшее на шельфе в 40 км юго-западнее острова Сахалин, на побережье ощущалось интенсивностью около 7 баллов. Крупным сейсмическим событием было Углегорское землетрясение ( 2000 г М=7,1, I 0 =9 баллов). Возникнув в южной части острова, вдалеке от населенных пунктов, оно практически не принесло ущерба, но подтвердило повышенную сейсмическую опасность острова Сахалин.

Приамурье и Приморье характеризуются умеренной сейсмичностью. Из известных здесь землетрясений пока только одно на севере Амурской области достигло магнитуды М=7,0 ( 1967 г I 0 =9 баллов). В будущем магнитуды потенциальных землетрясений на юге Хабаровского края также могут оказаться не менее М=7,0, а на севере Амурской области не исключены землетрясения с М=7,5 и выше. Наряду с внутрикоровыми, в Приморье ощущаются глубокофокусные землетрясения юго-западной части Курило-Камчатской зоны субдукции. Землетрясения на шельфе нередко сопровождаются цунами высотой до 3–4 м.

Чукотка и Корякское нагорье еще недостаточно изучены в сейсмическом отношении из-за отсутствия здесь необходимого числа сейсмических станций. В 1928 г у восточного побережья Чукотки возник рой сильных землетрясений с магнитудами M =6,9, 6.3, 6,4 и 6,2. Там же в 1996 г произошло землетрясение с М=6,2. В Корякском нагорье до 1991 г самым сильным из ранее известных было Хаилинское землетрясение 1991 г (М=7,0, I 0 =8–9 баллов). Еще более значительное землетрясение (М=7,6, I 0 =9–10 баллов) произошло в этой же эпицентральной области 21 апреля 2006 г В результате сильно пострадали населенные пункты Хаилино, Тиличики и Корф.

ОСР-97-А

ОСР-97-В

ОСР-97-С

Тектоническое районирование России

Карта сейсмической активности земли — Карта землетрясений сервиса Google