Перший закон кеплера


В своё время, Кеплер на основании анализа наблюдений других учёных, Тихо Браге и Коперника, вывел три закона. Которые дают описание гелиоцентрической орбиты планеты. Основу его соотношений составили опыт и эксперименты.

Иоганн Кеплер

Считается, что погрешность кеплеровых законом максимум 1%. Между тем, Кеплер не смог сам научно обосновать свои выводы. Более того, можно сказать, что выдвинул он их интуитивно. Впоследствии данные предположения теоретически доказал Исаак Ньютон. Также в дальнейшем их применение было обоснованно классической механикой.

Бесспорно, работы ученого в значительной мере способствовали пониманию внутренней системы движения космических объектов.

Познавать означает сопоставлять воспринятое извне с внутренними идеями и выносить суждение о том, насколько то и другое совпадает.

Иоган Кеплер


Первый закон Кеплера

Это эллипсический закон.

В нашей системе планеты осуществляют оборот по эллипсу. К тому же, Солнце находится на одном из фокусов данной кривой.

Форму эллипса и его сходство с окружностью определяют эксцентриситетом. Это выражение сечения конуса в числовой мере. Более того, именно он указывает на степень отклонения от окружности.

Его вычисляют делением промежутка от центра до фокуса эллипса на большую полуось. Если расстояние равно нулю, соответственно эллипс будет являться окружностью.

Первый закон Кеплера

Открытие и использование закона всемирного тяготения в астрономии является доказательством первого закона Кеплера. Закон всемирного тяготения установил то, что каждый объект во Вселенной притягивает другой объект по определённой линии. Которая, помимо всего прочего, соединяет центры их масс. Но в то же время является пропорциональной массе каждого объекта, и обратно пропорциональной квадрату расстояния между этими объектами. Разработал закон всемирного тяготения Ньютон.

Первый закон Кеплера взаимосвязан с ньютоновскими законами.

Во втором законе Ньютон утверждал и доказывал, что ускорение объекта является пропорциональной равнодействующей всех сил. Которые прилагаются к объекту. Кроме того, ускорение также является обратно пропорциональным массе объекта.

Второй кеплеровский закон

По другому, его называют законом площадей. Он сообщает, что каждая планета движется в определённой плоскости. Которая, к тому же, простирается через центр Солнца. Вдобавок радиус-вектор, объединяющий планету и Солнце, заметает собой равные площади за равные промежутки времени.

Второй закон Кеплера

В Солнечной системе планеты движутся вокруг Солнца совсем непостоянно. Например, от самой ближней точки орбиты до главной звезды наблюдается большая скорость, чем от самой дальней точки.


Действительно, мы наблюдаем такое явление в начале года. Видимое движение Солнца проходит быстрее, нежели в другое время. Так как Земля в это время расположена на ближнем пункте орбиты. Кстати, её называют перигелий. А прямо противоположную точку, то есть самую отдаленную-афелий.

Третий закон Кеплера

Часто называют его название гармоничный закон. Он подразумевает, что период вращения планеты в квадрате вокруг Солнца относится, как куб большой полуоси орбиты планеты.

По правилам силы гравитации, закон Кеплера не совсем точен. Помимо всего прочего, в нём должна учитываться масса планеты.

Гармоничный закон с учётом закона тяготения актуально применять для измерения массы космического объекта. Но только, если установлены их орбиты.

Третий закон Кеплера

Третий закон Кеплера показывает связь между промежутком от планеты до звезды и периодом обращения по орбите.


Проще говоря, чем планета ближе к Солнцу, тем быстрее она крутится.

Источник: zen.yandex.ru

Законы Кеплера о движении планет

И. Кеплер. Портрет неизвестного автора

«Он жил в эпоху, когда ещё не было уверенности в существовании некоторой общей закономерности для всех явлений природы…

… Какой глубокой была у него вера в такую закономерность, если, работая в одиночестве, никем не поддерживаемый и не понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения!


Сегодня, когда этот научный акт уже совершился, никто не может оценить полностью, сколько изобретательности, сколько тяжёлого труда и терпения понадобилось, чтобы открыть эти законы и столь точно их выразить» (Альберт Эйнштейн о Кеплере).

Иоганн Кеплер первым открыл закон движения планет Солнечной системы. Но сделал это он на основе анализа астрономических наблюдений Тихо Браге. Поэтому поговорим сначала о нем.

