Посадочный модуль


Корпорация Lockheed Martin представила проект пилотируемого космического аппарата, предназначенного для посадки на Луну и доставки астронавтов с поверхности на лунную орбитальную станцию. Он рассчитан на четверых человек, которые смогут проводить с его помощью двухнедельные экспедиции на лунной поверхности. Подробное описание проекта изложено в статье, представленной на 69-м Международном конгрессе по астронавтике.

Сегодня вся пилотируемая космонавтика сконцентрирована на околоземной орбите — на Международной космической станции и китайской орбитальной станции «Тяньгун-2», которая, впрочем, была обитаемой только в течение одного месяца в конце 2016 года. Самые большие перспективы по освоению людьми глубокого космоса ученые и инженеры связывают с Марсом, однако пока ни одно космическое агентство или компания ни с технической, ни с финансовой точки зрения не готовы к пилотируемым полетам на Марс. В качестве промежуточного шага NASA предложило в 2017 году основать на окололунной орбите обитаемую станцию Lunar Orbital Platform-Gateway, которую можно было бы использовать как для исследования самого спутника и отработки технологий, необходимых для дальних космических полетов, так и, в перспективе, для полетов на Марс.


В первые годы космонавты будут находиться лишь на самой станции. Предполагается, что для доставки экипажей туда будет использоваться сверхтяжелая ракета-носитель SLS и космический корабль Orion, разрабатываемый Lockheed Martin. В будущем станция будет использоваться в качестве промежуточного пункта для экспедиций на поверхность Луны. NASA планирует определиться с концепцией миссий на лунную поверхность и выбором корабля для них лишь в 2024 году, но Lockheed Martin решила уже сейчас начать прорабатывать проект посадочного модуля для лунных экспедиций.

Посадочный модуль рассчитан на четырех человек, которые смогут обитать в нем на поверхности Луны 14 дней — половину лунных суток. Модуль имеет высоту 14 метров и сухую массу 22 тонны. Инженеры предлагают использовать в нем четыре модифицированных жидкостных ракетных двигателя RL-10, работающих на жидком водороде и жидком кислороде.


сса топлива и окислителя составляет 40 тонн. Предполагается, что топливо для посадочного модуля будет доставляться к станции специальным кораблем снабжения, который будет перемещаться между околоземной и окололунной орбитами. Помимо членов экипажа, посадочный модуль сможет доставлять на поверхность Луны до тонны полезной нагрузки, необходимой для экспедиции.

Поскольку посадочный модуль имеет достаточно большую массу, Lockheed Martin предлагает сделать его полностью многоразовым и доставить его к лунной станции лишь один раз, а затем использовать для нескольких миссий на поверхность. Во время подготовки проекта инженеры воспользовались наработками, полученными в рамках разработки пилотируемого корабля Orion. Разработчики надеются, что разработка и опыт использования лунного посадочного модуля, в свою очередь, пригодятся при разработке пилотируемых миссий на Марс.

Недавно Россия так же начала разработку пилотируемого посадочного аппарата для экспедиций на лунную поверхность. Разработчики предложили доставлять элементы аппарата на станцию Lunar Orbital Platform-Gateway, а затем собирать его там. Впрочем, российское участие в проекте окололунной станции находится под вопросом. Недавно глава Роскосмоса Дмитрий Рогозин заявил, что Россия не будет участвовать в американском проекте окололунной станции, если ей не будет предложен статус равноправного партнера. Мы попросили популяризатора космонавтики Виталия Егорова рассказать, что именно предлагали России, и что потеряет российская космонавтика в случае отказа.

Григорий Копиев

Источник: nplus1.ru


Посадочная ступень

Основная статья: посадочная ступень

Посадочная ступень представляет собой негерметичную восьмиугольную раму (высота 3,2 м, диаметр 4,3 м), снабженную складывающимся четырехногим шасси для мягкой посадки на поверхность. В центре посадочной ступени находится двигатель с регулируемой тягой (в диапазоне 10 % — 100 %). В боковых отсеках расположены баки с топливом, посадочный радар, электробатареи, баки с водой, гелием для наддува и кислородом. Там же находятся отсеки с научным оборудованием и приборами (в последних трех экспедициях также лунный ровер в сложенном виде). Ступень окружена тепловым и микрометеорным защитным экраном из многослойного майлара и алюминия.

Взлетная ступень

Основная статья: взлетная ступень

Взлетная ступень состоит из 3 основных отсеков: герметичные отсек экипажа и центральный отсек, а также негерметичный задний отсек оборудования.


сота взлетной ступени 3,4 м, диаметр 4,3 м. На боковой поверхности на выносных фермах находятся 4 блока двигателей реактивной системы управления по 4 двигателя в каждом блоке. Сверху располагаются антенны системы связи (S-диапазон и УКВ). Снаружи ступень покрыта тепловым и микрометеорным экранами. Отсек экипажа представляет собой лежащий на боку цилиндр диаметром 2,35 м и длиной 1,07 м (объем 4,6 м3). Отдельно располагаются баки с топливом и окислителем, с баллоны с газом наддува (гелий), баки с жидким кислородом, емкости с водой и другое оборудование.

Два рабочих места для астронавтов снабжены пультами управления и приборными досками. Кресел нет, вместо них имеется система привязи астронавтов. Перед каждым астронавтом располагается треугольное окно переднего обзора. В крыше имеется прямоугольное окно для наблюдения за процессом стыковки и телескопом для ориентирования по звездам. В передней стенке отсека экипажа имеется квадратный люк, открывающийся внутрь, размером 0,81 м х 0,81 м. В нижней части ступени расположен взлетный ЖРД. В верхней части располагается туннельное кольцо, которое соединяется со стыковочным кольцом командного отсека. Ступень окружена тепловым и микрометеорным защитным экраном из многослойного майлара, покрытого снаружи одним тонким слоем алюминия. [3]

Взлетная ступень прикреплена в четырех точках к посадочной ступени с помощью пирозамков, разрывающихся при разделении ступеней. Имеется также канал, через которые проходят электрические и другие коммуникации, связывающие ступени.

