Пояс койпера и облако оорта


Оказалось, что очень сложно посчитать расстояние до объекта, если вы не используете особую геометрию, чтобы направить телескоп прямо по направлению к Солнцу. Когда вы делаете это, скорость движения объекта по небу обратно пропорциональная расстоянию из-за параллакса. Это как два самолета: тот, что летит выше на скорости 50 миль/час, дольше пересекает небо, а тот, что летит низко на той же скорости, пересекает небо очень быстро. Мы можем измерить расстояние исходя из скорости. Мы использовали эту простую тактику наблюдения противоположно Солнцу, а затем использовали параллакс, чтобы измерить расстояние. Вот почему мы назвали это «исследованием медленных объектов». Мы искали медленно движущиеся объекты, потому что, скорее всего, эти объекты расположены очень далеко.

Мы годами не могли найти ничего интересного. Мы нашли много объектов вроде астероидов внутри Солнечной системы, но не нашли ничего за Сатурном, а искали именно это. Мы потратили около 5 лет на это исследование и не находили ничего ценного вплоть до 1992 года. А потом нашли объект. Он был не просто за орбитой Сатурна — он был далеко за пределами известного региона Солнечной системы. Мы назвали этот объект 1992 QB1. Это был самый далекий объект, который когда-либо наблюдался в Солнечной системе.


Это было захватывающе. Дело в том, что, пока ты не найдешь первый объект, ты не знаешь, бесполезно ли то, что ты делаешь, не знаешь, в правильном ли направлении ты ищешь. Ты даже не знаешь, есть ли там что искать. Но как только ты находишь один объект, все сомнения исчезают. Это так влияет на всю работу, на образ мыслей, что ты переходишь за все психологические барьеры. То, что казалось невозможным, становится обычным делом, когда это уже сделано. Я работал вместе с Джейн Лу, которая была постдоком в то время. После того как мы нашли 1992 QB1, мы начали находить и другие объекты. Мы нашли около 40 или 50 объектов в течение следующих нескольких лет. Другие ученые присоединились к этой игре, и к середине 2016 года общее число известных объектов составляло почти 2 000. Это очень много.

Объекты пояса Койпера и миграция планет


Вскоре мы сделали много удивительных открытий, касающихся пояса Койпера. Например, мы обнаружили, что есть разные виды объектов пояса Койпера. Мы дали им разные названия: классические, резонансные, рассеянные и обособленные. Они динамически отличаются друг от друга — в основном по причинам, связанным с гравитационным контролем Нептуна, который является довольно массивной планетой (в 16 раз массивнее Земли) и находится не так далеко от некоторых объектов пояса Койпера. Нептун накладывает динамическую структуру на пояс Койпера из-за своего гравитационного влияния. Мы доказали, что Плутон — это просто один из больших объектов пояса Койпера, определили распределение размеров и масс в поясе Койпера и поняли, что это только верхушка айсберга: из объектов, которые мы видели, мы извлекли 100 000 объектов пояса Койпера больше сотни километров и миллиард объектов больше одного километра. Поразительно, что раньше они были полностью неизвестными.

Несмотря на то что объектов пояса Койпера очень много, мы обнаружили, что их масса довольно мала и равна только 10% от массы Земли. Это было загадкой: как формируются эти тела, если у них такая маленькая масса? Очень мало материала распространено по большому объему пояса Койпера. Эти тела растут очень медленно. Модели малой массы пояса Койпера стали горячей темой. Они были основаны на идее, что пояс Койпера был гораздо более массивным, когда начал формироваться, — в 20 или 40 раз массивнее Земли. Но большая часть массы была потеряна.

Источник: postnauka.ru

Интересные факты о Поясе Койпера


  • Пояс Койпера способен вмещать сотни тысяч ледяных объектов, чей размер варьируется между небольшими осколками до 100 км в ширину;
  • Большая часть короткопериодических комет поступает из пояса Койпера. Их орбитальный период не превышает 200 лет;
  • В главной части пояса Койпера может скрываться более триллиона комет;
  • Крупнейшими объектами выступают Плутон, Квавар, Макемаке, Хаумеа, Иксион и Варуна;
  • Первая миссия к поясу Койпера отправилась в 2015 году. Это зонд Новые Горизонты, исследовавший Плутон и Харон;
  • Исследователи зафиксировали структуры подобные поясу вокруг других звезд (HD 138664 и HD 53143);
  • Льды в поясе сформировались еще в период создания Солнечной системы. С их помощью можно разобраться в условиях ранней туманности;

Определение Пояса Койпера

Начать объяснение нужно с того, где находится Пояс Койпера. Его можно найти за чертой орбиты планеты Нептун. Напоминает Пояс астероидов между Марсом и Юпитером, потому что располагает остатками от формирования Солнечной системы. Но по размерам в 20-200 раз крупнее него. Если бы не влияние Нептуна, то осколки слились и смогли сформировать планеты.

Обнаружение и имя Пояса Койпера


Впервые о присутствии других объектов заявил Фрекрик Леонард, назвавший их ультра-нептуновыми небесными телами за чертой Плутона. Тогда Армин Лейшнер посчитал, что Плутон может выступать всего лишь одним из многих долгопериодических планетных объектов, которые еще предстоит отыскать. Ниже представлены крупнейшие объекты Пояса Койпера.

В 1943 году Кеннет Эджворт опубликовал статью. Он писал, что материал за Нептуном слишком рассредоточен, поэтому не может слиться в более крупное тело. В 1951 году в обсуждение вступает Джерард Койпер. Он пишет о диске, появившемся в начале эволюции Солнечной системы. Идея с поясом всем понравилась, потому что она объясняла откуда прибывают кометы.