Тихо Браге (1546-1601)

Тихо Браге — датский астроном, астролог и алхимик эпохи Возрождения. Первым в Европе начал проводить систематические и высокоточные астрономические наблюдения, на основании которых Кеплер вывел законы движения планет.

Тихо Браге. Автор портрета не известен

Астрономией увлекся еще в детстве, вел самостоятельные наблюдения, создал некоторые астрономические инструменты. Однажды (11 ноября 1572 года), возвращаясь домой из химической лаборатории, он заметил в созвездии Кассиопеи необычайно яркую звезду, которой раньше не было. Он сразу понял, что это не планета, и бросился измерять её координаты. Звезда сияла на небе ещё 17 месяцев; вначале она была видна даже днём, но постепенно её блеск тускнел. Это была первая за 500 лет вспышка сверхновой в нашей Галактике.


бытие это взбудоражило всю Европу, было множество истолкований этого «небесного знамения» — предсказывали катастрофы, войны, эпидемии и даже конец света. Появились и учёные трактаты, содержащие ошибочные утверждения о том, что это комета или атмосферное явление. В 1573 г. вышла первая его книга «О новой звезде». В ней Браге сообщал, что никакого параллакса (изменения видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя) у этого объекта не обнаружено, и это убедительно доказывает, что новое светило — звезда, и находится она не вблизи Земли, а по крайней мере на планетном расстоянии. С появлением этой книги Тихо Браге был признан первым астрономом Дании. В 1576 г. указом датско-норвежского короля Фредерика II Тихо Браге был пожалован в пожизненное пользование остров Вен (Hven), расположенный в 20 км от Копенгагена, а также выделены значительные суммы на постройку обсерватории и её содержание. Это было первое в Европе здание, специально построенное для астрономических наблюдений. Тихо Браге назвал свою обсерваторию «Ураниборг» в честь музы астрономии Урании (это название иногда переводят как «Небесный замок»). Проект здания составил сам Тихо Браге. В 1584 г. рядом с Ураниборгом был построен ещё один замок-обсерватория: Стьернеборг (в переводе с датского «Звёздный замок»). В скором времени Ураниборг стал лучшим в мире астрономическим центром, сочетавшим наблюдения, обучение студентов и издание научных трудов. Но в дальнейшем, в связи со сменой короля. Тихо Браге лишился финансовой поддержки, а затем последовало запрещение заниматься на острове астрономией и алхимией. Астроном покинул Данию и остановился в Праге.


Ураниборг

Вскоре Ураниборг и все связанные с ним постройки были полностью разрушены (в наше время они частично восстановлены).

В это напряжённое время Браге пришёл к выводу, что ему нужен молодой талантливый помощник-математик для обработки накопленных за 20 лет данных. Узнав о гонениях на Иоганна Кеплера, незаурядные математические способности которого он уже успел оценить из их переписки, Тихо пригласил его к себе. Перед учеными стояла задача: вывести из наблюдений новую систему мира, которая должна прийти на смену как птолемеевской, так и коперниковой. Он поручил Кеплеру ключевую планету: Марс, движение которого решительно не укладывалось не только в схему Птолемея, но и в собственные модели Браге (по его расчётам, орбиты Марса и Солнца пересекались).

В 1601 г. Тихо Браге и Кеплер начали работу над новыми, уточнёнными астрономическими таблицами, которые в честь императора получили название «Рудольфовых»; они были закончены в 1627 г. и служили астрономам и морякам вплоть до начала XIX века. Но Тихо Браге успел только дать таблицам название. В октябре он неожиданно заболел и умер от неизвестной болезни.

Тщательно изучив данные Тихо Браге, Кеплер открыл законы движения планет.

Памятник Браге и Кеплеру в Праге

Законы движения планет Кеплера


Первоначально Кеплер планировал стать протестантским священником, но благодаря незаурядным математическим способностям был приглашён в 1594 г. читать лекции по математике в университете города Граца (сейчас это Австрия). В Граце Кеплер провёл 6 лет. Здесь в 1596 г. вышла в свет его первая книга «Тайна мира». В ней Кеплер попытался найти тайную гармонию Вселенной, для чего сопоставил орбитам пяти известных тогда планет (сферу Земли он выделял особо) различные «платоновы тела» (правильные многогранники). Орбиту Сатурна он представил как круг (ещё не эллипс) на поверхности шара, описанного вокруг куба. В куб в свою очередь был вписан шар, который должен был представлять орбиту Юпитера. В этот шар был вписан тетраэдр, описанный вокруг шара, представлявшего орбиту Марса и т. д. Эта работа после дальнейших открытий Кеплера утратила своё первоначальное значение (хотя бы потому, что орбиты планет оказались не круговыми); тем не менее, в наличие скрытой математической гармонии Вселенной Кеплер верил до конца жизни, и в 1621 г. переиздал «Тайну мира», внеся в нее многочисленные изменения и дополнения.