Схема


1 Люк стыковочного узла отсека экипажа и лунной кабины.
2 Люк для входа в герметизированную кабину.
3 Две антенны метрового диапазона.
4 Бак окислителя для двигателей системы ориентации (N2O4).
5 Блок автоматики.
6 Бачок с водой.
7 Баллон с гелием для вытеснительной системы подачи топлива в двигатели системы ориентации.
8 Бак горючего для двигателей системы ориентации.
9 Бак горючего для основного двигателя взлетной ступени.
10 Блок двигателей системы ориентации.
11 Радиоизотопная энергетическая установка.
12 Телескопическая стойка посадочного шасси.
13 Тарельчатая опора посадочного шасси.
14 Поперечный элемент шасси.
15 Бак горючего основного двигателя посадочной ступени (2 шт.).
16 Двигатель посадочной ступени с регулируемой тягой.
17 Бак с окислителем двигателя посадочной ступени (2 шт.).
18 Выдвижная антенна диапазона S (используется на поверхности Луны).
19 Посадочная ступень.
20 Лестница для спуска астронавтов на .


ия лунной кабиной.
29 Антенна диапазона S, используемая во время полета.
30 Антенна радиолокатора, обеспечивающего встречу на орбите.
31 Поворотная антенна диапазона S.
[4]

Необходимость в отдельном корабле для посадки на Луну возникла после того, как было принято решение об однопусковой схеме полета со встречей на лунной орбите. Первоначальное название лунного модуля (англ. Lunar Module, LM) было «лунный экскурсионный модуль», (англ. Lunar Excursion Module, LEM), нынешнее название появилось позже. Тем не менее, аббревиатура «LEM» до сих пор встречается в литературе.

Лунный модуль был разработан и сконструирован фирмой «Грумман» (Grumman Aircraft Engineering), которая получила контракт на разработку в сентябре 1962 года. Субподрядчиками выступили Bell Aerosystems (двигатель взлетной ступени), Hamilton Standard (системы жизнеобеспечения и контроля внутренней), Marquardt (двигатели системы управления) и «Рокетдайн» (Rocketdyne) (двигатель посадочной ступени).


раллельно в 1963 году двигатель посадочной ступени был заказан у Space Technology Laboratories, в 1965 году контракт с «Рокетдайном» был расторгнут. Система управления, навигации и контроля разрабатывалась Инструментальной лабораторией Мичиганского технического университета, компьютер был изготовлен фирмой Raytheon. Резервная навигационная система разрабатывалась в TRW.

В первоначальных проектах конструкции присутствовали большие окна и сиденья для астронавтов. Современный вид модуль приобрел в начале 1963 года, когда были определены конструкции взлетного и посадочного двигателя. Впоследствии для уменьшения массы и повышения безопасности конструкция несколько раз пересматривалась. Сиденья были удалены, окна были уменьшены, конструкция облегчена. Первоначально предполагалось, что источником электропитания будут топливные элементы разработки Pratt and Whitney, однако в начале 1965 года они были заменены батареями. Также первоначальные варианты шасси предполагали три ноги; впоследствии их число увеличили до пяти (чтобы повысить устойчивость в случае повреждения одной из ног), однако ради уменьшения веса число ног в окончательном варианте свелось к четырем.

Чтобы обучиться летать и совершать посадку на лунном модуле, астронавты упражнялись на специально построенных для этого аппаратах вертикального взлета и посадки, система управления которых была подобна системе управления модуля. В исследовательском центре Лэнгли был сооружен портальный кран высотой около 60 метров и длиной около 120 метров. Испытательный аппарат подвешивался под этим краном и мог управляться посредством движения крана.


После беспилотных и пилотируемых испытаний (см. следующий раздел) лунный модуль совершил первую посадку на Луну в полете «Аполлона-11», астронавты выполнили один краткосрочный выход на поверхность. «Аполлон-12» и «Аполлон-14» совершили точную посадку с помощью усовершенствованных компьютеров и улучшенной техники управления. В апреле 1970 года лунный модуль сыграл роль «спасательной шлюпки» для астронавтов «Аполлона-13», когда на пути к Луне произошел взрыв кислородного бачка в служебном модуле. Астронавты воспользовались системой жизнеобеспечения и энергетическими ресурсами лунного модуля, а также корректировали траекторию с помощью двигателя посадочной ступени. В экспедициях «Аполлона-15, -16, -17» лунный модуль был значительно доработан, чтобы обеспечить работу астронавтов на поверхности Луны в течение трех суток с тремя выходами на поверхность. Сопло посадочного двигателя было снабжено 254-миллиметровым насадком для увеличения удельного импульса, возрос объем баков посадочной ступени, время маневрирования также возросло за счет изменения схемы посадки. Научного оборудования стало больше. Был добавлен электрический автомобиль («ровер»), который находился в сложенном состоянии в грузовом отсеке посадочной ступени; после посадки астронавты извлекали его и раскладывали. [1]

«Аполлон-5»


Основная статья: «Аполлон-5»

Первым беспилотным испытанием лунного модуля был полет «Аполлон-5» 22 января 1968 года.

«Аполлон-9»

Основная статья: «Аполлон-9»

Первым пилотируемым испытанием лунного модуля был полет «Аполлон-9» 3 марта 1969 года. Корабль «Аполлон-9», включавший в себя орбитальный корабль и лунный модуль, был запущен на околоземную орбиту ракетой «Сатурн-5». Программа полета предусматривала испытания всех систем лунного модуля на околоземной орбите, маневрирование и перестроение орбитального корабля и лунного модуля, отработку навигации и управления при встрече и стыковке лунного модуля с орбитальным кораблем.