В 1980 году Хулио Фернандес определил, что Пояс Койпера находится на удаленности в 35-50 а.е. В 1988 году появляются компьютерные модели на основе его расчетов, которые показали, что Облако Оорта не может отвечать за все кометы, поэтому идея с поясом Койпера обретала больше смысла.


В 1987 году Дэвид Джуитт и Джейн Лу занялись активными поисками объектов, используя телескопы в Национальной обсерватории Кит-Пика и Обсерваторию Серро-Тололо. В 1992 году они объявили об открытии 1992 QB1, а через 6 месяцев – 1993 FW.

Во многих статьях авторы начали называть гипотетический участок поясом Койпера, которое и закрепилось как официальное наименование.

Но многие не согласны с этим названием, потому что Джерард Койпер имел в виду нечто иное и все почести следует отдать Фернандесу. Из-за возникших споров в научных кругах предпочитают использовать термин «транс-нептунианские объекты».

Состав Пояса Койпера

Как выглядит состав Пояса Койпера? На территории пояса проживают тысячи объектов, а в теории насчитывают 100000 с диаметром, превышающим 100 км. Полагают, что все они состоят из льда – смесь легких углеводородов, аммиака и водяного льда.

На некоторых объектах нашли водяной лед, а в 2005 году Майкл Браун определил, что на 50000 Кваваре есть водяной лед и гидрат аммиака. Оба этих вещества исчезли в процессе развития Солнечной системы, а значит на объекте есть тектоническая активность или же произошло метеоритное падение.

В поясе зафиксировали крупные небесные тела: Квавар, Макемаке, Хаумеа, Орк и Эриду. Они и стали причиной того, что Плутон сместили в категорию карликовых планет.

Изучение Пояса Койпера


В 2006 году НАСА отправили к Плутону зонд Новые Горизонты. Он прибыл в 2015 году, впервые продемонстрировав «сердце» карлика и бывшей 9-й планеты. Теперь он отправляется в сторону пояса, чтобы рассмотреть его объекты.

О поясе Койпера мало информации, поэтому он скрывает огромное количество комет. Наиболее известная – комета Галлея с периодичностью в 16000-200000 лет.

Будущее Пояса Койпера

Джерард Койпер полагал, что ТНО не будут существовать вечно. Пояс охватывает в небе примерно 45 градусов. Объектов много, и они постоянно сталкиваются, превращаясь в пыль. Многие считают, что пройдут сотни миллионов лет и от пояса ничего не останется. Будем надеяться, что миссия Новые Горизонты доберется раньше!Облако Оорта

Тысячелетиями человечество наблюдало за прибытием комет и пыталось понять, откуда они берутся. Если при сближении со звездой ледяной покров испаряется, то они должны располагаться на большой отдаленности.

Со временем ученые пришли к выводу, что за чертой планетарных орбит находится масштабное облако с ледяными и каменными телами. Его назвали Облаком Оорта, но оно все еще существует в теории, потому что мы не можем его увидеть.

Определение Облака Оорта


Облако Оорта — теоретическое сферическое формирование, наполненное ледяными объектами. Находится на расстоянии 100000 а.е. от Солнца, из-за чего охватывает межзвездное пространство. Как и пояс Койпера, это хранилище транс-нептуновых объектов. О его существовании впервые заговорил Эрнест Опик, считавший, что кометы могут прилетать из области на краю Солнечной системы.

В 1950-м году Ян Оорт оживил концепцию и сумел даже объяснить принципы поведения долгосрочных комет. Существование облака не доказано, но его признали в научных кругах.

Структура и состав облака Оорта

Полагают, что облако способно располагаться в 100000-200000 а.е. от Солнца. Состав Облака Оорта включает две части: сферическое внешнее облако (20000-50000 а.е.) и дисковое внутреннее (2000-20000 а.е.). Во внешнем проживают триллионы тел с диаметром в 1 км и миллиарды 20-километровых. Сведений об общей массе нет. Но если комета Галлея выступает типичным телом, то подсчеты выводят на цифру в 3 х 1025 кг (5 земель). Ниже представлен рисунок строения Облака Оорта.

Большая часть комет наполнена водой, этаном, аммиаком, метаном, цианидом водорода и монооксидом углерода. На 1-2% может состоять из астероидных объектов.

Происхождение облака Оорта


Есть мнение, что Облако Оорта — остаток от изначального протопланетного диска, сформировавшегося вокруг звезды Солнца 4.6 млрд. лет назад. Объекты могли сливаться ближе к Солнцу, но из-за контакта с масштабными газовыми гигантами были вытолкнуты на большою удаленность.

Исследование от ученых НАСА показало, что огромный объем облачных объектов выступает результатом обмена между Солнцем и соседними звездами. Компьютерные модели показывают, что галактические и звездные приливы меняют кометные орбиты, делая их более круглыми. Возможно, именно поэтому Облако Оорта принимает форму сферы.

Симуляции также подтверждают, что создание внешнего облака согласуется с идеей того, будто Солнце появилось в скоплении из 200-400 звезд. Древние объекты могли повлиять на формирование, потому что их было больше и чаще сталкивались.

Кометы из Облака Оорта

Полагают, что эти объекты спокойно дрейфуют в Облаке Оорта, пока не выйдут из привычного маршрута из-за гравитационного толчка. Так они становятся долгопериодическими кометами и наведываются во внешнюю систему.