Будучи великолепным наблюдателем, Тихо Браге за много лет составил объёмный труд по наблюдению планет и сотен звёзд, причём точность его измерений была существенно выше, чем у всех предшественников. Для повышения точности Браге применял как технические усовершенствования, так и специальную методику нейтрализации погрешностей наблюдения. Особо ценной была систематичность измерений.

На протяжении нескольких лет Кеплер внимательно изучает данные Браге и в результате тщательного анализа приходит к выводу, что траектория движения Марса представляет собой не круг, а эллипс, в одном из фокусов которого находится Солнце — положение, известное сегодня как первый закон Кеплера.

Первый закон Кеплера (закон эллипсов)

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Форма эллипса и степень его сходства с окружностью характеризуется отношением , где — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), — большая полуось. Величина называется эксцентриситетом эллипса. При , и, следовательно , эллипс превращается в окружность.

Законы Кеплера о движении планет

Дальнейший анализ приводит ко второму закону. Радиус-вектор, соединяющий планету и Солнце, в равное время описывает равные площади. Это означало, что чем дальше планета от Солнца, тем медленнее она движется.


Второй закон Кеплера (закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

С этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Второй закон Кеплера

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.

Законы Кеплера о движении планет, где и  — периоды обращения двух планет вокруг Солнца, а и   — длины больших полуосей их орбит.

Ньютон позднее установил, что третий закон Кеплера не совсем точен — в него входит и масса планеты: Законы Кеплера о движении планет, где  — масса Солнца, а и  — массы планет.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.

Значение открытий Кеплера в астрономии

Открытые Кеплером три закона движения планет полностью и точно объяснили видимую неравномерность этих движений. Вместо многочисленных надуманных эпициклов модель Кеплера включает только одну кривую — эллипс. Второй закон установил, как меняется скорость планеты при удалении или приближении к Солнцу, а третий позволяет рассчитать эту скорость и период обращения вокруг Солнца.

Хотя исторически кеплеровская система мира основана на модели Коперника, фактически у них очень мало общего (только суточное вращение Земли). Исчезли круговые движения сфер, несущих на себе планеты, появилось понятие планетной орбиты. В системе Коперника Земля всё ещё занимала несколько особое положение, поскольку только у неё не было эпициклов. У Кеплера Земля — рядовая планета, движение которой подчинено общим трём законам. Все орбиты небесных тел — эллипсы, общим фокусом орбит является Солнце.

Кеплер вывел также «уравнение Кеплера», используемое в астрономии для определения положения небесных тел.

Законы, открытые Кеплером, послужили позже Ньютону основой для создания теории тяготения. Ньютон математически доказал, что все законы Кеплера являются следствиями закона тяготения.

Но в бесконечность Вселенной Кеплер не верил и в качестве аргумента предложил фотометрический парадокс (это название возникло позже): если число звёзд бесконечно, то в любом направлении взгляд наткнулся бы на звезду, и на небе не существовало бы тёмных участков. Кеплер, как и пифагорейцы,  считал мир реализацией некоторой числовой гармонии, одновременно геометрической и музыкальной; раскрытие структуры этой гармонии дало бы ответы на самые глубокие вопросы.

Источник: ency.info

Первый закон Кеплера

Все планеты Солнечной Системы движутся по некоторым кривым, которые называются эллипс. Эллипс – это одна из простейших математических кривых, так называемая кривая второго порядка. В Средние века их называли коническими пересечениями – если пересечь конус или цилиндр некоторой плоскостью, то получим ту самую кривую, по которой движутся планеты Солнечной системы.                 

Перший закон кеплера

Рис. 3. Кривая движения планет (Источник)

Эта кривая (Рис. 3) имеет две выделенные точки, которые называются фокусы. Для каждой точки эллипса сумма расстояний от нее до фокусов одинакова. В одном из этих фокусов находится центр Солнце (F), ближняя к Солнцу точка кривой (P) носит название перигелий, а самая дальняя (A) – афелий. Расстояние от перигелия до центра эллипса называется большой полуосью, а расстояние от центра эллипса по вертикали до эллипса малой полуосью эллипса.