После старта на втором витке было произведено перестроение кораблей: орбитальный корабль отделился от адаптера и пристыковался к лунному модулю, а затем извлек его из адаптера. 4 марта с помощью колебаний (специально возбуждаемых двигателем орбитального корабля) была проверена прочность стыковочного узла. Было выпущено посадочное шасси лунного модуля. Затем примерно на 6 минут был включен двигатель посадочной ступени, в результате чего лунный модуль получил приращение скорости около 0,5 км/с. Переход астронавта из лунного модуля в орбитальный корабль через открытый космос (для проверки возможности аварийного возвращения в орбитальный корабль после взлета с Луны, если не удастся состыковать лунный корабль и основной блок или если после стыковки не удастся открыть внутренний люк в туннеле перехода) был заменен на выход в открытый космос через люк лунного модуля.


7 марта было осуществлено отделение лунного модуля от орбитального корабля, модуль с двумя астронавтами осуществил самостоятельный полет, была сброшена посадочная ступень, а взлетная ступень, управляемая астронавтами, осуществила встречу и стыковку с орбитальным кораблем. Лунный модуль находился в самостоятельном полете около 6,5 часов. В ходе эксперимента несколько раз включались двигатели посадочной и взлетной ступени. После стыковки взлетная ступень была отделена от орбитального корабля. Орбитальный корабль был отведен примерно на 1 километр, после чего по команде с Земли был включен двигатель взлетной ступени примерно на 6 минут до полного израсходования топлива для имитации взлета с Луны; приращение скорости взлетной ступени составило около 2,3 км/с.

По программе командный модуль должен был произвести посадку в Атлантическом океане на 370 км юго-западнее Бермудских островов, но вследствие неблагоприятной погоды место посадки было перенесено на несколько сот километров.

Полет «Аполлона-9» длился около 10 дней. [3]

«Аполлон-10»

Основная статья: «Аполлон-10»

Первым полетом к Луне и лунного модуля был полет «Аполлона-10» 18 мая 1969 года; это было последнее испытание модуля перед посадкой. Корабль «Аполлон», включавший в себя орбитальный корабль и лунный модуль, был запущен на околоземную орбиту ракетой «Сатурн-5». Программа полета предусматривала испытания всех этапов экспедиции с высадкой на Луну, за исключением этапа торможения и посадки на Луну и взлета с Луны. Программа испытаний модуля включала в себя проведение всех маневров на орбите спутника Луны с проведением всех маневров, необходимых для посадки на Луну и снижения до высоты 15 км над поверхностью Луны, проверку управления лунным кораблем основной и аварийной системами навигации и управления; испытания радиолокатора встречи на орбите на дальности около 600 км; испытания посадочного радиолокатора в течение 800 сек, модуль дважды проходил над будущим местом посадки «Аполлона-11»; осмотр и фотографирование места будущей посадки «Аполлона-11», изучение ориентиров на подходе к месту посадки.

Через 3 дня после старта на ракете «Сатурн-5» орбитальный корабль с пристыкованным лунным модулем вышли (с помощью двигателя орбитального корабля) на окололунную орбиту с параметрами примерно 310 км х 110 км. После двух витков орбита была скруглена, итоговая высота составила около 110 км. 22 мая лунный модуль отстыковался от орбитального корабля и начал самостоятельное маневрирование. Астронавты включили двигатель посадочной ступени и перевели модуль на эллиптическую траекторию снижения 113 км х 14 км. Вблизи периселения были проведены испытания посадочного радиолокатора, а также наблюдения места будущей посадки «Аполлона-11». Из-за гравитационных аномалий поля Луны лунный модуль не прошел точно над местом посадки, как планировалось, а отклонился к югу на несколько километров.

После прохождения периселения двигатель посадочной ступени перевел модуль на фазирующую орбиту 360 км х 22 км. Когда модуль вторично проходил над местом посадки «Аполлона-11», то он оказался позади орбитального корабля в положении, соответствующем имитации взлета с поверхности Луны после посадки. На высоте 22 км над местом посадки «Аполлона-11» была сброшена посадочная ступень, а взлетная ступень была уведена на безопасное расстояние. Внезапно ступень начало бросать в разные стороны, поворачивать по крену и тангажу. Командир лунного модуля Стаффорд выключил автопилот и с помощью ручного управления стабилизировал взлетную ступень. Наиболее вероятной причиной произошедшего было ошибочное положение тумблера управления.

После стабилизации взлетной ступени начались операции по сближению и встрече с орбитальным кораблем. После нескольких маневров взлетная ступень перешла на концентрическую орбиту с постоянной разностью высот 28 км ниже орбиты корабля. Затем было произведено сближение кораблей. Через 8 часов после начала самостоятельных маневров взлетная ступень состыковалась с орбитальным кораблем. После возвращения астронавтов из взлетной ступени в командный модуль взлетная ступень была отстыкована от корабля. По команде с Земли был включен двигатель взлетной ступени до полного израсходования топлива, чтобы перевести ее на гелиоцентрическую орбиту. Еще через сутки орбитальный корабль стартовал к Земле. Посадка произошла 26 мая в Тихом океане вблизи авианосца «Принстон».

В полете успешно прошли испытания всех систем лунного модуля — двигательных установок, посадочной и взлетной ступеней, основной и аварийной системы навигации и управления и радиооборудования, астронавты приобрели опыт навигации и управления модулем на лунной орбите.

Полет «Аполлона-10» длился около 8 дней. [3]

Источник: apollofacts.wikidot.com

Новая лунная гонка

В рамках программы Commercial Lunar Payload Services, являющейся частью программы «Артемида», ключевой целью которой является создание на спутнике Земли постоянной научно-исследовательской базы, агентство выделит трем компаниям в общей сложности 253,5 миллиона долларов на доработку и отправку их посадочных модулей.

«Самая важная цель, которая перед нами стоит – это наука. Но в этот раз мы хотим осуществить этот проект вместе с партнерами. Мы хотим не просто вернуться на Луну, но и развить там полноценную индустрию. Только каким образом мы сможем там остаться», — заявил Томас Зурбухен, помощник начальника управления научных исследований NASA.

Так, Orbit Beyond из Эдисона (штат Нью-Джерси) получит 97 миллиона долларов на доставку четырех грузов к Морю Дождей в северо-западной части естественного спутника Земли к сентябрю 2020 года с помощью посадочного модуля Z-01.