Орбита короткопериодических комет охватывает пару сотен лет, а вот у долгопериодических растягивается на десятки тысяч лет. Первые прибывают из пояса Койпера, а вторые – гости из облака. Но есть исключения.

Есть кометы Юпитера и Галлея. Вторые короткопериодические, но пребывают из Облака Оорта. Ранее они обладали длительным периодом, но попали под воздействие газового гиганта.

Изучение облака Оорта


Нам все еще не удалось добраться к поясу Койпера, а Облако Оорта расположено еще дальше. Дальше всех вылетел Вояджер-1, но ему все еще далеко. Если учитывать теперешнее ускорение, то у аппарата (сейчас в межзвездном пространстве) уйдет еще 300 лет, чтобы прибыть к началу, и 30000 лет, чтобы полностью миновать облако.

За ним следуют Пионер-10 и 11, Вояджер-2, а также Новые Горизонты. Но они выйдут из строя и не смогут передать нам сигнал.

Итак, главная трудность в исследовании – огромная удаленность. Пока зонд доберется, у нас минуют века. Сейчас мы можем лишь рассматривать прибывающие кометы. Теперь вы узнали, где находятся Пояс Койпера и Облако Оорта, а также получили представление об объектах и их движении по Солнечной системе.

Ссылки

Источник: v-kosmose.com

В фантастических фильмах показывают, как космические корабли летят к планетам через астероидное поле, они ловко уклоняются от крупных планетоидов и ещё более ловко отстреливаются от мелких астероидов. Возникает закономерный вопрос: «Если пространство трёхмерное, не проще ли сверху или снизу облететь опасное препятствие?»


Задавшись этим вопросом можно найти много интересного о строении нашей Солнечной системы. Представление человека об оной ограничивается несколькими планетами, о которых старшие поколения узнавали в школе на уроках астрономии. Последние несколько десятилетий такую дисциплину не изучали вообще.

Попробуем немного расширить своё восприятие реальности, рассматривая существующую информацию о Солнечной системе (рис.1).

 

Пояс койпера и облако оорта

Рис.1. Схема Солнечной системы.

 

В нашей Солнечной системе существует астероидный пояс между Марсом и Юпитером Учёные, анализируя факты, больше склоняются к тому, что данный пояс образовался в результате разрушения одной из планет Солнечной системы.

Этот астероидный пояс не единственный, существует ещё две отдалённые области, называемые по именам астрономов, предсказавших их существование — Джерард Койпер и Ян Оорт — это Пояс Койпера и Облако Оорта. Пояс Койпера (рис.2) находится в диапазоне между орбитой Нептуна 30 а.е.  и расстоянием от Солнца примерно в 55 а.е.*

По представлениям учёных астрономов Пояс Койпера, как и пояс астероидов, состоит из малых тел. Но в отличие от объектов пояса астероидов, которые в основном состоят из горных пород и металлов, объекты Пояса Койпера сформированы в своём большинстве из летучих веществ (называемых льдами), таких как метан, аммиак и вода.

 

Пояс койпера и облако оорта

Рис. 2. Иллюстрированное изображение Пояса Койпера

 

Через область пояса Койпера так же проходят орбиты планет Солнечной системы. К таким планетам относятся Плутон, Хаумеа, Макемаке, Эрида и множество других.  Ещё множество объектов и даже карликовая планета Седна имеет орбиту движения вокруг Солнца, но сами орбиты выходят за пределы пояса Койпера (рис.3). Кстати, орбита Плутона так же выходит из этой зоны. В эту же категорию попала и загадочная планета, у которой пока нет названия и говорят о ней просто — «Planet 9».

  

Пояс койпера и облако оорта

Рис. 3. Схема орбит планет и малых тел Солнечной системы выходящих за пределы пояса Койпера. Пояс Койпера обозначен зелёной окружностью.

 

Оказывается, на этом границы нашей Солнечной системы не заканчиваются. Существует ещё одно образование, это облако Оорта (рис.4). Объекты в Поясе Койпера и в Облаке Оорта, предположительно, являются остатками от формирования Солнечной системы около 4,6 миллиарда лет назад.

  

Пояс койпера и облако оорта

Рис. 4. Солнечная система. Облако Оорта. Соотношение размеров.

 

Удивительным в его форме являются пустоты внутри самого облака, объяснить происхождение которых официальная наука не может. Учёными принято делить облако Оорта на внутреннее и внешнее (рис.5). Инструментально существование Облака Оорта не подтверждено, однако многие косвенные факты указывают на его существование. Астрономы пока только предполагают, что объекты, составляющие облако Оорта, сформировались около Солнца и были рассеяны далеко в космос на раннем этапе формирования Солнечной системы.

  

Пояс койпера и облако оорта

Рис. 5. Строение Облака Оорта.

 

Внутреннее облако — это расширяющийся из центра луч, а сферическим облако становиться за пределами расстояния в 5 000 а.е. и край его находится примерно в    100 000. а.е. от Солнца (рис.6). По другим оценкам внутреннее облако Оорта лежит в диапазоне до 20 000 а.е., а внешнее до 200 000 а.е. Учёные предполагают, что объекты в облаке Оорта в значительной степени состоят из водяных, аммиачных и метановых льдов, но могут присутствовать и скалистые объекты, то есть астероиды. Астрономы Джон Матис (John Matese) и Даниэль Уитмир (Daniel Whitmire) утверждают, что на внутренней границе облака Оорта (30 000 а.е.) существует планета газовый гигант ]]>Тюхе]]> и, возможно, она не единственный житель этой зоны.