 

Второй закон Кеплера

В процессе движения планеты по эллипсу радиус-вектор, соединяющий центр Солнца с этой планетой, описывает некоторую площадь. Например, за время ∆t планета переместилась из одной точки в другую, радиус-вектор описал некоторую площадь ∆S.

Перший закон кеплера

Рис. 4. Второй закон Кеплера (Источник)

Второй закон Кеплера гласит: за одинаковые промежутки времени радиус-вектора планет описывают одинаковые площади.

На рисунке 4 изображен угол ∆Θ, это угол поворота радиус-вектора за некоторое время ∆t и импульс планеты (), направленный по касательной к траектории, разложенный на две составляющие – составляющая импульса по радиус-вектору () и составляющая импульсов, в направлении, перпендикулярном радиус-вектору(⊥).

Произведем вычисления, связанные со вторым законом Кеплера. Утверждение Кеплера, что за равные промежутки проходятся равные площади, означает, что отношение этих величин есть величина постоянная. Отношение этих величин часто называют секторальной скоростью, это скорость изменения положения радиус-вектора. Какова же площадь ∆S, которую заметает радиус-вектор за время ∆t? Это площадь треугольника, высота которого примерно равна радиус-вектору, а основание примерно равно r ∆ω, воспользовавшись этим утверждением, напишем величину ∆S в виде ½ высоты на основание и разделим на ∆t, получим выражение:

Перший закон кеплера, это скорость изменения угла, то есть угловая скорость.

Окончательный результат:

Перший закон кеплера,

Квадрат расстояния до центра Солнца, умноженный на угловую скорость движения в данный момент времени, есть величина постоянная.

Но если мы умножим выражение r2ω на массу тела m, то получим величину, которую можно представить в виде произведения длины радиус-вектора на импульс в направлении, поперечном к радиус-вектору:

Перший закон кеплера

Эта величина, равная произведению радиус-вектора на перпендикулярную составляющую импульса, носит название «момент количества движения».

Второй закон Кеплера есть утверждение о том, что момент количества движения в гравитационном поле – величина сохраняющаяся. Отсюда следует простое, но очень важное утверждение: в точках наименьшего и наибольшего расстояния до центра Солнца, то есть афелий и перигелий, скорость направлена перпендикулярно к радиус-вектору, поэтому произведение радиус-вектора на скорость в одной точке равно этому произведению в другой точке.   

Перший закон кеплера

Третий закон Кеплера

Третий закон Кеплера утверждает, что отношение квадрата периода обращения планеты вокруг Солнца к  кубу большой полуоси есть величина одинаковая для всех планет Солнечной системы. 

Перший закон кеплера

Рис. 5. Произвольные траектории планет (Источник)

На рисунке 5 представлены две произвольные траектории планет. Одна имеет явный вид эллипса с длиной полуоси (a), вторая имеет вид окружности с радиусом (R), время обращения по любой из этих траекторий, то есть период обращения, связан с длиной полуоси или с радиусом. А если эллипс превращается в окружность, то большая полуось как раз и становится радиусом этой окружности. Третий закон Кеплера утверждает, что в том случае, когда длина большой полуоси равна радиусу окружности, периоды обращения планет вокруг Солнца будут одинаковыми.

Для случая окружности можно вычислить это отношение, пользуясь вторым законом Ньютона и законом движения тела по окружности, эта константа есть 4π2, деленное на постоянную всемирного тяготения (G) и массу Солнца (M).

Таким образом, видно, что, если обобщить гравитационные взаимодействия, как это сделал Ньютон, и предположить, что все тела участвуют в гравитационном взаимодействии, законы Кеплера можно распространять на движение спутников вокруг Земли, на движение спутников вокруг любой другой планеты и даже на движение спутников Луны вокруг центра Луны. Только в правой части этой формулы буква М будет означать массу того тела, которое притягивает к себе спутники. Все спутники данного космического объекта будут иметь одинаковое отношение квадрата периода обращения (Т2) к кубу большой полуоси (а3). Этот закон может быть распространен на вообще все тела во Вселенной и даже на звезды, из которых состоит наша Галактика.

Источник: interneturok.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.