Посадочный модуль Z-01

Аппарат будет отправлен к спутнику Земли с помощью ракеты-носителя Falcon 9 от компании SpaceX. Задачей миссии также будет лучше разобраться в специфике посадки на лунную поверхность и определить любые эффекты, которые могут оказываться в результате этого на находящиеся рядом структуры. Здесь речь идет о том, что в будущем посадки космических аппаратов на спутник будут осуществляться рядом с возданными на его поверхности постройками.

«Задача состоит в том, чтобы понять насколько близко к посадочной области можно возводить лунные жилища», — прокомментировал Джон Морс, глава научного отдела компании Orbit Beyond.

Компания Astrobotic из города Питтсбург (штат Пенсильвания) получит 79,5 миллиона долларов на доставку 14 грузов к кратеру Озеро Смерти, расположенному в северо-восточной части видимой стороны Луны. Запуски будут осуществляться либо с помощью ракеты-носителя Falcon 9, либо с помощью ракеты «Атлас-5». Эту задачу планируется завершить к июлю 2021 года.

Посадочный модуль компании Astrobotic

Компании Intuitive Machines из Хьюстона (штат Техас) выделят 77 миллионов долларов на доставку пяти грузов к лунному морю Океан Бурь к июлю 2021 года. Для этого будет использоваться разработанный компанией посадочный модуль Nova-C.

Посадочный модуль Nova-С

«Эти спускаемые модули станут только началом увлекательного коммерческого партнерства, которое приблизит нас к разрешению множества научных загадок на Луне, в нашей Солнечной системе и за ее пределами», — отметил Томас Зарбукен.

«Наши познания не только изменят наши представления о Вселенной, но и заложат основу для наших пилотируемых экспедиций на Луну, а потом на Марс», — добавил он.

Обсудить новость можно в нашем Telegram-чате.

Источник: Hi-News.ru

В предыдущей статье мы рассмотрели основную конфигурацию космического корабля Аполлон: командный и сервисный модули. Другие конфигурации отличались тем, что кроме основного корабля в специальном отсеке ракеты-носителя находился еще один космический аппарат, к которому главный корабль пристыковывался уже в космосе. Именно эти аппараты мы рассмотрим сейчас.

27.jpg
Лунный модуль Аполлона-14

Лунный модуль был практически полноценным космическим кораблем: у него был герметичный объем для двух астронавтов, свои системы жизнеобеспечения, терморегуляции, электропитания, свой двигатель с топливными баками. Единственное, чего у него не было, — это теплозащиты и парашютов для посадки на Землю. Таким образом в ходе миссии Аполлон-9 впервые в мире люди летали на космическом корабле, не способном войти в атмосферу и приземлиться.

28.jpg

Задачей лунного модуля была посадка на поверхность Луны с селеноцентрической орбиты и взлет с выходом на эту же орбиту. Модуль был сделан настолько легким, насколько это возможно. Первоначальный его проект предусматривал вот такой несколько нелепый дизайн:

29.jpg

Астронавты должны были сидеть в креслах, а для хорошего обзора предусматривались огромные иллюминаторы. Такой дизайн оказался очень нерациональным с точки зрения массы аппарата: иллюминаторы весят очень много. В этом отрывке сериала «С Земли на Луну» весьма достоверно показано, как инженерам удалось избавиться от таких больших иллюминаторов, сохранив хороший обзор для экипажа, а также ряд других мер по облегчению аппарата:

В результате лунный модуль приобрел вот такую, немного похожую на паука, форму:

30.jpg

Рассмотрим его поближе:

31.jpg
Лунный модуль Аполлона-11

Из нижней части лунного модуля торчит сопло посадочного двигателя. Вокруг него днище модуля прикрывает щит. Он не дает теплу от сопла перегреть конструкции посадочной ступени. Двигатель мог отклоняться, чтобы управлять модулем, изменяя направление вектора тяги. В стороны отходят четыре «лапки»-опоры, на которые и опирался модуль, стоя на Луне. Они могут немного изменять длину, чтобы надежно стоять на неровной лунной поверхности. Касание поверхности определяет датчик-щуп, торчащий из каждой опоры. На одной из опор также виден трап для спуска. Корпус посадочной ступени обклеен блестящей, похожей на фольгу, экранно-вакуумной теплоизоляцией. Она спасает оборудование в модуле от чрезмерного нагрева Солнцем. Между опорами установлены узкие длинные защитные экраны, предохраняющие поверхность теплоизоляции от струй горячих газов из двигателей ориентации.
Попробуем теперь «заглянуть» внутрь посадочной ступени. Устроена она до безобразия просто. Как именно, понятно из этой схемы:

32.jpg

Каркас с установленными топливными баками и двигателем хорошо виден на фотографии посадочной ступени в сборочном цехе:

33.jpg

На наружных поверхностях отсеков с топливными баками установлены кронштейны для посадочных опор, а на переднем плане хорошо видны два шар-баллона: нижний с гелием и верхний с кислородом. «Треугольные» отсеки с внешней стороны, а также сверху и снизу закрываются легкими панелями, состоящими из нескольких слоев теплоизоляции и противометеоритной защиты настолько тонких, что создается иллюзия, будто ступень частично сделана из картона, частично из фольги.

34.jpg
Посадочная ступень Аполлона-13 в цехе

Это продиктовано необходимостью, насколько возможно, снизить массу лунного модуля. А поскольку ему нужно было летать только в вакууме, никакой обтекаемости и особой прочности не нужно.
А на этой фотографии виден сложенный лунный ровер перед погрузкой в отсек посадочной ступени Аполлона-15:

35.jpg

Хорошо заметно, как он идеально подходит под «треугольный» отсек ступени.
Перейдем теперь к взлетной ступени. Она устанавливается на посадочную ступень сверху посредством четырех пироболтов, разрываемых в момент взлета с Луны.