  

Пояс койпера и облако оорта

Рис. 6. Схема расстояний объектов нашей планетарной системы от Солнца в астрономических единицах.

 

Если взглянуть на нашу Солнечную систему «издалека», то получается все орбиты планет, два астероидных пояса и внутреннее облако Оорта лежат в плоскости эклиптики. У Солнечной системы появляются чётко выраженные направления верха и низа, значит существуют факторы, определяющие такое строение.  А с удалением от эпицентра взрыва, то есть звезды, эти факторы исчезают. Внешнее Облако Оорта образует структуру похожую на шар. Давайте «доберёмся» до края Солнечной системы и постараемся лучше понять её устройство.

Для этого обратимся к знаниям русского учёного Николая Викторовича Левашова.

В его книге «Неоднородная Вселенная» описывается процесс образования звезд и планетарных систем.

В космосе существует множество первичных материй. Первичные материи обладают конечными свойствами и качествами, из них может образоваться вещество. Наше пространство-вселенная образовано из семи первичных материй. Фотоны оптического диапазона на уровне микропространства являются основой нашей Вселенной.                 Эти материи образуют всё вещество нашей Вселенной. Наше пространство-вселенная только часть системы пространств, и оно находится межу двумя другими пространствами-вселенными отличающимися количеством первичных материй их образующих. Вышележащее имеет в своём составе 8, а нижележащее 6 первичных материй. Такое распределение материй определяет направление перетекания вещества из одного пространства в другое, от большего к меньшему.

При смыкании нашего пространства-вселенной с вышележащим образуется канал, по которому вещество из пространства-вселенной образованного 8-ю первичными материями начинает перетекать в наше пространство-вселенную образованного 7-ю первичными материями. В этой зоне происходит распад вещества вышележащего пространства и синтез вещества нашего пространства-вселенной.

В результате этого процесса в зоне смыкания накапливается 8-я материя, которая не может образовать вещество в нашем пространстве-вселенной. Это приводит к возникновению условий, при которых часть образовавшегося вещества распадается на составные части. Возникает термоядерная реакция и для нашего пространства-вселенной, образуется звезда.

В зоне смыкания, в первую очередь, начинают образовываться самые лёгкие и устойчивые элементы, для нашей вселенной это водород. На такой стадии развития звезда называется голубым гигантом. Следующим этапом формирования звезды становится синтез более тяжёлых элементов из водорода в результате термоядерных реакций. Звезда начинает излучать целый спектр волн (рис.7).

  

Пояс койпера и облако оорта

Рис. 7 Образование звезды. (Взято из книги Левашов Н.В. Неоднородная Вселенная. 2006. Гава 2.5. Природа образования планетарных систем. Рис.2.5.1.)

 

Нужно отметить, что в зоне смыкания синтез водорода при распаде вещества вышележащего пространства-вселенной и синтез более тяжёлых элементов из водорода происходит одновременно. В процессе термоядерных реакций, нарушается баланс излучения в зоне смыкания. Интенсивность излучения поверхности звезды отличается от интенсивности излучения в её объёме. Первичные материи начинают накапливаться внутри звезды. Со временем этот процесс приводит к взрыву сверхновой звезды. Взрыв сверхновой порождает продольные колебания мерности пространства вокруг звезды.Мерность– квантование (разделение) пространства в соответствии со свойствами и качествами первичных материй.

Во время взрыва происходит выброс поверхностных слоёв звезды, которые состоят в основном из наиболее лёгких элементов (рис.8). Только теперь, в полной мере, можно говорить о звезде как о Солнце — элементе будущей планетарной системы.

  

Пояс койпера и облако оорта

Рис. 8. Взрыв сверхновой. (Взято из книги Левашов Н.В. Неоднородная Вселенная. 2006. Гава 2.5. Природа образования планетарных систем. Рис.2.5.2.)

 

По законам физики продольные колебания от взрыва должны распространяться в пространстве во все стороны от эпицентра, если не имеют препятствий и мощность взрыва недостаточна для преодоления этих ограничивающих факторов. Материя, разлетаясь, должна себя вести соответствующим образом. Поскольку наше пространство-вселенная находится между двумя другими пространствами-вселенными, которые оказывают на него влияние, то продольные колебания мерности после взрыва сверхновой будут иметь форму аналогичную кругам на воде и создадут искривление нашего пространства повторяющее эту форму (рис. 9). Если бы такого влияния не было, мы наблюдали бы взрыв приближённый к сферической форме.

  

Пояс койпера и облако оорта

Рис. 9. Сверхновая звезда SN 1987A, 1990. Фото телескоп Hubble, проект NASA и ESA.

 

Мощности взрыва звезды недостаточно, чтобы исключить влияние пространств. Поэтому направление взрыва и выброса вещества будут задавать пространство-вселенная, в состав которой входит восемь первичных материй и пространство-вселенная сформированная из шести первичных материй. Более приземлённым примером этого может послужить взрыв ядерной бомбы (рис. 10), когда, из-за разности состава и плотности слоёв атмосферы, взрыв распространяется в определённом слое между двумя другими образуя концентрические волны.

  

Пояс койпера и облако оорта

Рис. 10. Фото взрыва ядерной бомбы.

 

Вещество и первичные материи, после взрыва сверхновой, разлетаясь оказываются в зонах искривления пространства. В этих зонах искривления начинается процесс синтеза вещества, а впоследствии образование планет. Когда планеты сформируются, то они компенсируют искривление пространства и вещество в этих зонах уже не сможет активно синтезироваться, но искривления пространства в виде концентрических волн останутся — это орбиты, по которым движутся планеты и зоны астероидных полей (рис. 11).

Чем ближе зона искривления пространства к звезде, тем перепад мерности более ярко выражен. Можно сказать, он более резкий, а амплитуда колебания мерности увеличивается с удалением от зоны смыкания пространств-вселенных. Поэтому ближние к звезде планеты будут меньшего размера и будут содержать большую долю тяжёлых элементов. Таким образом, устойчивых тяжёлых элементов больше всего на Меркурии и, соответственно, по мере убывания доли тяжёлых элементов идут — Венера, Земля, Марс, Юпитер, Сатурн, Уран, Плутон. Пояс Койпера будет содержать преимущественно лёгкие элементы, как и облако Оорта, а потенциальные планеты могут быть газовыми гигантами.  

  

Пояс койпера и облако оорта

Рис. 11. Образование планетарных систем. (Взято из книги Левашов Н.В. Неоднородная Вселенная.2006. Гава 2.5. Природа образования планетарных систем. Рис.2.5.4.)

 

С удалением от эпицентра взрыва сверхновой продольные колебания мерности, влияющие на образование орбит планет и формирование пояса Койпера, а также на образование внутреннего облака Оорта, затухают. Искривление пространства исчезает. Таким образом материя будет разлетаться сначала в пределах зон искривления пространства, а потом (как вода в фонтане) ниспадать с двух сторон, когда искривление пространства исчезнет (рис. 12).

Грубо говоря получится «шар» с пустотами внутри, где пустоты – это зоны искривления пространства, образованные продольными колебаниями мерности после взрыва сверхновой, в которых материя сконцентрирована в виде планет и астероидных поясов.

  

Пояс койпера и облако оорта

Рис. 12. Солнечная система. Схема.

 

Фактом, подтверждающим именно такой процесс образования Солнечной системы, является наличие различных свойств облака Оорта на разной удаленности от Солнца. Во внутреннем облаке Оорта движение кометных тел ничем не отличается от привычного движения планет. Они обладают стабильными и, в большинстве случаев, круговыми орбитами в плоскости эклиптики. А во внешней части облака кометы движутся хаотично и в разных направлениях.

После взрыва сверхновой и образования планетарной системы процесс распада вещества вышележащего пространства-вселенной и синтеза вещества нашего пространства-вселенной, в зоне смыкания, продолжается до тех пор, пока звезда вновь не достигнет критического состояния и не взорвётся. Либо тяжёлые элементы звезды повлияют на зону смыкания пространств таким образом, что процесс синтеза и распада прекратится — звезда погаснет. Эти процессы могут происходить миллиарды лет.

Поэтому, отвечая на вопрос, заданный в начале, о полёте через астероидное поле необходимо уточнить, где мы его преодолеваем внутри Солнечной системы или за его пределами. Кроме того, при определении направления полёта в космосе и в планетарной системе, возникает необходимость учитывать влияние соседствующих пространств и зон искривлений.

*а.е — АСТРОНОМИЧЕСКАЯ ЕДИНИЦА, единица длины, применяемая в астрономии, для измерения расстояний в пределах Солнечной системы. Равна среднему расстоянию от Земли до Солнца; 1 астрономическая единица = 149,6 млн. км

 

Александр Каракулько

Источник: www.kramola.info

Что такое пояс Койпера?

Пояс Койпера — это область пространства, которая начинается за пределами орбиты планеты Нептун. И если бы этот газовый гигант не образовался, здесь все было бы иначе. Во времена формирования Солнечной системы здесь вполне могла появиться еще одна планета. Однако из-за образования Нептуна исходный материал не смог объединиться. Поэтому он остался поясом разрозненных обломков.

В 1951 году астроном Джерард Койпер предположил, что находящийся за пределами орбиты последнего газового гиганта Солнечной системы — Нептуна материал был слишком удален друг от друга, чтобы образовать планету. Он предположил, что в этой области пространства рождаются объекты, которые мы называем кометами.  Эта идея объясняла, почему за пределами Нептуна нет крупных тел. Такое предположение также давало ответ на еще одну загадку Солнечной системы: откуда берутся кометы? Астрономы предполагали, что они все родом оттуда.

Хотя изначально ученые знали только о существовании Плутона в этом регионе, они считали, что это не единственное тело за орбитой Нептуна. И ожидали открытия других крупных планет в поясе Койпера. Но работа, проводимая в течение десятилетий, ничего не дала.

Однако в 1992 году, после многих лет исследований с помощью мощных телескопов, ученые наконец смогли подтвердить существование в Поясе Койпера относительно крупных объектов. Сегодня мы знаем, что пояс Койпера содержит тысячи тел размерами до 100 километров в поперечнике. Но они не будут существовать там вечно. С течением времени столкновения между ними превратят их в пыль. Возможно, за «всего» 100 миллионов лет от пояса Койпера, который мы знаем сегодня, не останется ничего.  Ну, возможно, кроме самых больших карликовых планет.
Плутон — не единственная карликовая планета в этом регионе. Есть и другие: Квавар (Quaoar), Макемаке (Makemake), Хаумея (Haumea), Орк (Orcus) и Эрида (Eris). У некоторых из этих тел даже есть свои собственные луны.

Что такое облако Оорта?