36.jpg
Лунный модуль Аполлона-16

Отдельно взлетная ступень выглядит так:

37.jpg
Взлетная ступень ЛМ Аполлона-17

Она похожа на нечто вроде положенной набок цилиндрической банки, на которую снаружи навешано много всякой всячины. На специальных кронштейнах вынесены 4 блока по 4 двигателя ориентации (на фото видны 2, остальные сзади) аналогичные таковым на сервисном модуле Аполлона. На лицевой стороне модуля видны два треугольных иллюминатора (в правом видна голова Юджина Сернана в шлеме), а между ними выступ, внутри которого проложена проводка и установлено оборудование радара сближения, антенна которого торчит сверху. Чуть ниже радара на поверхности выступа установлена антенна S-диапазона, а еще ниже – сигнальный проблесковый фонарь, предназначенный для улучшения заметности лунного модуля на поверхности Луны с большого расстояния. Остронаправленная поворотная антенна S-диапазона торчит позади и выше левого блока двигателей ориентации. Под выступом хорошо различим люк для выхода на поверхность Луны.

38.jpg
Взлетная ступень ЛМ Аполлона-9

Снизу видно сопло двигателя, а по бокам от него два выступа, похожих на мешки. Это отсеки со сферическими баками горючего и окислителя. Заметная асимметрия их расположения объясняется тем, что бак горючего меньше и легче бака окислителя, поэтому для точной установки центра масс аппарата этот бак пришлось вынести дальше от геометрического центра.

39.jpg
Лунный модуль Аполлона-9

При взгляде на верхнюю часть модуля мы видим стыковочный узел, чуть ниже него немного видна мишень, по которой астронавты выставляли ориентацию кораблей при стыковке. Чуть левее этой мишени торчит антенна метрового диапазона и еще одна справа от стыковочного узла. Между узлом и радаром виден объектив навигационного телескопа.
Для лучшего понимания конструкции взлетной ступени обратимся к фотографиям из сборочного цеха.

40.jpg

Здесь видна цилиндрическая герметичная капсула для экипажа. Она должна выдерживать внутреннее давление 0,4 атмосферы, поэтому все ее стенки снабжены большим количеством ребер жесткости. Слева на капсуле закреплены кронштейны, на которых установлены блоки двигателей ориентации, а между ними закреплен солидных размеров бак окислителя. Сверху слегка торчит бачок с водой.

41.jpg

Здесь взлетная ступень представлена нам сзади, причем на более позднем этапе сборки: бак с окислителем укутан толстым слоем теплоизоляции, над ним уже установлены два выкрашенных в черный цвет топливных бака двигателей ориентации, между которыми пристроился гелиевый баллон, а поверх всего этого на каркасе из тонких алюминиевых трубок частично смонтированы панели из нескольких слоев алюминия и майлара, образующие наружный корпус ступени и ее тепловую и противометеоритную защиту. С задней стороны расположена вся электроника, две серебряно-цинковые батареи электропитания, два шар-баллона с гелием для наддува топливных баков взлетного двигателя и два шар-баллона с кислородом для системы жизнеобеспечения.

42.jpg

Вот, взлетная ступень почти готова — осталось только обшить теплоизоляцией отсек электроники С этой стороны хорошо виден отсек с баком горючего. Над ним под небольшим выступом корпуса смонтирован второй комплект баков с топливом и газом наддува для двигателей ориентации, а сверху – второй бачок с водой. Двигатель взлетной ступени в отличие от посадочного имеет меньшую тягу, закреплен жестко, то есть не способен менять вектор тяги и не дросселируется. Его возможности настолько урезаны для того, чтобы его конструкция была максимально простой и легкой.
Видно, как старались инженеры сделать корабль легким. В итоге для аппарата с такими характеристиками (две ступени, характеристическая скорость 4700 м/с, до 72 часов автономной работы) он действительно таковым получился: масса посадочной ступени около 11,7 т, взлетной – около 4,5 т.
Напоследок взглянем на музейный экспонат в виде полностью «раздетого» лунного модуля (это первый рабочий прототип модуля, экспонируемый в музее «Колыбель авиации» в Ист-Гарден-Сити)…

43.JPG

…и перейдем в кабину.

44.jpg

Свободный объем кабины 4,6 кубометра (немного больше двух телефонных будок). На фотографии видны два иллюминатора, пульт управления кораблем между ними и люк для выхода наружу под пультом. На потолке имеется небольшое прямоугольное окошко для наблюдения за стыковкой. У каждого иллюминатора предусмотрены светофильтры для защиты от солнечного ультрафиолета (на фотографии свернуты в рулончики). Здесь не хватает бортового компьютера, точно такого же, как в командном модуле (прямоугольное отверстие внизу пульта) и части электроники на боковых стенках. Что поделать, музейный экспонат…

45.jpg

Вот так размещаются в кабине астронавты при пилотировании: стоя, пристегнувшись к полу. На этой фотографии запечатлен процесс наземной тренировки экипажа Аполлона-9 на тренажере-имитаторе лунного модуля.
Взглянем на заднюю часть кабины (на снимке музейный экспонат):

46.jpg

Сверху – люк стыковочного узла, снизу под ним пол образует выступ, похожий на колпак. Внутри него находится взлетный двигатель. В металлическом ящике на задней стенке спрятана электроника компьютера наведения. Все, что находится на левой и правой стенах – аппаратура системы жизнеобеспечения. Большой белый предмет справа – это ранцевая СЖО для скафандра, установленная на месте ее заправки. Под ней расположено ассенизационно-санитарное устройство (мочеприемник). Решетка справа от колпака двигателя – выпуск системы рециркуляции воздуха. Тонкий шланг перед ней – водораздатчик. Слева от решетки находится панель управления системой жизнеобеспечения и шланги для подключения к ней скафандров. Аппарат, находящийся позади этой панели хорошо виден на этой фотографии:

47.jpg

Здесь видны два гнезда с картриджами поглотителя углекислого газа (гидроксид лития, LiOH), а позади крышки двигателя хранится запасной картридж. Натянутые всюду сетки предназначены для хранения всякого инвентаря (камеры, инструменты, мешки для образцов и т п).
Перейдем теперь к пульту управления:

48.jpg

Сверху установлен навигационный телескоп, по бокам от него на струбцинках закреплены фонарики для освещения кабины, а возле правого иллюминатора закреплена кинокамера. Пульт демонстрирует типичный американский подход: управление всеми системами корабля доверить человеку. Даже то, чем по умолчанию рулит автоматика. Отсюда так много различных тумблеров, переключателей, ручек и показометров.

Лунный модуль был единственным космическим кораблем, который никогда не возвращался на Землю и не был для этого предназначен, а также он был единственным кораблем, на котором в пилотируемом режиме были осуществлены посадка и взлет с отличного от Земли астрономического объекта. Кроме того это был первый пилотируемый корабль, с которым стыковался другой пилотируемый корабль (Джемини стыковался с беспилотной мишенью Аджена).

49.jpg
Лунный модуль Аполлона-12

Мы разобрали уже две конфигурации Аполлона: командно-сервисный модуль, в основном летавший по низкой околоземной орбите (кроме Аполлона-8) и лунный модуль, летавший к Луне (кроме Аполлона-9). Но была еще и третья конфигурация. Она использовалась только один раз, когда был совершен последний полет Аполлона с целью практически бесполезной для науки, но бесценной для политики стыковки с советским кораблем Союз-19. Конструкция Аполлона и Союза кардинально различалась. И если со стыковочными узлами проблем не было: на оба корабля легко было поставить андрогинно-периферийные агрегаты стыковки, то вот несовместимость атмосфер обоих кораблей ставила перед инженерами серьезную задачу. На Аполлоне использовался чистый кислород при давлении 0,4 атм, что позволяло значительно упростить систему жизнеобеспечения и облегчить командный модуль, сделав его стенки тоньше. На Союзе же использовался обычный воздух при давлении 1 атм. Из-за этого для перехода экипажей между кораблями возникла необходимость в декомпрессионной камере, где при переходе из Союза в Аполлон люди должны были несколько часов дышать чистым кислородом и затем медленно сбавлять давление для выхода азота из крови и предотвращения кессонной болезни. И такая камера была изготовлена. При старте Аполлона она размещалась в адаптере позади корабля, как лунный модуль, а после выхода на орбиту корабль разворачивался и стыковался с этим отсеком точно так же, как с лунным модулем.

50.jpg

В отличие от лунного модуля стыковочный модуль не был полноценным космическим кораблем: у него не было ни двигателей ориентации, ни маршевого двигателя, ни пульта управления. По сути это просто бочка, закутанная в экранно-вакуумную теплоизоляцию с присоединенными к ней с двух сторон баллонами с кислородом и воздухом, помещенные в покрытые теплоизоляцией отсеки, которые хорошо видны на этой фотографии:

51.jpg

На переднем торце этой «бочки» расположен стыковочный узел АПАС-75 и антенна сближения. Сам стыковочный узел изначально разрабатывался именно для этого полета, но его потомки АПАС-89 и АПАС-95 использовались на шаттлах и сейчас используются на китайских космических кораблях Шеньчжоу. Хорошо разглядеть этот замечательный стыковочный агрегат можно в музее космонавтики в Москве:

52.jpg

53.jpg

Фотографий стыковочного модуля Аполлона изнутри в полете мне найти не удалось. Возможно, во время декомпрессии экипажу было не до фотографирования. Зато есть фотографии с наземных тренировок в этом модуле, на которых виден его интеръер:

54.jpg

Маленький цилиндрический отсек, в котором человек даже не мог выпрямиться в полный рост. На торцах – люки стыковочных устройств (со стороны командного модуля Аполлона такой же узел «штырь-конус», какой использовался для стыковки с лунным модулем), на стенах закреплено оборудование для декомпрессии.

55.jpg

Больше про этот модуль сказать в принципе нечего: он совершенно прост.

56.jpg

На этом мы заканчиваем разбор одного из лучших космических кораблей, когда-либо построенных человечеством. До сих пор никто не сделал корабля с такими возможностями, какие были у Аполлона. Летать бы ему и летать, но закрытие лунной пилотируемой программы сильно ударило по этой космической системе, а ставка на систему Спейс Шаттл прибила Аполлон окончательно. Конструктор ракетно-космических систем NASA Вернер фон Браун прямо заявил: «Нам всегда было очевидно, что после титанических усилий, связанных с высадкой людей на Луну, придется сделать определенный шаг назад… Мы … стремились в своих докладах показать, что подобные программы нельзя открывать и закрывать, как водопроводный кран; что каждый раз, когда «кран закрывают», обнаруживаются огромные потери в знаниях и опыте, и вновь запустить подобную программу стоит колоссальных средств и что государству гораздо целесообразнее иметь программу, обеспеченную равномерным ежегодным финансированием».

Источник: megavolt-lab.livejournal.com

На фоне данных о путешествии ровера «Юйту-2» по лунной поверхности, интерес к событиям и экспериментам, происходящим на стационарном посадочном модуле «Чанъэ-4», проявляется намного меньше, а ведь там установлено научное оборудование для изучения космической среды, с помощью которого тоже выполняются сложные эксперименты.

Следующее десятилетние будет временем расширенных исследований лунной поверхности, нас ждут интересные открытия, и человек снова будет ходить по Луне.

Пока что этим занимаются ученые и инженеры — вот так:

Посадочный модуль

Посадочный модуль

Но уже сейчас, на Земле, в производственных цехах и лабораториях Китайской академии космических технологий кипит работа по изготовлению, тестированию и подготовке к запуску новых лунных модулей, каждый из которых приближает реальность высадки на Луну живого экипажа, а не только управляемых роботизированных станций и роверов.

Посадочный модуль

Посадочный модуль

Следы на обратной стороне Луны ровера «Юйту-2» — траектория первого лунного дня:

Посадочный модуль

На каком же этапе сейчас находится Китайская программа по исследованию Луны и что будет дальше? Вот это можно узнать из этих замечательных слайдов о миссии «Чанъэ-4»:

Посадочный модуль

На самом деле, если идти в гору по ступенькам, которые сам делаешь, то можно добраться до ее вершины, хоть и медленно, но зато теперь можно привести на ее вершину еще за собой новых людей, которые потратят намного меньше времени на первые шаги вверх.