Облако Оорта — это гигантская сфера, диаметр которой поражает воображение. И окончательно не установлен. Хотя очевидно, что он намного больше, чем диаметр пояса Койпера. По оценкам некоторых астрономов, этот регион начинается на расстоянии 2000 а.е. от нашей звезды. И заканчивается на расстоянии около 50 000 а.е. Это почти равно одному световому году. Другие астрономы считают, что его радиус даже превышает 100 000 а.е. Чтобы лучше понимать, о каких расстояниях мы говорим, напомним, что Плутон находится в среднем на расстоянии 40 а.е. от Солнца, Макемаке — 45, а Эрида — 68.

Хотя некоторые из комет в нашей Солнечной системе, как считал Койпер, действительно происходят из пояса, получившего название по его фамилии, современные ученые считают, что большинство из этих ледяных тел родом из далекого Облака Оорта. Считается, что кометы образуются, когда какая-то звезда находится достаточно близко к этой области, чтобы подтолкнуть их своей гравитацией к внутренней части Солнечной системы.

После этого кометы с длинным орбитальным периодом начинают свое бесконечное путешествие к Солнцу. Краткосрочные кометы, с орбитами до 200 лет, прибывают из пояса Койпера. А кометы с большим периодом, чьи орбиты могут длиться тысячи лет, все родом из Облака Оорта.

Кстати в этом правиле, как и во всем в нашей жизни, есть исключения. Вполне возможно, что, читая предыдущий абзац, вы подумали о комете Галлея. И что ее относительно короткий период в 75 лет дает основания полагать, она родом из пояса Койпера. Тем не менее это не так. Считается, что на самом деле она родилась в Облаке Оорта.

Транснептуновые объекты

Все объекты за пределами Нептуна классифицируются как так называемые транснептуновые объекты. Независимо от того, находятся ли они в поясе Койпера или в облаке Оорта. Поскольку Облако расположено намного дальше, чем Пояс, его крайне трудно изучать. И астрономам пока не удалось идентифицировать там объекты с той же степенью детализации, что и в Поясе Койпера. Более того, за исключением комет с длительным периодом, астрономы обнаружили только четыре небесных тела, которые по своим орбитам могли изначально быть родом из тех мест. К сожалению, нет никакой возможности произвести прямые наблюдения этой области пространства в ближайшие годы. И вполне возможно, что пройдут десятилетия, прежде чем мы отправим какой-либо космический аппарат в этот район Солнечной системы.

На Вояджеры надежды тоже нет. Чтобы добраться туда, им потребуется еще 300 лет. И, по оценкам астрономов, потребуется еще 30000, чтобы пролететь облако Оорта насквозь…

Друзья! Если вам понравилась эта статья, ставьте лайк и подписывайтесь на наш канал! Спасибо!

И заходите на наш сайтЖивой Космос!

Источник: zen.yandex.ru

На дальних рубежах Солнечной системы

Где заканчивается наша звездная система? Еще пятьдесят лет назад ученые сказали бы, что ее пределы находятся за орбитой Плутона. Сегодня астрономы полагают, что размеры куда больше: они совпадают с границами гравитационного влияния Солнца и составляют несколько световых лет. Таким образом, наша система гораздо больше, чем орбиты самых отдаленных планет. «Вояджерам» понадобится еще тысячи лет, чтобы действительно выйти в межзвездное пространство.

Сразу за орбитой Нептуна начинается пояс Койпера. Его внутренняя граница находится на расстоянии примерно в 30 а. е. от Солнца, внешняя – отстоит на 55 а. е. от нашего светила. Космические тела в поясе Койпера в основном состоят из замерзшего метана, воды и аммиака. Через пояс Койпера проходят орбиты множества карликовых планет.

Еще дальше находится Рассеянный диск, который частично перекрывается с поясом Койпера. Он является основным источником короткопериодичных комет. Их примером может служить комета Галлея, которая приближается к Земле один раз в 75 лет. За поясом Койпера расположено облако Оорта. Его внешний край проходит по сфере Хилла.

Структура и состав

Внутренняя граница облака Оорта проходит на расстоянии в 2-5 тыс. а. е. от Солнца, а внешняя – на отдалении в 50 тыс. а. е. от нашего светила. Оно состоит из миллиардов объектов. Среди них находятся триллионы ядер комет, которые при определенных обстоятельствах могут посетить внутренние области Солнечной системы. Считается, что именно пояс Койпера и облако Оорта являются главными «поставщиками» периодических комет в нашей системе. По сути, облако Оорта — огромный сферический кометный рой. Предполагается, что объекты могут спокойно дрейфовать в скоплении на протяжении миллионов лет, пока на них не будет оказано гравитационное взаимодействие.

Масса облака достоверно неизвестна, но не вызывает сомнения, что она во много раз превосходит массу нашей планеты.

Исходя из имеющихся данных о составе комет, предполагается, что объекты в облаке состоят из метана, воды, цианистых соединений и углекислоты. Однако открытие астероида 1996 PW указывает на наличие в скоплении и скалистых объектов – осколков планетоидов, распавшихся по тем или иным причинам.

Облако Оорта на разном расстоянии от Солнца весьма отлично по своей структуре и свойствам.

Оно состоит из двух частей:

  • внутренняя область, которая называется облаком Хиллса и имеет форму диска;
  • внешнее сферическое скопление, служащее источником комет с долгим периодом.

Тела Солнечной системы, включая астероиды, кометы и метеориты, имеют орбиты, лежащие в плоскости эклиптики. Объекты облака Хиллса также имеют более или менее круговые и стабильные орбиты, но во внешней области тела движутся хаотически, в разных плоскостях, подчиняясь воздействию притяжения не только Солнца, но и других звезд. Внутренняя часть имеет наибольшую плотность — в нем находится около шестой доли всех объектов скопления.