Так поступили и китайские ученые и инженеры, разбив лунную исследовательскую программу на несколько этапов-ступенек. Причем, весь опыт, полученный в процессе реализации решений каждого этапа они далее транслировали для разработки нового этапа. И сейчас это уже четвертая итерация по освоению Луны идет. Скоро пятая — автономная экспедиция с возвращением на Землю.

А когда есть своя ракета-носитель (серия «Чанчжэн» (Long March)), свои космодромы, высококвалифицированный инженерный персонал, который работает круглосуточно и гордится своими трудами, то с каждым годом техногенный «ком» космических лунных разработок все более и более становится интенсивно-скоростным, набирая ход и открывая для его создателей новые горизонты и возможности.

Посадочный модуль

Но именно на четвертой миссии пришлось использовать весь функционал прежних решений и получить возможность впервые реализовать на обратной стороне Луны:

  • организовать канал передачи данных «обратная сторона Луны-Земля» с помощью спутника-ретранслятора;
  • полноценное управление спускаемыми на поверхность аппаратами (TT&C — tracking, telemetry and command subsystem), используя подсистему слежения, телеметрии и передачи команд управления.

Посадочный модуль

Одной из основных проблем при исследовании дальней стороны Луны является проблема, связанная с организацией связи, поскольку устройства на обратной стороне Луны не доступны для связи напрямую с Земли, поэтому для ретрансляции сигналов необходим отдельный спутник связи.

Cпутник-ретранслятор «Цэюцяо» (сорочий мост), запущенный в 21 мая 2018 года, работает на гало-орбите вокруг особой гравитационно стабильной точки Лагранжа Земля-Луна L2, из которой он может поддерживать прямую видимость с Землей и лунной обратной стороной в любое время для обмена данными между ЦУП и модулями проекта «Чанъэ-4».

Посадочный модуль

Так же на спутнике-ретрансляторе «Цэюцяо» установлен низкочастотный спектрометр (relay LFS) с тремя пятиметровыми антеннами, с помощью которого регистрируется низкочастотное радиоизлучение ранней Вселенной, позволяющее изучить ее структуру.

Посадочный модуль

Схема организации связи Земля-обратная сторона Луны:

Посадочный модуль

Схема полета миссии «Чанъэ-4» до Луны:

Посадочный модуль

Обратная сторона Луны чаще подвержена падению метеоритов, поэтому рельеф там очень сложный, что создает высокий риск для нештатной посадки, которая может привести к опрокидыванию или полной потери посадочного модуля в процессе прилунения.

Для миссии «Чанъэ-4» была выбрана относительно безопасная расчетная площадка для посадки в кратере Кармана, внутри которого есть обширные плоские участки на поверхности.

Посадочный модуль

На стадии проектирования в бортовые компьютерные системы посадочного аппарата «Чанъэ-4» внедрены технологии искусственного интеллекта, что позволило разным модулям проекта стать намного умнее и автономнее, чем ранее запускаемые.

Массив специальных датчиков и камер, измеряющих различные параметры скоростей и расстояний, которые так же могут обрабатывать в режиме реального времени 3D-изображения, был установлены на элементах спускаемого модуля «Чанъэ-4», чтобы при выполнении процедуры посадки бортовые системы могли сами анализировать и корректировать параметры и данные по ситуации, включая информацию о текущем положении, углах и наклоне к поверхности, быстро идентифицировать нестабильные (опасные) элементы на поверхности (камни, мелкие кратеры) и смочь уклониться от таких препятствий до крайней точки невозврата в процессе посадки в автоматическом режиме без вмешательства оператора на Земле.

Посадочный модуль

4 января 2019 года, после окончания всех этапов процедуры успешной посадки и установки независимых каналов связи с аппаратами «Чанъэ-4» (посадочным модулем и ровером), началась эра исследования обратной стороны Луны.

Посадочный модуль

Аппараты миссии «Чанъэ-4» начали присылать фотографии лунной поверхности:

Посадочный модуль

Посадочный модуль «Чанъэ-4» и ровер «Юйту-2» оборудованы специальными камерами, спектрометрами, радарами, детекторами и дозиметрами, как Китайского, так и международного производства:

Посадочный модуль

Международное научное оборудование:

Посадочный модуль

Научные данные, собираемые с помощью аппаратов миссии «Чанъэ-4», передаются в специальный космический исследовательский центр и национальную астрономическую обсерваторию, где массивы полученных данных идентифицируются, каталогизируются по экспериментам, находятся на хранении, анализируются и передаются в исследовательские лаборатории и академии наук.

Посадочный модуль

Посадочный модуль

Что нас ждет в совсем скором будущем?

Миссия «Чанъэ-5» с возвращаемым модулем на Землю, который доставит несколько килограмм лунного грунта для новых исследований и открытий.

Посадочный модуль

А далее… Полюса Луны будут новым направлением исследований – это уже миссии «Чанъэ-6 (7-8)», часть которых планируется реализовать до 2030 года.

Посадочный модуль

И апогеем этих всех разработок, проектов и годов труда и полетов должна быть полноценная космическая Лунная станция (включая орбитальные модули и наземные сооружения и инфраструктуру):

Посадочный модуль

Но до планируемых на следующее десятилетие событий нужно найти ответы на много сложных космических вопросов, а некоторые из них могут быть решены с помощью научных приборов, которые установлены на посадочном модуле «Чанъэ-4», ровере «Юйту-2» и спутнике-ретрансляторе «Цэюцяо».

Посадочный модуль

Низкочастотный спектрометр (LFS) – установлен на посадочном модуле «Чанъэ-4» и спутнике-ретрансляторе «Цэюцяо».

Земля имеет ионосферу, которая затрудняет прием низкочастотных радиосигналов из космоса. Чтобы получить и проанализировать слабые сигналы, испускаемые многочисленными далекими небесными телами, такие радиоастрономические эксперименты должны проводиться в космическом пространстве, помогая нам изучать происхождение и эволюцию звезд, галактик и Вселенной.

Посадочный модуль

Данные и результаты подобных экспериментов на околоземных орбитах оказываются так же чувствительны к электромагнитным помехам с Земной поверхности, но на обратной стороне Луны таких помех от Земли нет.

В миссии «Чанъэ-4» одновременно задействованы:

  • Китайский низкочастотный спектрометр LFS, установленный на посадочном модуле «Чанъэ-4»;
  • Голландско-китайский низкочастотный спектрометр LFS, установленный на спутнике-ретрансляторе «Цэюцяо» (Netherlands-China Low-Frequency Explorer (NCLE)).

Низкочастотный спектрометр LFS (Low Frequency Spectrometer), предназначенный для исследования солнечных вспышек и солнечной активности сейчас используется в миссии «Чанъэ-4» для проведения низкочастотных радиоастрономических наблюдений Вселенной, Солнца и других небесных тел.

Однако, эти наблюдения осложняются тем фактом, что модули «Чанъэ-4» также излучают много низкочастотных электромагнитных сигналов. Согласно данным, которые уже получили инженеры с посадочного модуля «Чанъэ-4», предстоит дополнительно проделать большую работу по удалению из них помех и выделению низкочастотных радиосигналов от Вселенной, особенно от Солнца.

Поэтому, анализ и сравнение данных спектрометра с лунной поверхности с данными спектрометра на спутника-ретранслятора, позволяют получить более понятную научную картину по этой задаче.

Внешняя часть низкочастотного спектрометра LFS — это три пятиметровые антенны.

Посадочный модуль

Посадочный модуль

Посадочный модуль

Посадочный модуль

Основные характеристики и схема низкочастотного спектрометра LFS:

Посадочный модуль

Основные характеристики и схема низкочастотного спектрометра на спутнике-ретрансляторе «Цэюцяо»:

Посадочный модуль

Немецкий нейтронный дозиметр (LND), созданный учеными Кильского университета — установлен на посадочном модуле «Чанъэ-4».

Посадочный модуль

Ведь на Луне нет атмосферы, и космическое излучение напрямую бомбардирует лунную поверхность. В следствии реакций между частицами космических лучей и материалом лунной поверхности образуется гамма-излучение и нейтроны, коэффициент излучения у которых выше, чем у протонов, электронов и фотонов, и их излучение очень вредно для живых организмов на поверхности (экипажей будущих лунных станций).

Посадочный модуль

С помощью дозиметра LND проекта «Чанъэ-4» планируется исследовать лунную радиационную обстановку и собирать данные, которые можно использовать для будущей радиационной защиты обитаемых лунных баз.

Основные характеристики дозиметра LND:

Посадочный модуль

На ровере «Юйту-2» установлен Шведский научный прибор ASAN (Advanced Small Analyzer for Neutrals) — малый анализатор нейтральных частиц.

Посадочный модуль

Протоны и ионы солнечного ветра напрямую без помех оказывают воздействуют на лунную поверхность, сталкиваясь с ней, отражаясь от нее, создавая энергические нейтральные атомы (ЭНА) и другие частицы.

Energetic Neutral Atom (ENA) — энергетический нейтральный атом (образуются, когда «случайные» атомы из межзвездного пространства сталкиваются с положительно заряженными ионами, которые с высокой скоростью движутся вокруг Солнечной системы. При столкновении активные ионы «отбирают» у атомов недостающие электроны и превращаются в энергетические нейтральные атомы).

В то же время, солнечный свет приводит к положительному заряду одной стороны Луны, а плазма — к отрицательному заряду другой стороны Луны. На стыке этих воздействий электростатическая сила выбрасывает лунную пыль в космос.

Таким образом, распыленные и отраженные зарядами частички лунного грунта покидают поверхность Луны. Изучение этого процесса имеет большое значение для понимания различных механизмов в формировании лунного слоя, как и подобных слоев на других космических объектах (астероидах и тому подобное)

Посадочный модуль

Основные характеристики прибора ASAN:

Посадочный модуль

А как же эти все научные приборы управляются, передают данные, получают электропитание?

Схемы связи и передачи данных научного оборудования на посадочном модуле «Чанъэ-4»:

Посадочный модуль

где:

— LFS — Low Frequency Spectrometer;
— LND — Lunar Lander Neutrons and Dosimetry;
— TCAM — Terrain Camera;
— LCAM — Landing Camera.

Схемы связи и передачи данных научного оборудования на ровере «Юйту-2»:

Посадочный модуль

где:

— LPR — Lunar Penetrating Radar;
— ASAN — Advanced Small Analyzer for Neutrals;
— VNIS — Visible and Near-Infrared Imaging Spectrometer;
— PCAM — Panoramic Camera.

Сравнительные фотографии, сделанные аппаратом LRO (Лунный орбитальный зонд NASA) места посадки миссии «Чанъэ-4» на обратной стороне Луны в разное время (видны на фото спускаемый модуль и ровер, который передвигается все дальше от места посадки):

Посадочный модуль

Посадочный модуль

Новые данные из ЦУПа миссии «Чанъэ-4» по фактической траектории ровера «Юйту-2» – на карте отмечены впадины и кратеры с уклоном, которые ровер старательно избегает.

Посадочный модуль

Колеи и отметки на поверхности Луны от колес ровера «Юйту-2» останутся там нетронутыми, как минимум, на сотни тысяч лет.

Посадочный модуль

Многие проблемы, которые уже сегодня были решены на Земле на стадии проектирования аппаратов для лунных миссий, могли бы стать очень сложными и фатальными, если они мешали работе оборудования на Луне.

И только увлеченные космосом люди смогли предвидеть и понять, что еще нужно сделать для спускаемого аппарата и ровера, чтобы они работали в сложных лунных условиях без критических поломок, особенно в самые ответственные моменты миссии.

Команда инженеров и сотрудников Китайской академии космических технологий, принимающих участие в миссии «Чанъэ-4»:

Посадочный модуль

Посадочный модуль

Посадочный модуль

Источник: habr.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.