Гравитационная сила Солнца на таком удалении слишком мала, зато на кометы и планетоиды из облака существенно воздействуют внешние факторы. Сила притяжения соседних звезд и приливные силы нашей галактики Млечный путь изменили орбиты комет скопления. Данное предположение может объяснить практически идеальную шарообразную форму облака. Вероятно, что в далеком будущем облако Хиллса также превратится в сферу.

Как появилось скопление Оорта

Сегодня ученые уверены, что облако Оорта образовалось из газопылевой туманности, из которой позже сформировались планеты и другие тела нашей системы. Это произошло примерно 4,5 млрд лет тому назад. Причем первоначально объекты скопления располагались гораздо ближе к Солнцу, но позже они были «выброшены» на дальние орбиты мощной гравитацией планет-гигантов.

Масса скопления достигла своего максимума приблизительно через 800 млн лет после появления. Согласно некоторым моделям, одним из главных «поставщиков» материала для него служил рассеянный диск. Наличие этого скопления прекрасно сочетается с гипотезой о формировании нашей системы, как части единого звездного кластера, состоящего из 200—400 звёзд. Вероятно, они сыграли существенную роль в образовании облака Оорта: звёзды тогда к Солнечной системе приближались гораздо чаще, чем сегодня.

Трудно сказать, являются ли подобные скопления типичными для нашей Вселенной, но они уже обнаружены в других звездных системах. Исследования продолжаются. Возможно, в ближайшем будущем мы получим ответ на этот вопрос.

История открытия облака Оорта

Первым догадку о существовании огромной области на краю Солнечной системы, откуда к нам прилетают кометы, высказал астроном Эрнст Эпик в 1932 году. В 1950 году аналогичную идею высказал голландский астрофизик Ян Оорт. Он занимался решением парадокса недолговечности комет, которые довольно быстро распадаются под действием солнечного света или уничтожаются при столкновениях с более массивными небесными объектами.

Ученый предположил, что где-то на окраине нашей системы находится «огромный запас» кометных тел, достаточный для восполнения их естественной убыли. Научный мир воспринял эту гипотезу весьма скептически.

После изучения девятнадцати различных комет Оорт пришел к выводу, что все они являются «коренными» обитателями Солнечной системы и прибыли к нам из области, удаленной на 20 тыс. а. е. Он обратил внимание, что скорость этих объектов составляла 1 км/с, тогда как ближайшие звезды двигаются по отношению к Солнцу со скоростью приблизительно 20 км/с.

Оорт считал, что данная область содержит примерно 1011 кометных «зародышей», значительная часть из которых никогда не приближалась к Солнцу.

Облако Оорта и воздействие межзвездных сил

Существует предположение, что современные орбиты многих комет являются следствием гравитационного влияния Млечного пути, так называемых галактических приливов. Они действительно похожи на отливы и приливы земных океанов под действием притяжения Луны. Массивные объекты, расположенные вне нашей Солнечной системы, искривляют орбиты планет и других небесных тел в направлении центра Галактики.

И если внутри системы действие этих сил нивелируется гравитацией Солнца, на ее границах галактические приливы играют куда более значительную роль. Считается, что воздействие Млечного пути искажает сферическую форму облака Оорта, сжимая его и вытягивая по направлению к центру Галактики. Достаточно небольшого возмущения гравитационного поля, чтобы изменить орбиту объекта и отправить его в долгое путешествие к Солнцу.

Граница, на которой гравитация нашей звезды уступает по силе галактическому приливу, находится примерно в 100-200 тыс. а. е. от Солнца. Именно здесь и расположен внешний предел скопления. Ученые предполагают, что до 90% долгопериодичных комет могли быть следствием воздействия межзвездных сил. Также есть предположение, что именно галактические приливы сыграли основную роль в формировании облака Оорта.

Объекты в облаке Оорта

Мы очень плохо знаем, что происходит на таких огромных расстояниях от Солнца. Сегодня известны всего пять объектов, которые предположительно принадлежат к этому формированию:

  • Седна;
  • 2000 CR105;
  • 2008 KV42;
  • 2006 SQ372;
  • 2012 VP113.

Два объекта из данного списка имеют перигелии, расположенные вне влияния Нептуна, поэтому их орбиты не попадают под его действие. Предполагается, что когда-то орбиты этих небесных тел были круглыми, в противном случае они бы просто не сформировались. Их нынешний эксцентриситет возник, скорее всего, из-за довольно близкого прохождения звезды либо под влиянием довольно крупного объекта, расположенного в самом облаке Оорта.

Седна была открыта группой американских астрономов в 2003 году. Ее перигелий находится в два с половиной раза дальше орбиты Нептуна, что делает Седну одним из самых удаленных из известных небесных тел. Согласно данным спектрального анализа, она в основном состоит из воды и метана. Поверхность Седны, одна из самых красных в нашей системе. Также она пока является крупнейшим из «кандидатов» в объекты облака Оорта – ее экваториальный диаметр составляет 995 км.

Орбита этой планеты уникальна: расположение перигелия можно объяснить либо существованием неизвестной планеты в облаке Оорта, либо мощным действием внешних сил. Чтобы совершить полный оборот, Седне необходимо более 11 тыс. лет.

Последний из объектов, предположительно принадлежащих облаку Оорта — 2012 VP113. Его перигелий расположен на расстоянии в 83 а. е. от Солнца, а афелий отстоит от него на 446 а. е. В целом эта планета имеет орбиту с почти такими же характеристиками, как у Седны. Объяснить особенности движения этих небесных тел можно наличием крупной планеты на расстоянии в несколько сотен астрономических единиц от Солнца, но найти ее пока не удалось. Возможно, они были захвачены нашим светилом при прохождении рядом с другой звездной системой.

Споры относительно Седны и иных объектов из приведенного выше списка не прекращаются. Часть астрономов относит их к рассеянному диску. В 2008 году ученые из университета Вашингтона доказали принадлежность 2006 SQ372 к внутреннему облаку Оорта.

Планета Х, Нибиру и планета-пастух

У многих древних культур есть упоминание о неизвестном теле, которое лишь изредка появляется на небосклоне, но при этом существенно влияет на небесную механику. Его называют по-разному — «планета Х», «Нибиру», «Тюхе», «Немезида». Поиском загадочного космического объекта в прошлом и позапрошлом столетии занимались весьма авторитетные астрономы, но их усилия до сих пор не дали результата.

Гипотеза о существовании еще одной планеты за Нептуном была высказана еще в середине XIX века. Ученых смущало несоответствия в орбите Урана, которые объяснялись воздействием неизвестного массивного тела. Результатом активных поисков стало обнаружение Плутона, который долгие десятилетия считался девятой планетой Солнечной системы.

После открытия Седны и других объектов облака Оорта, перед учеными встала необходимость объяснения «странностей» их орбит. Также существует феномен «провала Койпера»: астрономы не понимают, почему это скопление обрывается настолько резко.

В 2011 году американцы создали компьютерную модель развития Солнечной системы и пришли к выводу, что без еще одной планеты-гиганта ее нынешняя конфигурация не сложилась бы. Возможно, девятая планета не вышла в межзвездное пространство, а переместилась на удаленную орбиту.

В 2010 году было заявлено об обнаружении в облаке Оорта газового гиганта, с размерами в несколько раз больше Юпитера. Ученые утверждали, что снимки планеты якобы были сделаны с помощью телескопа WISE, и со временем они обещали их обнародовать. Однако доказательства так и не были представлены научной общественности.

В 2016 году астрономы Майкл Браун и Константин Батыгин высказали предположение о существовании планеты на расстоянии в двадцать раз дальше орбиты Нептуна. Согласно их расчетам, это небесное тело, скорее всего, является газовым гигантом с массой в десять раз больше земной. Планета имеет орбиту с сильным эксцентриситетом и периодом обращения примерно в 15 тыс. лет.

В 2014 году астрономы из университета Карнеги выдвинули гипотезу о наличии крупного небесного тела, выполняющего роль планеты-пастуха для Седны и других объектов облака Оорта.

Значительная часть ученых допускает возможность существования девятой планеты на дальних рубежах Солнечной системы, но в этом вопросе озвучены определенные «красные линии». Согласно подсчетам 2009 года, на расстоянии в 300 а. е. от Солнца не может быть объектов размером с Землю или Марс. В 2014 году астроном Иорио обнародовал дополнительные ограничения: по его мнению, на дистанции в 1 тыс. а. е. от нашего светила нет места для газового гиганта с массой, в 10-15 раз превышающей земную.

В 2014 году был опубликован анализ данных инфракрасного телескопа WISE, согласно которым, в радиусе 10 тыс. а. е. от Солнца нет новых объектов с массой, аналогичной Сатурну.

Звезда Немезида и глобальные вымирания

В истории нашей планеты известно несколько массовых вымираний животных и растений, о причинах которых не утихают научные споры. Особенно смущает цикличность подобных глобальных трагедий. Существует точка зрения, что их виновника следует искать в космосе.

В 1984 году ряд ученых из университета Беркли выдвинули теорию о существовании еще одной звезды в нашей системе, которая вращается вокруг Солнца на расстоянии примерно в 1,5 световых года. По мнению ученых, «двойник» относится к классу красных, белых или коричневых карликов, поэтому мы не можем идентифицировать этот объект. Гипотетическая звезда получила название Немезида.

Раз в 25-30 млн лет она подходит к облаку Оорта и срывает расположенные там объекты с привычных орбит. В результате многие тысячи каменных и ледяных глыб отправляются внутрь Солнечной системы и накрывают планеты губительным дождем из комет, астероидов и метеоритов. После опубликования этой теории Немезида получила прозвище «палач планеты Земля».

Ученые считают подобное объяснение периодических вымираний крайне сомнительным. Маловероятно, чтобы астрономы до сих пор не обнаружили целую звезду, находящуюся неподалеку от нас. Кроме того, нет доказательств цикличности падений на нашу планету комет и астероидов. Удары из космоса происходят регулярно, с одинаковой частотой, просто пока мы смогли обнаружить только самые большие кратеры.

Исследования облака Оорта

Скопление находится настолько далеко, что надежд исследовать его с помощью межпланетных аппаратов, в ближайшие десятилетия практически нет. В 2006 году американцы отправили миссию «Новые горизонты», целью которой является изучение Плутона и его спутника Харон, а также объектов, находящихся в поясе Койпера. В настоящее время межпланетная станция продолжает исследования транснептуновых объектов.

Работа «Новых горизонтов», конечно, важна, и информация, полученная учеными в ходе этой миссии, имеет огромную ценность. Но пояс Койпера, Плутон и Харон находятся гораздо ближе облака Оорта.

В конце прошлого десятилетия ряд ученых предлагали использовать для изучения скопления реликтовое излучение, образовавшееся в момент Большого Взрыва. Однако, судя по всему, эта идея так и осталась нереализованной.

Источник: MilitaryArms.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.